Press Alt + R to read the document text or Alt + P to download or print.
1This document contains no pages.
HomeMy WebLinkAboutX2019-0401 - Calcs��kcl 01-4 0
STRUCTURAL PLAN CHECK REPLY
.pate: 2-6-19
Project Location: 219 Lugonia
ESI/FME J.N.: H486
Item Response
3 Please see new calc sheet 10A for existing FJ Calc.
5 Now provided
6 line 4 has almost zero uplift per calcs. Hold down now provided for line 3 as required.
7 Actual location of line 6 is at the front of dining, where the corresponding shear / hold downs
are shown on plans.
_.....,cnARTMENT
d
iFSPI-Ci Of Id1�4'polal �.i.pGF SIGN El
LS .- U
i�if Obl Nl'
.aGN
J�
_ SIGMA _
_- AiongG lfL Tol
E S I / F M E
INC.
STRUCTURAL ENGINEERS
Project: Structural calculations for
YOKA ADDITION
to be built at
219 LLIGONIA, NB, CA
IBC 2015, CBC 2016
January 18, 2019
Client:
MORGAN
Client Job No.
[Job No. H486
1800 E. 16th Street, Unit B, Santa Ana, CA 92701 Tel: (714) 835-2800 Fax: (714) 835-2819
Page: 2
ESI
FME INC Date: 1-18-19
STRUCTURAL ENGINEERS Job NO: H486
Client: MORGAN
Project Name: YOKA
Plan No:
Load Conditions
Seismic Design Summary
Analysis Used: Equivalent Lateral Force Procedure (12.9)
Roof( sf)
Floor(ps
0o
Shake
Rock
Tile
w/o LW
Conc.
1.5 LW
Conc. or i"
_ Gyporete
5s -1.687 Sy = 0.625 Soil Site Class = D I =1.0 R = 6.5
F. =1.0 F, =1.5 Seismic Design Catergory _= D P =1.0 0 = 2.5
20.0
40.0
Live Wad
Dead Load
SMs = 1.687 SMs = 0.938 -
Sos =1125 Sm = 0.625 jBaSe Shear =0.121W
CO -
4.0
Sheathing
1.5
2.5
Wind Design Summary
Rafter/Joists
1.5
2.0
- - Wind Velocity = 110 M.P.H. - WIndExposure= C
Sprinklers
2.0
2.0
ellingJolsts
1.5
0.0
2'2.s1.01.0
CBC 2016 ASCE72010 NDS 2015 MSJC2023
14.014.0
ki
"IBC2015 ACI318 2014 SDPWS 2015
34.0
54.0
Prosed info
- Soils Report
- Initials Date Address
Engineer of Record: DF 1/18/2019 Street 219 LUGONIA
By: CBC
Job No:
Project Engineer:: -BB 1/18/2019 City NB
Date:
Back Check: State, Zip CA
Allowable Soil Bearing Pressurr1500 psf
Roof Truss Review:
For Additioni Information
Refer to CBC
Floor Truss Review:
PT Foundation Review:
Plan Check 1:
Structural Observation/SpecialInspection
Structural Observation Required Yea
Special Inspection Required:
Yes
Plan Check 2:
Revisions
Table Of Contents
Revision Revised Sheets Initials Date
Description-: Pe• No•
Notes
2-5
.,
Reductions.
R1-
Beams
6-10
Lateral Analysis.
11-15
Shear wall design
16-19
FSI/FME, Inc.- Structural Engineer
Beam overstrength 20 -
guardrail design
21
(This Signature is to be a wet signature, not a copy
grade beam
22.24
-
foundation/pad -
25-26
F!~SSlgy
4
� C 30M37 �
V11 F.
C
Date:
ESI/FME INC
STRUCTURAL ENGINEERS
Project Name: YOKA
CODES
IBC 2015, CBC 2016, ASCE7-10
in all cases calculations will supersede this design criteria sheet
nnuc Fir - larch#t I Doue Fir - Larch #2
Size
Fb (psi)
F� (psi)
Fb (psi)
F„ (PSI)
E (psi)
24, 2x6, 2x8, 2x10, 242,
1000
180
900
180
1.60E+06
2x14
2600
Timberstrand (LSL)
1700Glulam
4x4, 4x6, 4x8, 4x10, 4x12,
1000
180900
2400
180 -
1.60E+06
4x14
6x6, 6x8, 8x8, 8x10
1200
170
750
170 -
1.60E+06
6x10, 6x12, 6x14, 8x12, 8x14
1350
170
875
1 170
1 1.60E+06
Doug Flr. Larch -M%M3X Moisture content. it Ia remommenaeu mac conium uc "cm...
Page: 3
Date: 1-18-19
Job No: H486
Client: MORGAN
Plan No:
Grade
Fb (psi)
F., (psi)
I E (psi)
Parallam 2.0 (PSL)
2900
290
2.00E+06
Parallam 2.2 (PSL
2900A425I.30E+06
Microllam(LVL)
2600
Timberstrand (LSL)
1700Glulam
(24F -V4)
2400
1 Drypack shall be composed of one part Portland Cement to not more than three parts sand.
2 All structural ;concrete f'e= 3000 psi Special Inspection Required
All slab-ongrade, continous footings, pad footings f" = 2500 psi Special Inspection Not Required
All concrete shall reach minimum compressive strength at tis as s.
REINFORCING STEEL
I All reinforcing shall be A.ST.M. A-616-40 for #4 bars and smaller, & A615-60 for #5 bars and larger.
Welded wire fabric to be'A.S.T.M. A-185, lap 1-1/2 spaces, 9" min.
2 Development length of Tension Bars shall be calculated per AC1318-14 Section 12.2.2 Class 8 Splice=1.3x1d-
Splice length for 2500 psi concrete Is: #4 Bars (40K) = 21", #5 Bars (60K) = 39", #6 Bars (60K) = 47" (30 dia, for compression)
Masonry reinforcement shall have lapping of 48 dia. Or 2'-0". This is in all cases U.N.O.
3 All reinforcing bars shall be accurately and securely placed before pouring concrete, or grouting masonry.
4 Concrete protection for reinforcement shall be at least eaqual to the diameter of the bars.
Cover for casi-in-place concrete shall be as follows, U.N.O.
A. Concrete cast against & permenently exposed to. earth '.......... 3"
B. Concrete exposed to earth or weather - <_ #5 Bars .... 11/2" z #6 Bars .... . -... 2"
C. Concrete no exposed to weather or in contact with ground Slabs, Walls, Jolsts 5 #5 Bars ................... .... 3/4"
nanmc R rnlumnc- Primary rninfnmerrment. Ties. Stim Ds. SDlrals . . 11/2"
1 Fabrication and erection of structural steel shall be in accordance with "Specification for the Design, Fabrication and Erection of Structural
Steel Buildings", AISC, current edition. Steel to conform to ASTM A992. Round pipe columns shall conform to ASTM A53, Grade B.
Square/Rectangular steel tubes ASTM A500,Grade B. -
2 All welding shall be performed by certified welders, using the Electric Shielded Arc Process at licensed shops or otherwise approved by
the Building Department. Continuous inspection is required for all field.welding.
3 All Steel exposed to weather shall be hot -dip galvanized after fabrication, or other approved weatherproofing method.
4 Where finish is attached to structural steel. Provide 1/2" dia: bolt holes @ 4'-0" o.c. for attachment of nailer, U.N:O. See architectural drawings
for finishes (Nelson studs 1/2" x 3" CPL may replace bolts)
1 Concrete block shall be of sizes shown on architectural drawings and/or called for in specifications and conform to ASTM C-90-09, Grade A
normal weight units with max linear shrinkage of 0.06%
-2 All vertical reinforcing in masonry walls not retaining earth shall be located in the center of the wall U.M.O. Retaining walls are to be as
shown in details.
3 All cells with steel are to be solid grouted (except retaining walls where all cells are to be solid grouted)
Page: 4
ESI/FME INC Date: 1-18-19
STRUCTURAL ENGINEERS Job No: H486
Client: MORGAN
Project Name: YOKA Plan No:
CONSTRUCTION
ASCE7-10, IBC 2015, CBC 2016, NDS 2015, SDPWS 2015
A. All beams to be supported with full bearing unless noted otherwise.
B. All isolated posts and beams to have Simpson PB's,. PC's and/or BC's minimum, U.N.O.
C. All bearing walls on wood floors are to be supported with double joists or solid blocking, U.N.O.
D. Provide 4x or 2-2x members under sole plate nailing less than 6" o/c.
E. All Simpson HTT, HDU, HDQ and CB holdowns to be fastened to 4x4 post min. U.N.O.
F.. All hardware is to be Simpson Strong -Tie or approved equal. Install per mfr.'s specifications.
G. All shop drawings are to be reviewed by the contractor and the architect prior to submittal for engineers review.
H. All exterior walls are to be secured with 1/2" diameter x 10" anchor bolts or. MASA anchors @ 72" o.c., U.N.O.
(Please call structural engineer for a fix.)
I. All interior walls to be secured with shot pins per manufacturer's recommendations, U.N.O. Calculations govern in all cases..
Recommend Simpson 0.145" dia.,3" long PDP Powder Actuated Anchors @ 24" o.c. (ICC-ESR#2138) or equal.
J. All conventional framed portions of structure are to be constructed per section 2308 of the CBC 2015 or IBC 2015 U.N.O.
K. All nailing is to be per table 2304.10.1 of the IBC or California Building Code, U.N.O.
L. All nails to be "common", U.N.O.
-
SOLE PLATE NAILING
SPN16: 16d Sole Plate Nailing @ 16" O.C.
SCR10:'1/4" x 4 1/2" SDS Screws @ 10" O.C.
SPN12: 16d Sole Plate Nailing @ 12" O.C.
SCR8: 1/4" x 4 1/2" SDS Screws @ 8" O.C.
SPN10: 16d Sole Plate Nailing @ 30" O.C.
SCR6: 1/4" X14 1/2" SDS Screws @ 6" O.C.
SPN8: 16d Sole Plate Nailing @ 8" O.C.
SCR4: 1/4" X14 1/2" SDS Screws @ 4" O.C.
. SPN6: 16d Sole Plate Nailing @ 6" O.C.
SCR2: 1/4" x14 1/2" SDS Screws @ 2" O.C.
SPN4: 16d Sole Plate Nailing @ 4" O.C.
AB32: 1/2" Dia. X 10" Anchor Bolts @ 32" O.C.
or MASA Anchors @ 32" O.C.
SPN2: 16d Sole Plate Nailing @ 2" O.C.
HDUS : (1) Simpson HDUS per post
FOUNDATION HARDWARE LEGEND
AB72: 1/2" Dia. X 10" Anchor Bolts @ 72" O.C.
or MASA Anchors @ 72" O.C.
244 :; Provide a total of 244 at top 2-94 at
bottom of footing, 3' past post
AB64: 1/2" Dia. X 10" Anchor Bolts@ 64" O.C.
or MASA Anchors @ 64" O.C.
344 : Provide a total of 344 at top 344 at
bottom of footing, 3' past post
AB56: 1/2" Dia. X 10" Anchor Bolts @ 56" O.C.
or MASA Anchors @ 56" O.C.
4114 : Provide a total of 444 at top 444 at
bottom of footing, 3' ast post
AB48: 1/2" Dia.X 10" Anchor Bolts @ 48" O.C.
or MASA Anchors @ 48" O.C.
HTT4 : (1) Simpson HTT4 perpost
AB40: 1/2" Dia. X 10" Anchor Bolts @ 40" O.C.
or MASA,Anchors @ 40" O.C.
HTTS : (1) Simpson HTTS per post
HDU2: (1) Simpson HDU2 per post
AB32: 1/2" Dia. X 10" Anchor Bolts @ 32" O.C.
or MASA Anchors @ 32" O.C.
HDU4: (1) Simpson HDU4 per post
HDUS : (1) Simpson HDUS per post
AB24: 1/2" Dia. )F 10" Anchor Bolts @ 24" O.C.
or MASA Anchors @ 24" O.C.
HDU8: (1) Simpson HDU8 per post
HDQ8: (1) Simpson HDQ8 per post
AB16: 1/2" Dia. X 10" Anchor Bolts @ 16" O.C.
or MASA Anchors @ 16" O.C.
HDU11 : (1) Simpson HD 11 per post
HDU14 : (1) Simpson HD 14 per post
AB8: 1/2" Dia. X 10" Anchor Bolts @ 8" O.C.
or MASA Anchors @ 8" O.C.
HD3B : (1) Simpson HD3B per post
HD19 : (1) Simpson HD19 per post
Note: When anchor holts are used, provide 3" sq. x.229 -'thick plate washer for all sill plate A.B.'s at shear walls only.
Project Name:
ESI/FME INC
STRUCTURAL ENGINEERS
Lateral Shear Notes
(IBC 2015, CBC 2016, SDPWS 2015)
Seismic Design Category D & E
Table 4.3A, AFPA SDPWS 2015
Page: 5
Date: 1-18-19
Job No: H483
Client: MORGAN
Plan No: 3
Vertical Framing Members: Douglas Fir -Larch @ 16" O.C.
Wind Seismic
10 3/8" Wood Structural Panel w/ ad Common Nails @ 6" O.C. @. Edges & 12" O.C. @ Field 365 PLF 260 PLF
3/8" Wood Structural Panel w/ 8d Common Nails @ 4" O.C. @ Edges & 12" O.C. @ Field - 532 PLF 350 PLF
$/8" Wood Structural Panel, w/ 8d Common Nails @3" O.C. @ Edges & 12" O.C. @ Field I 685 PLF 490 PLF
3/8" Wood Structural Panel w/ 8d Common Nails @ 2" O.C. @ Edges & 12" O.C. @ Field 895 PLF 640 PLF
1/2" (or 15/32") Wood Structural Panel w/ 10d Common Nails @ 2" O.C. @ Edges & 12" O.C. @ Field 1077 PLF 770 PLF
15 1/2" (or 15/32") Structural I Wood Panel w/ 1od Common Nails @ 2" O.C. @ Edges & 12" O.C. @ Field 1215 PLF 870 PLF
Double Sided (3x Vertical Studs @ Abutting Panels and Nails Staggered On Each Side) 1370 PLF 980 PLF
11 3/8" Wood Structural Panel w/ 8d Common Nails @ 3" O.C. @ Edges. & 12" O.C. @ Field
DBL
Double Sided (3x Vertical Studs @ Abutting Panels and Nails Staggered On Each Side) 1790 PLF 1280 PLF
DBL 3/8" Wood Structural Panel w/Ed Common Nails @ 2" O.C. @ Edges & 12" O.C. @ Field
Notes
a. Wood Structural Panel: Material approved by APA, PFS/TEC0 or Pittsburgh Testing laboratories. These values are for Doug -Fir Larch or
Southern Pine, other lumber species may differ in shear capacities.
b. Where plywood is applied on both faces of wall and nail spacing is less than 6" o.c., panel joints shall be offset to fall on different framing
.members or framing shall be 3x or wider and nails staggered on each side.
c. For allowable shear values greater than 350pif, provide a min. of a single 3x member at all framing members receiving edge nailing from
abutting panels.
d. Where anchor bolts are provided at shear walls a 3"x3"0.229". steel plate washers are required on each bolt. The washer shall be installed
within 1/2" from the sheathed side of the plate. (SDPWS sect. 4.3.6.4.3)
Horizontal
Roof: Joist Spacing < 24" o.c.: 15/32" Wood Struct. Panel PH 24/0, with ad's @ 6" o.c. at edges & boundaries, 12" o.c. field.
Floor: Joist Spacing < 16" o.c.: 19/32" Wood Struct. Panel T&G*, PI 32/16, w/Sod's @ 6" o.c. at edges & bound., 10" o.c. field.
Joist Spacing < 20" o.c.: 19/32" Wood Struct. Panel T&G*, PI 40/20, w/10d's @ 6" o.c. at edges & bound., 10" o.c. field,
Joist Spacing < 24" o.c.: 23/32" Wood Panel T&G* shtg., PI 48/24, w/10d's @ 6" o.c. at edges & boundaries, 10" o.c. field.
Notes
a. Panel edges shall have approved T&G joints or shall be supported with blocking. Not required when lightweight concrete is placed over subfloor.
b. All roof and floor shearing to be Exposre,l or Exterior. -
2
\
;
�
|
|
0
Z
$ �s IL
zfl
oa
N m d N
W
Z
F7
|�
}Z,
§ .E
x: )§\} /
\<z
. $ .! | \ ;2 (I.f
§ \§§\h\ q§\ . .
® gGS3G S Fol El
�
�
�/
EA
ESI/FME INC
STRUCTURAL ENGINEERS
Page: .In
Date: 1/10/2019
Job No: H486
Client: MORGAN
I Project Name: YOKA Plan No: I
Simolv Suonorted Wood Beam (NDS 2015. CBC 2016. SDPWS 20151
ONEW RIDGE
Member Span = 16.0 FT
DL LL RLL
P1=( + +
P2 = ( + +
P3=( + +
P4=( + +
Total (lb) X (ft)
Comments:
R,(Ib) 1120b) Design: Stress Ratio
TotalWN WE' Sr, = M,ae„/Fb = 52.60 ina SProwdea = 114.33 in 46.0% OK
DL 1355 1355 A,an=1.SV,aae/Fv= 16.11 int Nwrded = 49.00 int 32.9% OK
LL 0 0 Aall = L/ 360 = 0.53 .in 8�i = 0.36 in 67.2% OK
RLL 1760 -1760 ADL = 0.16 in GLB Camber = 1.5 x ADL = 0.23 in
OMBR HDR P
Member Span = 11.0 FT X
DL 4i RLL Total (lb) X (ft) Source
P, = ( 1355 + + 1760 ) = 3115 8.5 B1 -
P3=( + + )_
P4=( + + ) _ Ri R2
DIL LL
DL LL
RLL
Trib (ft)
Total (pif)
Design Factors:
Roof = (
14 +
+ 20 ) X(
11 + ) _
374
Size Factor, CP = 0.98 If d>12, CP=121
28
a n=.111, P5L, Sawn, GluLem.
Wall = (
10 +
+ ) x (
0 + 0 ) _'_
0
Rep. Factor, C, = No = 1
F d J
�.1s5,LVL
Floor = (
14 + 40
+ ) x (
+ ) _
0 -
Load Duration, Cd = 2-Occupance =1 n=.092,UL
Deck = (
- 14 + 40
+ ) x(
+ ) =
0
Fb = 2900 x CF x Cr x Cd = 2842 PSI
Floor Live Load Reduction Factor .= 1.00
Self Weight =
15.3
F„ = 290 x Cd = 290 PSI Mn,e% =12458 ft -Ib b= 3.50"
Roof Live Load Reduction Factor = 1.00
Total =
'389
E = 2.00E+06 PSI Vmax = 3115 Ib d= 14.00"
Comments:
R,(Ib) 1120b) Design: Stress Ratio
TotalWN WE' Sr, = M,ae„/Fb = 52.60 ina SProwdea = 114.33 in 46.0% OK
DL 1355 1355 A,an=1.SV,aae/Fv= 16.11 int Nwrded = 49.00 int 32.9% OK
LL 0 0 Aall = L/ 360 = 0.53 .in 8�i = 0.36 in 67.2% OK
RLL 1760 -1760 ADL = 0.16 in GLB Camber = 1.5 x ADL = 0.23 in
OMBR HDR P
Member Span = 11.0 FT X
DL 4i RLL Total (lb) X (ft) Source
P, = ( 1355 + + 1760 ) = 3115 8.5 B1 -
P3=( + + )_
P4=( + + ) _ Ri R2
DIL LL
RLL Trib (ft)
Total (plf)
Design Factors:
Roof = ( 14 + +
20 ) X ( + ) =
0
Size Factor, CF = 1.00 If d>12, CP=
12l'°
n=311, PSL, Sewn, Glulam
Wall = ( 14 + +
) X( 2 + 0 ) _
28
Rep. Factor, C, = No =1
d J
a=.im wL
Floor = ( _ 14 + 40 +
) x ( + ) =
0
Load Duration, Cd = 2.0ccupance =1 n=.osx, UL
'Deck, _ ( 14 + 40 +
) x ( + ) _
- 0
Fb = 2900 x Cr x C, x Cd = 2900 PSI
Floor Live Load Reduction Factor
= 1.00 Self Weight =
10.4
F" = 290 x Cd = 290 PSI Mmax = 6408 ft -Ib b= 3.50"
Roof Live Load Reduction Factor
= 1.00 Total =
38
E = 2.00E+06 PSI Vmax = 2618 Ib d= 9.50"
MEMBER SIZE =
1 ) 3.5 x 9.5
PSL 2.0 (Parallam)
Comments:
R,(Ib) R20b)
Design:
Stress Ratio
Total ' -
S,aq = Mma,/Fb = 26.51
..Ina
SP,wfdad = 52.65 in 50.4% OK
DL 519 1258
A„e=S.SVmex/Fv= 13.54.
Int
APro„ided = 33.25int 40.7% OK
LL 0 0
dan = L/ 360 = 0.37
In
6deaai = 0.22 in 59.49/ OK
RLL 400 1360
ADL = 0.11 in GLB Camber = 1.5 x
dbL = 0.16 in - -
Page:
ESI/FME INC Date: 11/10/2019
STRUCTURAL ENGINEERS Job No: H486
Client: MORGAN
Project Name: YOKA Plan No:
CBC
OBM 0/ DIN
Member Spann 16.5 FT
DL LL RLL Total (lb) X (ft) Source
P1 = ( 1355 + + 1760 ) = 3115 7 B1
P2 = ( 833 + + 833 ) = 1666 .9 34X7X7.=1666 LBS FROM EXIST RIDGE
P3=( + + )_
P4=( + + )_
RL(Ib)
DL
LL RLL
Trib (ft)
Total (plf)
Design Factors:
Roof m(
14 +
+ 20 ) x (
0 + ) _
0 -
Size Factor, CP = 1.00 If d>12, CF=12
[.d ]
a n•.111, PS0awn,GluLaM
Wall = (
10 +
+ ) x (
7 + A ) _
70
Rep. Factor, Cr = No = 1
Au = L/ 360 =
,w.136, LVL
Floor =.(
14 +
40 + ) x (
+ ) _
0
Load Duration, Cd = 2.Occupance -= 1 - ..092, LSL
Deck = (
14 +
40 + ) x (
+ ) =
0
Fb = 2900 x CF x Cr x Cd = 2900 PSI
Floor Live Load Reduction Factor = 1.00 -
Self Weight =
. 24.6
F„ = 290 x Cd = 290 PSI Mmax = 20997 ft -Ib b= 7.00"
Roof Live Load Reduction Factor = 1.00
Total =
95
E = 2.00E+06 PSI Vmax = 3331 Ib d= 11.25'
RL(Ib)
R,,(Ib)
Design:
Stress Ratio
Total
Mw
Sraa = Mm,JFb =
86.88.. in
S,r Idad =
147.66 In 58.8% OK
DL 1939
1810
A.,=1.SVn,a,/Fv=
17123 Int
APromdad =
78.75 int 21.9%- OK
LL 0
0
Au = L/ 360 =
0.55 in
AarnLl =
0.55 in 99.8% OK
RLL 1392
.1201
ADL = 0.30 in
GLB Camber =
1.5 x ADL = 0.45 in
r fin
A"
ESI/FME Inc.
STRUCTURAL ENGINEERS
Project Name: YOKA
Page:_
PSF
Date:
2/5/2019
Job #:
H486
Client: MORGAN
Plan #1
Dead Load
20 psf =_>
PSF
pif
TRIBUTARY
PLF
ROOF=(
40
)x(
0.0 + 0.0 )=
0
WALL =(
14
)x(
o.o + 0.0 )=
0
FLOOR=(
54
)x(
0.7 + 0.0 )=
37.8
DECK =(
65
)x(
0.0 + 0.0 )=
0
Fv= 290 psi E-
2.00
x106 psi
SELF WEIGHT =
12.3
TOTAL LOAD =
50.1 PLF
Dead Load
20 psf =_>
0
pif
14 psf =_>
0
pif
14 psf =_>
9.8
pif
25 psf =_>
0
plf
12.3 psf =_>
12.3
plf
TOTAL D.L. =
22.1
PLF
ALTERNATE BEAM =
lbs Rzo.L = 849
lbs
Max Uplift= -352 lbs (neglect if <0)
RILL= 51
DESIGN:
lbs
nn 0.1111 PSL/VL/66AWN
I=
415.316'
Size Factor, Cf = 1.00
[if d> 12, C1= (12/d)lnl]
Mmax/(Fb*Cd)=
n- 0.136 LVL
d=
11.25 In.
Repetitive Member, Cr=>
No = Or = 1
>
In^2 Aprov.= 39:4 in^2 15.9% O.K.
n= 0.092 LSL
b=
3.5 in.
Fb= 2900 x Cf x Cr=
2900 psi
Fv= 290 psi E-
2.00
x106 psi
Mmax = 5151.31 ft4b= 61.816 [n -K
Vmax= Rmax-(w*d)=lbs 1210
Cd 2-Occupance = 1.00
RL D.L= 50
lbs Rzo.L = 849
lbs
Max Uplift= -352 lbs (neglect if <0)
RILL= 51
lbs R2L.L,= 1134
lbs
USED CAPACITY
Sreq.=
Mmax/(Fb*Cd)=
21.3
in^3 Sprov.= 73.8 In^3 28.9% O.K.
. Areq.=
1,5*vmax/(Fv*Cd)=
6.3
In^2 Aprov.= 39:4 in^2 15.9% O.K.
Allow.Center
Def.= Li/ 360 =
0.55
- In. Max.Def.@Center= 0.25 in. 0. K.
All.Overhang
Def.= 1-2/ 120 =
0.45
in. Max.Def.® Cant.= 0.25 in. 0. V-
ESI/FME Inc.
STRUCTURAL ENGINEERS
Project Name: YOKA
5 BM 0/ LIV RIGHT
Span Lin 10.00 ft; Span 1.2- 4.50 ft;
PI- 2618 Ibs from B2 OX,= 1.0 R DL- 1258 Ibs
Page:
Date: 1/21/2019
Job #: H486
Client: MORGAN
Plan *:
P2= 3800
Ibs from FLOOR/B2
. . . . . . . . . . . . . . . . . . . . .
4.5 ft DL= 1000
. . . . . . . . .
Its LI
. . . . . .
RI D.L= 1394
0
Max.Uplift= .3223 Ibs
PSF
R1 L.L= 443
TRIBUTARY
PLF
Dead
Load
ROOF
40
)x(
0.0 + 0.0
0
20 psf ==>
0
pif
WALL
14
X
8,0 + 0.0
112
14 psi ==>
112
pIf
FLOOR=(
54
)x(
3.0 + 0.0
162
14 psf ==>
42
pIf
DECK =(
65
)x(
0.0 + 0.0
0
25 psf
0
pif
SELF WEIGHT =
24.6
24.6 psf
24.6
pif
TOTAL LOAD =
298.6 PLF
TOTAL D.L. =
178.6
PLF
MIR,,•
I �. MON. -
R
ALTERNATE REAM
DESIGN:n- 0.1111 PSLIVII61SAWN I= 830.6 lr4
V
Size Factor, Cf 1.00 [If d>12, C, (12/d)(0] L LVL VL
d- 11.25 in.
Repetitive Mernber,.Qr=> No => Cr= I n- 0.092 LSL b= 7 in.
Fb= 2900 xCf xCr= 2900 psi Fv= 290 psi , E= 2.00 x106 psi
Mmax = 20123.4 ft -lb= 241.48 in -K , Vmax= Rmax-(w*d)=Ibs 4864
Cd= 2-Occupance = 1.00
RI D.L= 1394
Ibs R21).L.= 3453 Ibs
Max.Uplift= .3223 Ibs
(neglectif<o)
R1 L.L= 443
Ibs R2LL= 5458 IIIS
USEDCAPACITY
Sreq.=
Mmax/(Fb*Cd)= 83.3
!nA3 Sprov.= 147.7
InA3 56.4% O.K.
Areq,=
1.5*VMax/(Fv*Cd)= 25.2
inA2 Aprov.= 78.8
inA2 31,9% O.K.
Allow.CenterDef.=
Ll/ 240 = 0.50
In. Max.Def.@Center= 0.19
.V-
in. O.K.
AII.Overhang
AII.Overhang
Def.= L2/ 120 = 0.45
In. Max.Def.@,Can1L= 0.40 In. O.K.
I
Project Name:
ESI/FME INC
STRUCTURAL ENGINEERS
Beam
OLIV RM HDR
Member Span= 6.0 FT
DL LL RLL Total (lb) X (ft) Source
PL = ( 336 + 960 + ) = 1296 3.5 EXIST BM 54X3X8=1296 LBS
P2 = ( 849 + 1134 + ) = 1983 3 BM 4
P3=( + + )_
P4=1 + + )_
Page:
Date: 1/10/2019
Job No: H486
Client: MORGAN
Plan No:
R1
R2
DL LL RLL Trib (ft)
Total (plf)
Design Factors:
Roof = ( 14 + + 20 ) X( 6 + 4 ) _
340.
Size Factor, Cr =1.00 If d>32, Cr= 12 n n=111, PSL, Sawn, GNLam
[d]
Wall =( 14 + +
)x( 8 + 4 )=
168
Rep. Factor, C,= No =1 n=.136,LVL
Floor = (. 14 + .410 +
) X( 8 + 4 ) _
.648
Load Duration, Cd = 2-Occupance = 1 n==o LSL
Deck = ( 14 + 40 +
) X( + ) =
0
Fb = 2900 x CF x C, x Cd = 2900 PSI
Floor Live Load Reduction Factor =
1.00 Self Weight =
10.4.
Fv = 290 x Cd = 290 PSI Mmax = 9814 ft -Ib b= 3.50"
Roof Live Load Reduction Factor =
1.00 Total =
1166
E = 2.00E+06 PSI Vmax = 5247 Ib - d= 9.50"
MEMBER SIZE _ (
1 ) 3.5 x 9.5
PSL 2.0 (Parallam)
Comments:
1166
ADL = 0.03 in
GLB Camber = 1.5 x
R1(lb) 1120b)
Design:
Stress Ratio
Total RSM JIM
Smq = Mmax/Fti = 40.61
in
SPmmdad = 52.65 Ina 77.1% OK
DL 2024 2080
Amq =1.SVmax/Fv= 27.14
in
APm lded = 33.25 in 81.6% OK
LL 2407 2567
Aaii = L/ 360 = 0.20
in
Aaow.i = 0.12 in 59.1% OK
RLL 600 600
ADL = 0.05 in GLIB Camber = 1.5 x
ADL = 0.07 in
7-I LIV HDR
Member Span = 6.0 FT
DL LL RLL
P1=( 0 + + 0
P2=( + +
P3 =I + +
P4=( + +
Total (lb) X (ft)
)= 0
Source
R1 R2
Design Factors:
Size Factor, CP = 1.00 If d>12, CP= rI12 n=,111,PSL,Sawn,Gmbm
Rep. Factor, C, = No = 1 L d J ..196, LVL -
Load Duration, Cd = 2-Occupance =1 n=.092, UL
Fb = 2900 x Cr x C, x Cd = 2900 PSI
Fv = 290 x Cd =.290 PSI Mmax = 5249 ft -Ib b= 3.50"
E = 2.00E+06 PSI Vmax = 3499 Ib d= 9.50"
DL
LL RLL
Trib (ft)
Total (plf)
Roof =(
14
+ + 20 ) X(
6 + 4 ) _
340.
Wall =(
14
+ + ) X(
8 + 4 ) _
168
Floor = (
14
+ 40 + ) x (
8 +, 4 ) _..
648
Deck = (
14
+ 40 + ) x (
+ ) =
0
Floor Live Load Reduction Factor = 1.00
Self Weight =
10.4.
Roof Live Load Reduction Factor = 1.00
Total =
1166
Source
R1 R2
Design Factors:
Size Factor, CP = 1.00 If d>12, CP= rI12 n=,111,PSL,Sawn,Gmbm
Rep. Factor, C, = No = 1 L d J ..196, LVL -
Load Duration, Cd = 2-Occupance =1 n=.092, UL
Fb = 2900 x Cr x C, x Cd = 2900 PSI
Fv = 290 x Cd =.290 PSI Mmax = 5249 ft -Ib b= 3.50"
E = 2.00E+06 PSI Vmax = 3499 Ib d= 9.50"
R1(lb)
R2(Ib)
Design:
Stress Ratio
Total
ow
EM
Smq = Mmax/Fb =
21.72 in'
S,mmdad =
52.65 In' 41.3% OK
DL
1459
1459
-A,aq=1.5Vma,/Fv=
18.10 .int -
APmmded=
33.25 in2 54.4% OK
LL
1440
'1440
Aan = L/ 360 =
0.20 in
Aanuai =
0.07 in 34.0% OK
RLL
600
:600
ADL = 0.03 in
GLB Camber = 1.5 x
ADL = 0.04 in
I
ESI/FME Inc.
STRUCTURAL ENGINEERS
Project Name: YOKA
4DS 2016, ISC2016, OBC 2016 & SDPWS-16 (ASO)
Page:
Date: 2/5/2019
Job #: H486
Client: MORGAN
Plan #:
11 u
S FOR ,
: �xv10C
. :
................... ....
PSF TRIBUTARY PLF
Dead Load
ROOF 40 )X( 0.0 + 0.0 0
20 psf 0
plf
WALL 14 )x( 0.0 + 0.0 0
14 psf 0
pif
FLOOR=( 54 )x( 1.3 + 0.0 71.82
14 psf 18.62
pif
DECK=( 65 )X( 0.0 + 0.0 0
25 psf==> 0
pif
SELF WEIGHT = 3.8
3.75 psf 3.8
pff
TOTAL LOAD = 75.6
PLF TOTAL D.L. = 22.4
PLF
.:'aM$� ��'NP4�0 0�'� 'X
. 01. '011 ffiX
rob" 11
1
ALTERNATE BEAM
n= 0.1111 PSL/VL/6x5AWN
I= 178
Ino
Size Factor, Of = 1.00 [If d>12, Cf= (12/d)(nl]
n= 0.1361
d= 11.25
in.
Repetitive Member, Cr-- >, yes => Cr= 1.2
n= 0.092 LSL
b= 11.5
in.
Fb= 900 x Cf x Cr= 1035 psi
Fv= 180 psi E= 1.60 X10' psi
Mmax = 2340.56 ft -lb= 28.087 in -K
Vmax= Rmax-(W*d)=Ibs 665
Cd 2-Occupance 1.00
................... .................... . ...............
RID.L.= 112 lbs R20.t.= 602 lbs
Max.Uplift= -100 lbs (neglect if <0)
R1L.L.= 370 lbs R2L.L.= 900 lbs
USEDCAPACITY
Sreq.= Mmax/(Fb*Cd)= 27.1
lnA3 Sprov.= 31.6 lnA3 as.s%
O.K.
Areq.= I,S*Vmax/(Fv*Cd)= 5.5
InA2 Aprov.= 16.9 InA2 32.9%
O.K.
Allow.Center Def.= LI/ 240 = 0.83
in. Max.Def.DCenter= 0.56 In.
O.K.
.V-
AII.Overhang
AII.Overhang Def.= L2/ 120 = 0.40
in. Max.Def.@ Cant= 0.04 In.
O.K.
219 Lugonia St, Newport Beach, CA 92663, USA
Latitude, Longitude: 33,6283297,-117.9508717
ate
1/8/2019, 10:43:04 AM
esign Code Document 1A
Ref _ _ _ _. _
. _-_...
isk CategoryII
ite Class
D Stiff Soil
i
Vie.jValue
IDescriPtton ,.
;1.687 CER ground motion (for 0.2 sec
. .
.....
10.625 'MCER ground motion (for 1.0s p(
_.
_....
_. .. ....__._,m._._ __----
it 687 'Site -modified spectralacceleratio
11.687
�5
---
�0 937 Site modified spectral acceleratio
.__.. ____ ... _._ _ ____ ...
11.125 ,Numeric seismic design value at„1.
)R
10.625 Numenc seismic design value at
„
yge w.
Value Description
DC
D
Seismic design category
0.2
1
Site amplification factor at second
1.5
'Site amplification factor at 1,0 second„ rvy
GAj0
688
!MCEG peak ground acceleration
SGA1
-Site amplification factoratPGA
GAm
10.688
5Site modified peak ground acceleration
L
�8
Long�eriod transition period in seconds
sRT
11.687yrdbabihstic
risk -targeted ground motion (Q.2 second)
sUH
;1 86
;Factored uniform -hazard (2% Probability of exceedance in 50 years) spectral accelerat
sD
. .
3 345actored
_; ...._ .
determuusUc acceleration value (0 2 second)
IRT
0 625
10.677
Probabilistic risk -targeted ground motion. (1.0 second)
1UH
Factored uniform hazard (2% probability of exceedance in 50 years) spectral accelerat
1D
J.152
Factored deterministic acceleration value. (1.0 second)
GAd
1 234
Factored deterministic acceleration value Peak Ground Acceleration
.. _- _ . _�
RS
,.._.___..
9.907
_.a _._
:Mapped value of the risk coefficient at short periods .
_._
R1
10.923
Mauued value of the risk coefficient at a period of 1 s
Page: M
ESI/FME INC Date: 1/10/2029
STRUCTURAL ENGINEERS Job No: H486
Client: -MORGAN
Project Name: YOKA Plan No:
Wind Pressures Location g
H, 6.Oft 3.2 0% Zone C Site Information
psf 100 % Zone D Zip =
Longitude =
H28.0ft 13.3 Zone Occupancy Category = II
psf
D, 1.0 ft
H18.0ft 13.3 Zone
psf
ASCE 7-10 Equivalent Lateral Force Method
- Ss = 1.687 S, = 0.625
Fa = 1.0 Fa = 1.5
Sms =. SsxFa = 1.687:. SM1 = SsxFa = 0.938
Soil = (2/3)xSMs =-1.125 Sol = (2/3)xSMs = 0.625
Cs I ; .551 = 0.048.
2nd Story Weight Trib. (ft)
Roof =
14 psf x
17
Wixhl
= 238 plf
Floor c:-14
psf x
0
Roof Slope = 4 :12 = 18.4 Degrees
= 0 pif
Wind Velocity= 110 -mph --_..
Weight
Trib. (ft)
Qty.
8 1
-L Ext. Wall =
14 psf x
4
x 1
= 56 plf
1Int. Wall =
10 psf x
4
x 2
=80 pif
)� Ext. Wall =
14 psf x
4
x 0
=0 pif
Q Int. Wall =
10 psf x
4
x 0=
0 pif
Total
= 374 pif
1st Story Weight Trib.(ft)
Roof - = 20 psf 0 i
Floor = 14 psf 21
Weight Trib. (ft) Qty.
-L Ext. Wall se 14 psf x ( 4 x 1 +
-I- Int. Wall = 10 psf x ( 4 x 2 +
(� Ext. Wall = 14 psf x ( 4 x 0 +
)� Int. Wall = 10 psf x ( 4 x 0 +
2nd Story
R =6.5 Soil Site Class = D
I =1.0 Seismic Design Category = D
p=1.0 hn=20.0ft
T 0.189 for All Other Structural Systems
Ire ° cc-IS—'=
R/I Qs = CSW
StillEh = .7pQs = 0.121W
Cs = R/I = 0.173<l;overns
SDI
WI
CSIn.4 _ = 0.508....
Wixhl
TxR/I
.StoryShearSeismic
ASCE 7-10 Simplified Wind Desi¢n
374�plf
Roof Slope = 4 :12 = 18.4 Degrees
Kat =1.0
Wind Velocity= 110 -mph --_..
hn = 20.0 ft
Exposure= C
A = 1.29
8 1
o _ Cllr D_ _
=0 plf
= 294 pif
Trib. (ft) Qty -
4 x 1 )=112plf
4 x 2 )=160pif-
4 x 0 )=0plf
4 x 0 ) = 0 plf
1St Story Total. = 566 pif
Level
WI
hl I
Wixhl
I F.
.StoryShearSeismic
Roof
374�plf
17 1
6358
1 66 pif
1 66 pif Iy
11-evelil
566 plf 1
8 1
4528
1 47 plf
I 114 plf 15t
Wind at Coiner Governing Load
Level Bid. Width a Fa Level Story Shear
Roof` 21 ft 3.0 ft . 127 plf Roof '"t Wind
Level 1 17 ft 3.0 ft 60 pif Level l Wind
Corner wind Is the additional pressure applied at
cernershearwalls. Pressure 'F,' b to be Included for
a distance's' away frem the Domer
Wind
Level
E(P,xTrib) Fx
I Story Shear .Wind
Roof
(6ftx3.2psf +4ftx13.3psf) 72 plf
: 72 pif,
Level 1
(SEt x 13.3psf + 4ft x 13.3psf) 120 plf
192 plf
Hozitonal Pressures I Vertical Pressures
Overhangs
Zone
A B C D E F G H
EoH GoH
PSaD
25.8 •7.3 17.2 4.11-23.11-15.71-16.01-12.01-32.3. -25.3
Ps '
20.0 -5.7 13.3 -3.21-27.9142.21 -12:4 •9.3 -25.0 -19.6 _
Wind at Coiner Governing Load
Level Bid. Width a Fa Level Story Shear
Roof` 21 ft 3.0 ft . 127 plf Roof '"t Wind
Level 1 17 ft 3.0 ft 60 pif Level l Wind
Corner wind Is the additional pressure applied at
cernershearwalls. Pressure 'F,' b to be Included for
a distance's' away frem the Domer
Project
1
H, 4.0 ft
t
Hz 8.0 ft
I
D, 1.0 ft
H�ok
We] K11
ESI/FME INC
STRUCTURAL ENGINEERS
Location TZ
13.1 IZone C
psf
ASCE 7.10 Equivalent Lateral Force Method
Ss = 1.687. - S1. = 0.625
F. = 1.0 Ft, = 1.5
Sms = SsxFe. = 1.687 Sms = SsxFe = 0.938
Sos = (2/3)xSms= 1.125 Sol = (2/3)xsms = 0.625
5S1
Cslrem) = R/I = 0.048 _ CsW
SDS -=
0.173 <-Governs E,= .7pQ.E=0.121W
Cs = R/I
Sol
rslme„I _TXR/I_ 0.528
ASCE 7-10 Simplified Wind Design
Roof Slope = 4 :12 = 18.4 Degrees Kg =1.0
Wind Velocity =110 mph hn =19.0 ft
Exposure = C A = 1.27
n _&IV o
Page: ( 3
Date: 1/10/2019
Job No: H486
Client: MORGAN
Plan No:
2nd Story Weight Trib.(ft)
Roof =
3.1
psf
- 0%Zone C . Site information
100 % Zone D Zip =
Lattitude =
Level
= 392 pif
-
14 psf x
Longitude =
65 If
13.1
Zone C - Occupancy Category = H
Weight
P sf
Qty.
13.1 IZone C
psf
ASCE 7.10 Equivalent Lateral Force Method
Ss = 1.687. - S1. = 0.625
F. = 1.0 Ft, = 1.5
Sms = SsxFe. = 1.687 Sms = SsxFe = 0.938
Sos = (2/3)xSms= 1.125 Sol = (2/3)xsms = 0.625
5S1
Cslrem) = R/I = 0.048 _ CsW
SDS -=
0.173 <-Governs E,= .7pQ.E=0.121W
Cs = R/I
Sol
rslme„I _TXR/I_ 0.528
ASCE 7-10 Simplified Wind Design
Roof Slope = 4 :12 = 18.4 Degrees Kg =1.0
Wind Velocity =110 mph hn =19.0 ft
Exposure = C A = 1.27
n _&IV o
Page: ( 3
Date: 1/10/2019
Job No: H486
Client: MORGAN
Plan No:
2nd Story Weight Trib.(ft)
Roof =
14 psf x
28
Level
= 392 pif
Floor =
14 psf x
0
65 If
= 0 plf
Trib. (ft)
Weight
Trib. (ft)
Qty.
x ( 4 x
-L Ext. Wall =
14 psf x
4
x A
= 0 pif
-L Int, Wall =
20psfx
4
z 2
=80 plf
Ext. Wall =
14 psf x
4
x 0
= 0 plf
Int. Wall =
10 psf x
4
x 0
= 0 plf
1 = 1.0
Seismic Design Category = D
Total
=472 pif
SstStory Weight Trib. (ft)
-Level WI 1 hl 1 WlxhI Y„ glory anal aessnnc
Rpof '472 pif 17 8024 80 pif 80 pif
lLeveill 552 plf 1 8 1 4416 1 44 pif 1 124 pif
Roof = 20 psf
0
Level
i(PsxTrib) F„
Floor = 14 psf
28
Qty.
65 If
Weight
Trib. (ft)
Qty.
4 x
�- Ext. Wall = 14 psf
x ( 4 x
0 +
0
-L Int. Wall = 10 psf
x ( 4 x
2 +
) = 0 plf
11 Ext. Wall = 14 psi
x ( 4 x
0 +
25.8 -7.3 17.2 4.11-23.11-15.71-16.01-12.01-32.3 -25.3
11 Int. Wall = 30 psf
x ( 4 x
0 +
2nd Story
R = 6.5
Soil Site Class =
D
1 = 1.0
Seismic Design Category = D
p=1.0
ho=19.0 ft
T = 0.182 for All Other Structural
Systems
Gaicmic
-Level WI 1 hl 1 WlxhI Y„ glory anal aessnnc
Rpof '472 pif 17 8024 80 pif 80 pif
lLeveill 552 plf 1 8 1 4416 1 44 pif 1 124 pif
Wind
= 0 plf
Level
i(PsxTrib) F„
= 392 plf
Trib. (ft)
Qty.
65 If
4 x
0
)=0plf
4 x
2
) =160 pif
4 x
0
=.O Of
4 x
0
) = 0 plf
1st story
Total = 552 pif
-Level WI 1 hl 1 WlxhI Y„ glory anal aessnnc
Rpof '472 pif 17 8024 80 pif 80 pif
lLeveill 552 plf 1 8 1 4416 1 44 pif 1 124 pif
Wind at Corner
Level BId. Width a F„
17 ft
wrner shoe rells. Pressure 'F,' Is to be Included for
a distance'.' aweyfromthe comer
Governing Load
Level I Story Shear
Roof Seismic
Levels "=i Wind
Wind
Level
i(PsxTrib) F„
Story ShearWwind
Roof
(oft x 3:1psf+oft x 13.1psf) 65 pif
65 If
Level 1
(Sft x 13.1psf + 41t x 13.1psf) 1 118 plf
183 plf
Hozitonal Pressures I Vertical Pressures .Overhangs
Zone
A B C D E F G H
EoH GoH
Psso
25.8 -7.3 17.2 4.11-23.11-15.71-16.01-12.01-32.3 -25.3
-
Ps
19.7 -5.6 13.1 -3.11-17.61-12.01 •12.2 -9.1 -24.6 •19.3
Wind at Corner
Level BId. Width a F„
17 ft
wrner shoe rells. Pressure 'F,' Is to be Included for
a distance'.' aweyfromthe comer
Governing Load
Level I Story Shear
Roof Seismic
Levels "=i Wind
ESI/FME INC
STRUCTURAL ENGINEERS
Project Name:
7-1
Hr 6.0ft 3.2 0%Zone C
- � psf 100 %Zone D
Hz 8.0ft 13.3 ZoneC
psf
D1 1.0 ft
H, 8.0 ft 13.3 Zone C
psf
ASCE 7-10 Eauivalent Lateral Force Method
Ss = 1.687 -
Ss = 0.625
Fa = 1.0
F„ = 1.5
Sm, = SSxFa = 1.687
Sins = SsxFa = 0.938
Sos = (2/3)xSMs = 1.125
Sos = (2/3)xSMs = 0.625
551
= 0 pif
Cs I = = 0.048
Weight
Location L1
Site Information
Zip =
Lattitude =
Longitude =
Occupancy Category = II
Page: Of
Date: 1/10/2019
Job No: H486
Client: MORGAN
Plan No:
2nd Story Weight Trib. (ft)
Roof =
14 psf x
- 24
= 336 pif
Floor =
14 psf x
0
1 Ext. Wall = 14 psf x( 4 x
= 0 pif
11nt. Wall = 10 psf X( 4 x
Weight
Trib. (ft)
Qty.
II Int. Wall = 10 psf x( 4 x
1 Ext. Wall =
14 psf x
4
x 2
= 112 plf
- Int.WeH =
10psf x
4-
x 1
=40 pif
II Ext. Wall =
14 psf x
4
x 0
= 0 plf
II Int. Wall =
30 psf x
4
x 0
=0plf
Total
as 488 pif
1st Story Weight Trib. (ft)
Roof = 20 psf 0
Floor - = 14 psf 21
= 294 pif
Weight Trib. (ft) I
Qty.
1 Ext. Wall = 14 psf x( 4 x
2+
11nt. Wall = 10 psf X( 4 x
1 +
II Ext. Wall = 14 psf x( 4 x
0 +
II Int. Wall = 10 psf x( 4 x
0 +
2nd Story
)=0plf
R = 6.5 Soil Site Class = D
0
I = 1.0 Seismic Design Category = D
15tstory
Q=1.0 hp=20.0IL
T = 0.189 for All other Structural Systems
,an n) R/I QE = CsW
Cs =—= 0.173 -Governs SDs Eh = .7pQE = 0.121W - Level 'Vu
<- - '
R/I Raof 488
Sol - Level l 59$
Cslmaxl cT= O.SO$
xR/I
ASCE 7-10 SimplifiedWindDesien
Roof Slope = 4 :12 = 18.4 Degrees Kat =1.0
Wind Velocity=110 mph ho=20.0ft
I"
Exposure = C A = 1.29
8296 83 pif
4784 48 plf
13080
83
132
_ Wind
Level Y(PaxTrlb) I Fa IStoryShear-Wind
Roof- (6ft x 3.2psf + 4ft x 13.3psf) 1 72 plf 1 72 pif I
KIMrevel 1 (SILx 13.3psf +4ftx 13.3psf) 120 plf 192 plf
Hozitonal Pressures I Vertical Pressures Overhangs
one A B C D E F G H EOH Goa
P,,, 25.8 -7.3117,21-4.11-23.11-15.71-16.01-12.01-32.3 -25.3
PS 20.01-5.7113.31-.21-17.91-12.21-12.41-9.31-25.0 -19.6
Wlnd at Corner Governing Load
Level Bid. Width a Fs .. Level I Story Shear.
Ropf 17ft 3.Oft 127p1f Roof Seismic
Levell 17ft 3.Oft 60plf Level l Wind
Comerwlnd is the add Inone I pressure applled at
corner shemwalls. Pressure 'F,' is to be Included for
a distauce'a' away from the comer
= 0 pif
= 294 pif
Trib. (ft)
Qty.
4 x
2
) = 224 plf
4 x
1
) = 80 pif
4 x
0
)=0plf
4 x
0
)=0plf
15tstory
Total = 598 pif
83
132
_ Wind
Level Y(PaxTrlb) I Fa IStoryShear-Wind
Roof- (6ft x 3.2psf + 4ft x 13.3psf) 1 72 plf 1 72 pif I
KIMrevel 1 (SILx 13.3psf +4ftx 13.3psf) 120 plf 192 plf
Hozitonal Pressures I Vertical Pressures Overhangs
one A B C D E F G H EOH Goa
P,,, 25.8 -7.3117,21-4.11-23.11-15.71-16.01-12.01-32.3 -25.3
PS 20.01-5.7113.31-.21-17.91-12.21-12.41-9.31-25.0 -19.6
Wlnd at Corner Governing Load
Level Bid. Width a Fs .. Level I Story Shear.
Ropf 17ft 3.Oft 127p1f Roof Seismic
Levell 17ft 3.Oft 60plf Level l Wind
Comerwlnd is the add Inone I pressure applled at
corner shemwalls. Pressure 'F,' is to be Included for
a distauce'a' away from the comer
Page: i5
ESI/FME INC Date: 1/10/2019
STRUCTURAL ENGINEERS Job No: H486
Client: MORGAN
Project Name: YOKA Plan No:
8.0 ft
13.1
psf
ASCE 7-10 Equivalent Lateral Force Method
Ss =1.687 Sl = 0.625
�Fa = 1.0 Fe as 1.5
SMs = SsXFa = 1.687 SM, as SsXFa as 0.938
Sas = (2/3)XSMs =1.125 Sol = (2/3)xSMs = 0.625
551
Cslmml =R/I = 0,048 QE _ CsW
2nd Story Weight Trib. (ft)
Roof =
Wind Pressures
Location LZ
Hr 4.0 ft7
3.1
0 % Zane C Site Information
0
psf
100%ZoneD Zip =
I Lattitude_
Weight
Trib. (ft)
Qty-
-L Ext. Wall =
Longitude =
H28.0 ft
x 2
13.1
ZoneC Occupancy Category = II
30 psf x
4
psf
as 40 plf
D, 1.0 ft
14 psf x
4
8.0 ft
13.1
psf
ASCE 7-10 Equivalent Lateral Force Method
Ss =1.687 Sl = 0.625
�Fa = 1.0 Fe as 1.5
SMs = SsXFa = 1.687 SM, as SsXFa as 0.938
Sas = (2/3)XSMs =1.125 Sol = (2/3)xSMs = 0.625
551
Cslmml =R/I = 0,048 QE _ CsW
2nd Story Weight Trib. (ft)
Roof =
14 psf x
26
= 364 plf
Floor =
14 psf x
0
= 0 plf
Weight
Trib. (ft)
Qty-
-L Ext. Wall =
14 psf x
4
x 2
= 112 plf
-� Int. Wall =
30 psf x
4
x 1
as 40 plf
II Ext. Wall =
14 psf x
4
x 0
as 0 pif
Q Int. Wall =
10 psf x
4
x 0
=0pif -
) = SO pif
Ext. Wali = 14 psf
x ( 4 x
Total
= 516 pif
1st Story Weight
Trib. (ft)
Roof = 20 psf
0
= 0 plf
Floor = 14 psf
17
= 238 plf
Weight
Trib. (ft)
Qty.
Trib. (ft)
Qty.
1 Ext. Wall = 14 psf
x ( 4 x
2
+ 4 x
2
) as 224 Of
�- Int. Wall = 10 psf
x ( 4 x
1
+ 4 x
1
) = SO pif
Ext. Wali = 14 psf
x ( 4 x
0
+ 4 x
0
) = 0 pif
II Int. Wall = 10 psf
x ( 4 x
0
+ 4 x
0
).=0 pif
2nd Story
1St Story
Total = 542 pif
R = 6.5 Soil Site Class=
0
1 = 1.0 Seismic Design Category as D
p=1.0 heas19.0ft
T = 0.182: for All Other Structural Systems
SDs Eh= .7pQs=0.121W
Cs = R/I = 0.173 <-Governs
r�
Cslmael = SDI = 0.528 ~
TxR/I
ASCE 7-10 Simplified Wind Design
Roof Slope = 4 :12= 18.4 Degrees K:t as 1.0
Wind Velocity =110 mph he as 19.0 ft
Exposure as C!, = 1.27
n _ av n
xsasins
Level WI hl Wixhl F. Story Shear Seismic
Roof 516 pif 17 8772 86 pif 86 Of
Level i 542 pif 8 4336 42 pif 128 pif
Wind
Level -. E(PexTrib) Fs Story Shear Wind
Roof (4ft x 3.1psf +oft x 13.1psf) 65 plf 65 plf
Level l (5ft x 13.lpaf+4ft x 13.1psf) 118 pif 183 plf '
Hozitonal Pressures I Vertical Pressuresi Overhangs
Zone A- 8 a C D E F G H Eon Gon
Psyo 25.8 -7.3 17.2 .4.11-23.11-15.71-16.01-12.01-32.3 -25.3 -
Ps 19.7 -5.6 113.11 -3.11-17.61-12.01-12.21 -9.11-24.6 -19.3
Wind at Corner Governing Load
Level -Bid. width a Fa Level Story Shear .
.Roof 28 ft 3.0 ft 93 If Roof Seismic
Leven 28 ft 3.0 ft 59 pif Level l' _ Wind
Corner wind is the addltlonalpressur .PPUed at
cornersheanealls. Pressure'Ff is to be included for
a distance's' away from the corner
Page: lb
ESI/FME INC Date: 1-19-19
STRUCTURAL ENGINEERS Job No: H486
Client: MORGAN
Project Name: YOKA Plan No:
^ Shearwall Design (IBC 2015, CBC 2016, SDPWS 2015)
+ / left of master
Plate Height (H) = 8.0 ft Net
Lateral Load
Shearwall Design
Length - Opening Length
Source.
wind (pif Seismic (plf) Tributary (ft)
Wind
Seismic
Demand Capacity Ratio
Wall 1 = 13.3 ft - 0.0 ft = 13.3 ft
L2
72 83 (16/2 +0.0) =
576 lb
664 lb
Wind 103 pif 365 pIf 0.28
Wall = - = 0.0 ft
L2
65 86 (13/2 + =
423 lb
559 lb
Seismic 92 plf 260 plf 0.35
Wall = - = 0.0 ft
664 ib
+ =
Olb
Olb
Aspect Ratip
Wall - - = 0.0 ft
+ =
Olb
Olb
10 h/b, = 0.6 s 20
Walls= - = 0.0 it
0.31
+ =
01b
Olb
+ =
Total Legth=13.3ft
Corner Wind
127 x 3.0 ft = 381 lb Total Load=
1380 lb
1223 lb
Diaphragm
+ _ .
Unit Shear (V) = Load/Legth =
103 pif
92 pif
h/b, - 1.2 s
L = 20 ft Provide A35/LTP4 @ 48" O C
Walls = - = 0.0 It
16d Nails @ 14" O.L. SPN14
V= 69 pif V. = 168 Of
Olb
W/ No HD
Vertical Load
x 3.0
ft - 381 Ib Total Load =
957 lb
664 lb
Load Trib (ft) Load
Uplift Calculation
Roof = 14 psf x 7.0 = 98 plf
115 pif
Stacking
HD
wall= 10 psf x 8.0 = 80 pIf
Mo = VLH
L = 13 ft M,(ft-#) M,(ft-0) MR(ft-#) Uplift(lb)
Capacny(lb)
Floor = 14 psf x 0.0 = 0 pIf
Wind. 11036 0 9489
316
0
Ok
Total Load (W) = 178 pif
MR(w) = 0.6WL2
2 Seismic 9784 0 6998.
209
0
Ok
SDI =1.125 L=13.3ft
Vertical Load
we
w
M,(*= 0.44
2 E
Load Trib(ft) Load
E
(.6-.14SDs) =
RT OF 2ND
E
0
U
v
Plate Height (H) =10.0 ft Net
Lateral Load
Shearwall Design
Length Opening Length
'Source Wind
Seismic Tributary(ft)
Wind
_ Seismic
Demand Capacity
Ratio
Wall I= 8.3 ft - 0.0 ft = 8.3 it
1.1
72
83 (36/2 +0.0) =
5761b
664 ib
Wind
115 pif 365 pif
0.31
Wall 2 = - = 0.0 ft
+- =
Olb
O lb
Seismic
80 pif 260 pif
0.31
Wall = - = 0.0 ft
+ =
Olb
Olb
Aspect Rati o
Wall 4 - - = 0.0 ft
+ _ .
0 lb
0 lb
10
h/b, - 1.2 s
2.0
Walls = - = 0.0 It
+ =
Olb
Olb
Total Legth = 8.3 it
. -Corner Wind 127
x 3.0
ft - 381 Ib Total Load =
957 lb
664 lb
Diaphragm
Unit Shear (V) = Load/Legth =
115 pif
80 pif
L = 20 ft Provide A35/LTP4 @ 48" O.C.
16d
Nails @ 12" O.C.
SPN12
V= 48 plf V. = 168 pif
-
W/
4X4 w/ ST6224
Vertical Load
Load Trib(ft) Load
Uplift Calculation
Roof = 14 psf x 3.0 = 42 pif
Stacking
HD
Wall = 14 psf x 10.0 = 140 plf
Ma = VLH L.=
8.3 ft
Me(ft-#) M=(ft-#) MR(ft-N) Uplift(lb) Capacltypb)
Floor = 14 psf x 0.0 -= pif
WL2
Wind
9570 - 0 3789
694
2540
Ok
.0
MR(W)= 0.6
Total Load (W) = 182 pif
2
Seismic. 6640 D 2794
462
2540
Ok
S. 1.125 L=8.3ft
DS =
WL'
Malsl = 0.44
>c
E
2
E
(.6-.14SD5) = 0.44
E
E
Page:
ESI/FME INC
Date: 1-19-19
STRUCTURAL ENGINEERS
Job No: H486
Client:
MORGAN
Project Name: YOKA
Plan No:
Shearwall Design (IBC 2015, CBC 2016, SDPWS 2015)
OREAR OF MAS aA
Plate Height (H) =8.0 ft Net
Lateral Load
Shearwall Design,
Length Opening Length
Source wind half Selsmic halo Tributary(ft) Wind
Seismic
Demand Capacity Ratio
Wall 1= 7.5 ft - .O.Oft = 7.5 ft
TI 0 66 (23/2 +0.0) = Olb
759 lb
Wind 0 P 365 pif 0
Wall 2 = = 0.0 If
0 0 (0/2 + = 0 Ib
Olb
Seismic 101 pif 260 plf 0.39
Wall - - = 0.0 ft
+ = Olb
Olb
Asoect Ratio
Wall = - = 0.0 ft
+ Olb
O lb
10 h/b, = 1.1 s 2.0
walls- - = 0.0 ft
- + = Olb
Bib
Total Legth = 7.5 ft
Corner Wind 0 x 0.0 ft = 01b Total Load = 0 l
759 lb
Diaphragm
Unit Shear (V) = Load/Legth = 0 pif
101 pif
L = 20 ft Provide A35/LTP4
@ 48" O.C.
16d Nails @ 24" O.C, SPN14
V = 38 plf V. = 168 pif
w/ 4x4 w/ MST48
Vertical Load
Load Trib (ft) Load
- Uplift Calculation
Roof = 14 psf x 7.0 = 98 pli
Stacking
HD
Wall = 14 psf x 8.0 = 112 pif
Ma = VLH L = 8 ft M"(ft-#) Mo(ft-#) MR(ft-#) Uplift(lb)
Capacity0b)
Floor= 14 psf x 0.0 - 0 plf
WL' Wind 0 0 3544 -473
3695
Ok
Malwl=0.6-
Total Load .(W)= 210 plf
2Seismic-6072 0 2614 461
3695
Ok
S, = 1.125 L = 7.5 ft
we UPLIFT RESISTED BY RETURN WALL/ HDR
.Ld
MR(s) = 0.44
2 E MST48 PROVIDED AT END WITH NO RETURN
WALL
E
E
E
(.6-.14Sos) = 0.44 u
uo
OFROF MBR
Plate Height (H) 8.0 It Net
Lateral Load
Shearwall Design
Length Opening Length
Source Wind Seismic Tributary(ft) Wind
Seismic
Demand Capacity Ratio
WallI- 9.7 ft - 0.0 ft = 9.7 It
Ti 0 66 (23/2 +0.0) = 0 l
759 lb
Wind Oplf 365 pif 0
Wall 2 = - = 0.0 ft
+ = Olb
Olb
Seismic 78 pif 260 plf 0.3
Wall .3= - = 0.0 ft
+ = Olb
01b
Asaect Ratio
Wall = - = 0.0 ft
+ = Olb
O lb
10 h/b, - 0.8 s 2.0
Wall = - = 0.0 It
+ = Olb
0 l
Total Legth=9.7ft
CornerWind 0 xO.Oft= Olb Total Load= Olb
759 ib
Diaphragm
Unit Shear (V) = Load/Legth = 0 pif
78 pif
L = 20 ft Provide A35/LTP4 @ 48" O.C.
'16d Nails @ 16" O.C. SPN16
V= 38 pif V. = 168 pif
w/ 4x4 w/ ST6224
Vertical Load -
Load Trib(ft) Load
'Uplift Calculation
Roof = 14 psf x 6.0 = 84 pif
Stacking
HD
Wall = 14 psf x 8.0 = 112 plf
-M" = VLH L = 9.7 ft M,(ft-#) M,(ft-#) MR(ft-#) Uplift(lb)
Capacity(lb).
Floor = 14 psf x 0.0 = 0 plf
We Wind 0 0 5498 -569
2540
Ok
MRIWI = 0.6
Total Load (W) = 196 pif
2 Seismic 6072 0 4055 209
2540
Ok
SRs = 1.125 L = 9.7 ftWLr
UPLIFT RESISTED BY RETURN WALL/ HDR
4
Malsl ' 0.44
2 E
E
E
E
(.6-.14Sos) = 0.44 u°
8
Project Name: YOKA
.OS RT OF LIV
Plate Height (H) = 8.0 ft
Length Opening
Wall = 9.8 It O.Oft
Wall =
Wall =
ESI/FME INC
STRUCTURAL ENGINEERS
Page: I `®
Date: 1-19-19
Job No: H486
Client: MORGAN
Plan No:
Shearwall Design (IBC 2015, CBC 2016, SDPWS 2015)
Net
Lateral Load
+ = 0 l
Shearwall Design
Length
Source Wind (plf. Seismic (Pill Tributary(ft) Wind
Seismic
Demand -, Capacity Ratio
= 9.8ft
L3 192 132 (19/2 +2.0) - 22081b
1518 lb
Wind. 245 pif 365 pif 0.67
= 0.0 ft
0 0 (0/2 + = O lb
Gib
Seismic 156 plf 260 plf 0.6
= 0.0 ft
+ = Olb
OlbQ
Aspeet Ratio
0 114. (23/2 +0.0) =
Olb
1312 lb
h/b = 08 s 2:0
Wall 4= - = 0.0 ft + = Olb Gib 10 s
Walls= - = 0.0 ft + = 01b Gib
Total Legth = 9.8 ft Corner Wind 60 x 3.0 ft = 1801b Total Load = 23881b 15181b
Diaphragm Unit Shear (V) = Load/Legth = 245 plf 156 plf 1/2 A.B. @ 48" O.C. A648
L = 20 ft Provide A35/LTP4 @ 48" O.C.
V = 119 pif V, = 168 plf w/ 4x4 w/ HDU2
Vertical Load
Load Trib(ft) Load Uplift Calculation
Roof = 14 psf x 0.0 = 0 pif Stacking HD
Wall= 14 psf x 8.0 = 112 pif M, = VLH L = 10 It M,(ft-#) M,(ft-fl) MR(ft-A) Uplift(lb) Capacity(lb)
Floor= 14 psf x 8.0 - 112 pif Malwl-06 WL' Wind 19104 0 6388 1304 3075 Ok
Total Load (W) - 224 plf 2 Seismic 12144 0 4711 762 3075 Ok
SDs=1.125 L=9.8ft M 0.44 WLt w
aisl = 2 E E
E E
(.6-.14SDs) = 0.44 a a
L o Mir uv
+ = 0 l
Olb
Aspect Ratio Factor
Total Legth = 6.9 ft
Plate .Height (H)=8.0ft
Net
Lateral Load
1.25-.125h/b,= 0.96
Diaphragm
Shearwall Design
Length Opening
Length Source
Wind Seismic Tributary(ft)
Wind
Seismic
Demand Capacity Ratio
Wall 1= 3.4 ft - 0.0 It
= 3.4 It T1
0 114. (23/2 +0.0) =
Olb
1312 lb
Wind 0plf 658 pif 0
Wall = 3.5 ft -
= 3.5 k T2
124 ( 23/2 + =
Olb
1426 lb
Seismic 397 pif 470 pif 0.84
wall 3=
= 0.0 ft
+ =
Olb
Gib
As"d Ratio
Wa114 = -
= 0.0 ft
+ =
Gib
Gib
12 h/b, - 2A4 2.0
Wa115 = - = O.Oft
+ = 0 l
Olb
Aspect Ratio Factor
Total Legth = 6.9 ft
Corner Wind
0 x 0.0 ft = 0 l Total Load .= O lb
2737 Ib
1.25-.125h/b,= 0.96
Diaphragm
Unit Shear (V) = Load/Legth = 0 pif
397 pif
1/2 "A.B. @ 24" O.C,, AB24
L = 30ft Provide A35/LTP4
@ 48" O.C.
V = 91 pif V. = 168 pif -
w/ 4x4 w/ HDU2
Vertical Load
Load Trib (ft) Load
Uplift Calculation
Roof = 14 psf x 6.0 = 84 pif
Stacking
HD
Wall = 14 psf x 8.0 = 112 pif
M, = VLH
L = 3.4 ft - M,(ft-#) M,(ft-#) Ma(ft-#) Uplift(lb)
Capacity(lb)
Floor= 14 psf x .10.0 = 140 pif
WL2 Wind 0 0 1165 -343
3075
Ok
MR(W) = 0.6
Total Load (W) = 336 pif
2 Seismic 10789 0 859 2921
3075
OR
Sps=1.125 L=3.4ft
WL?
p
Malsl - 0.44 2 E E
E E
(.6-.14Sps) = 0.44 uo a
Page:
ESI/FME INC Date: 1-18-19
STRUCTURAL ENGINEERS Job No: H486
Client: MORGAN
Project Name: YOKA Plan No:
O7 ENTRY
Plate Hi
Panel 1
Panel 2
Panel
Panel 4
Panel 5
!ight(H)=8.0fit
Relat.
Stiffness
Wind (lb) -
Seismic (lb)
- Lateral Load
Hardy Panel
Demand Capacity
Demand Capacity
Wind
Roof = 14 psf x 0.0 =
0 pIf
-
HFX•18x811/8"HS
1.00
3102 3740
2022 - 3740
Source (plf) Seismic (pit) Tributary(ft) Wind Seismic
V (lb) M,(ft-#) M.(ft-#)
Ma(ft-#) Uplift(lb) Capecity(lb)
Floor= 14 psf x 0.01 =
0 pIf
LI 192 132 (19/2 + 0.0) = 1824 Ib 1254 lb
3102 24816 0
0 16544 39500
-
LZ 183 128 (12/2 + 0.0) = 1098 Ib 768 Ib
-
Total Load (W) =
0 pIf
+ = Olb Olb
2022 16176 0
0 10784 39500
$aa=1.125 L=1.5ft
WL,
+ = 0 l - 011b
+ = 0 l Olb
Diaphragm Corner Wind 60 x 3.0 ft = 180 lb Total Load = 3102 lb 20221b
L = 22 ft - Provide A35/LTP4 @ 48" O.C.
V = 141 plf V. = 168 pIf -
Vertical Load
Load Trib (ft)
Load
Uplift Calculation for Panel 1
Roof = 14 psf x 0.0 =
0 pIf
-
Stacking
Uplift
Wall= 10 psf x 0.0 =
0 pIf
M, = VH L = 2 ft
V (lb) M,(ft-#) M.(ft-#)
Ma(ft-#) Uplift(lb) Capecity(lb)
Floor= 14 psf x 0.01 =
0 pIf
WL2 Wind
3102 24816 0
0 16544 39500
MRIW)= 0.6—
Total Load (W) =
0 pIf
2 Seismic
2022 16176 0
0 10784 39500
$aa=1.125 L=1.5ft
WL,
M 0.44
MR(S)
v
2 E
E
01
Page:
ESI/FME INC Date: 1-19-19
STRUCTURAL ENGINEERS Job No: H486
Client: MORGAN
Project Name: YOKA Plan No:
Shearwall Design (IBC 2015, CBC 2016, SDPWS 2015)
O8 WALL AT LIV
Plate Height (H) =8.0ft
Net
Lateral Load
Diaphragm
Unit Shear (V) = Load/Legth = 0 pif
I Shearwall Design�
Length, Opening
Length
Source Wind 1plf. Seismic(plf) Tributary(ft)
Wind
Seismic
Demand - Capacity- Ratio
Wall 1= 6.0 ft - 0.0 ft
= 6.0 ft
Ti 0 114 (23/2
+0.0) -
Olb
1311 lb
Wind 0plf 365 p1f 0
Wall 2 = -
= 0.0 ft
0 0 (0/2
+ =
0 Ib
Olb
Seismic 219 plf 260 pif 0.84
Wall 3= -
= OA ft
Ma = VLH L = 6 ft Mp(ft-#) Mo(ft-#) Ma(ft-#). Uplift(b)
+ =
01b
01b
Aspect Ratio
Wall - -
= 0.0 ft
2 Seismic 10488 0 1115 1562
+ =
Olb
0 l
10 h/b, - 1.3 5 2.0
Wall = -
= 0.0 ft
,'
+ =
Olb
0 l
Total Le th= 6.0 ft
Corner Wind 0 x 0.0 ft = Olb Total Load= Olb
1311 Ib
Diaphragm
Unit Shear (V) = Load/Legth = 0 pif
219 plf
1/2 "A.B. @ 56" O.C. A856
L = 10 ft Provide A35/LTP4 -@
48" O.C.
V=131 pif V,=168 pif
w/ 4x4 w/HDL12
Vertical Load
Load Trib(ft) Load
Uplift Calculation
Roof = 14 psf x 0.0 = 0 pif
Stacking
HD
Wall = 14 psf x 8.0 = 112 pif
Ma = VLH L = 6 ft Mp(ft-#) Mo(ft-#) Ma(ft-#). Uplift(b)
Capacity(lb)
Floor= 14 psf x 2.0 = 28 pif
WLZ Wind 0 0 1512 -252
Malw1= 0.6—
3075
Ok
Total Load (W) - 140 pif
2 Seismic 10488 0 1115 1562
3075
Ok
SDS = 1.125 L = 6.0 ft
W LsLz
,'
M 0.44 ori
MR(s) =
a
2 E
E
E
E
(.6-.14SDs) = 0.44 u°-
uo
O
Stacking
M,(ft-#)
0
0
HD
Capaclty(lb)
Page: 20
ESI/FME INC Date: 1-18-19
STRUCTURAL ENGINEERS Job No: H486
Client: MORGAN
Project Name: YOKA Plan No:
Simply Supported Wood Beam w/ Overstrength (NDS 2015, CBC 2016, SDPWS 2015)
5—/ / BM T RT OF LIV
v Member Span = 16.5 FT
Point Loads
DL LL RLL
P1 = ( 1258 + + 1360 ) _
P2=1 + + )_
P3=( + + )_
P4=( + + )_
Total (lb) X (ft)
2618 4.5 B2
Point Loads From Supported Shearwalls
Ma(ft-#) + L(ft) (Ib) x(ft)
QE1= 6640 + 8.3 = 800 in compression @ 4.5 from W2
QE2= + 0 = @ 0 from
QE3= + = @ from
QEd= @ from
QES= + = @ from
QE6= + = @ from
Distributed Load
Source
Source
Mo
F L .I
Design Factors:
Size Factor, CF =1.00 If d>12, C,=F12]" 1211" A=•111, PSL, Sawn, GINUM
Rep. Factor, C, = No = 1 L d J ..L96,LVL
Load Duration, Cd= 5-Seismic/Wind =1.6 -.092, UL
% = 2900 x Cr x Cr x Cd x 1.2 = 5568 PSI sps =1.143
F, = 290 x Cd x 1.2 = 557 PSI f16 = 2.5
E = 2.00E+06 PSI -
Load Combination
DL LL RLL
Moment
Trib (ft)
Total (plf)
Roof = (
20 + + 20
) x (
+ ) =
0
Wall =(
14 +, +
)x(
8 + 0 )_
112
Floor = (
14 + 40 +
) x (
3 + 0 ) _
162
Deck =(
14 + 40 +
) x(
+ ) _
o
Floor Live toad Reduction Factor. = 1.00
Self Weight =
24.6
Roof Live Load Reduction Factor =- 1.00
Total =
299
Source
Source
Mo
F L .I
Design Factors:
Size Factor, CF =1.00 If d>12, C,=F12]" 1211" A=•111, PSL, Sawn, GINUM
Rep. Factor, C, = No = 1 L d J ..L96,LVL
Load Duration, Cd= 5-Seismic/Wind =1.6 -.092, UL
% = 2900 x Cr x Cr x Cd x 1.2 = 5568 PSI sps =1.143
F, = 290 x Cd x 1.2 = 557 PSI f16 = 2.5
E = 2.00E+06 PSI -
Load Combination
Shear
Moment
R1(lb)
R2(lb)
(1.0+.14Sos)D+.70,QE
4225 lb
17024 ft -lb
4225/2189
2653/1889
(1.0+.105Sos)D+.75LL+.75RLL+.5250,Q6
5250 lb
20837 ft -Ib
5250/3723
3464/2892
(.6-.14S,)D+.7f1,QE
25051b
10526ft-Ib
2505/469
1345/581
Vmas = 5250 lb Mmas = 20837 ft -Ib
MEMBER SIZE = 1 ) 7 x 11.25 PSL (Parallam) b= 7.00"
Comments: d= 11.25'
R1(Ib) R2(lb) Design: Stress Ratio
Total ' S,aq = Mma,/Fb = 44.91. Ina Spmvldad = 147.66 in 30.4% OK
DL 2388 1817 A,aq=1.5V,.JFv= 14.14 int Apmvlded = 78.75 int 18.0% OK
LL 990 - 990
RLL 989 371
E - 582 218
ESI/FMED @nc.
STRUCTURAL ; ENGINEERS
HANDRAIL POST / CONNECTION
H=42'R
P = 200 LBS
M = 200 X 3.5 =700 FT LBS
Fb = 700 X 12/7.15=1175 PSI 4X4 POST OK
T=C=700X 12/7.25=1160 LBS
USE SIMPSON DTT2 TOP AND BOTTOM
SMPSM Dt�R - ,
S ME
54 1 CONNECTION DETAIL
Sheet
Date
JN.
(eH Y 3)
S%93
Project Title: 00
Engineer:
Proact ID:
Prof act Descr:
Printed: 18 JAN 2019,
Description : PAD FOR HFX
Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used: ASCE 7-10
Material Properties.
Analysis/Design Settings
fc : Concrete 28 day strength
2.50 ksi
Calculate footing weight as dead load ?
Yes
Yield
60 ksl
Calculate Pedestal weight as dead load?
Yes
2Rebar
c: Concrete Elastic Modulus
3122 ksi
Mln Steel % Bending Reinf (based on'd')
As
Req'd
Concrete Density
145 pcf
Min Allow %Temp Relnf (based on thick)
0.0018'
Phi Values Flexure:
0.9
Min. Overturning Safety Factor
1:1
Shear:
0.75
Min. Sliding Safety Factor
1:1
'"�rlilnfor i
5
2,790
Allowable Soil Bearing
2 ksf
Soil Bearing Increase
Footing base depth below soil surface
It
Increase Bearing By Footing Weight
No
Increases based on footing Depth ....
Soll Passive Sliding Resistance
250 pcf
Allowable pressure Increase per foot
ksf
(Uses entry for"Footingbase depth below soilsuneca"Por Porte)
when base of footing is below
it
Coefficient of Soil/Concrete Friction
0.3
Increases based on footing Width ...
Allowablepressureincrease parfoot
when maximum length or width is greater than
ksf
it .
Top Bars
Maximum Allowed Bearing Pressure
10 ksf
2.790
2.592 1nA2
(A value ofzem implies no limit)
Bars Right of Cal #2
Adjusted Allowable Soil Bearin
(Allowablefight and
eppth & width
2.0 ksf
ccreases as speciffed byfu er)
�WNJQ I all 1 & er f �q {`
Distance Left of Colum W#1 =
2.50ft
pedestal dimensions...
Bare lett of Col 91
Count
Size
As
Provided
As
Req'd
Between Columns .- =
Distance Right of Column #2 =
1.50ft
2.50 ft-
Col #1
Col #2 Bottom Bars
9.0
5
2.790
2.592 InA2
Sq. Dim. 12
12 in Top Bars
9.0
5
2,790
2.592 inA2
Total Fooling Length. =
6.50 ft
_
Height -
g
in Bars Btwn Cols
Footing Width =
5.0 It
Bottom Bars
9.0
5
2.790
2.592 1nA2
-
Footing Thickness =
24.0 In
Top Bars
9,0
5
2.790
2.592 1nA2
Bars Right of Cal #2
Rebar Center to Concrete Edge @ Top
= 3 in
Bottom Bare
9.0
5
2.790
2.592 1nA2
Rebar Center to Concrete Edge @ Bottom
= 3 in
Top Bars
9.0
5
2.790
2.592 1nA2
R-- ArTnY�L��t; 'rr'
Applied @ Left Column
D
Lr L
S W
E
H
Axial Load Downward =
23.0
k
Moment (+CW) =
k -ft
Shear (+X) =
k
Applied @ Right Column
Axial Load Downward _
-23.0
k
Moment(+CW) =
k -ft
Shear (+X) =
k
Overburden =
0.430
Project Title:
Engineer: `✓L
Project ID:
Project Descr.
QHS/G��ls�'�
t
�*
�, '„ ���
Eccentricity
Factor of Safety
Item
Applied
Capacity
Governing Load Combination
PASS
1.704
Overturning
55.20 k -ft
94,073 k -ft
+0.60D+0.60W
PASS
No Sliding
Sliding
0.0 k
4.749 k
No Sliding
PASS
2.328
Uplift
13.80 k
32.130 k
+0.60D+0.60W
Utilization Ratio
Item
Applied
Capacity
Governing Load Combination
PASS
0.9551
Soil Bearing
1.910 ksf
2A ksf
+0.60D+0.60W
PASS
0.1680
1 -way Shear - Col #1
12.60 psi
75.0 psi
+0.90D -W
PASS
0.1680
I-way Shear- Col #2
12.60 psi
75.0 psi
+0.90D+W
PASS
0.06278
2 -way Punching - Col #1
9.416 psi
16U psi
+0.90D+W
PASS
0.06967
2 -way Punching - Col 92
10.451 psi
150.0 psi
+1.20D+W
PASS
0.02543
Flexure - Left of Col #1- Top
-6.496 k -ft
255.413 k -ft
+1.20D -W
PASS
0.04517
Flexure - Left of Col #1- Bottom
11.538 k -ft
255.413 k -ft
+0.90D+W
PASS
0.009650
Flexure - Between Cols - Top
-2.465 k -ft
255.413 k -ft
+1.20D -0.50W
PASS
0.03387
Flexure - Between Cols - Bottom
8.652 k -ft
255.413 k -ft
+0.90D -W
PASS
0.02543
Flexure - Right of Col #2 - Top
-6.496 k -ft
255.413 k -ft
+1.20D+W
PASS
0.04517
Flexure - Right of Col #2 - Bottom
11.536 k -ft
255.413 k -ft
+0.90D -W
Moments about Left Edge k -ft Moments about Right Edge k -ft
Eccentricity
Actual Soil Bearing Stress
Overturning
Actual I Allow
Load Combination...
Total Bearing
from Fig CL
@ Left Edge
@ Right Edge
Allowable
Ratio
D Onlv
16.97 k
0.0001t
0.52 ksf
0.52 ksf
2.00 ksf
0.261
+D+0.60W
16.97 k
-1.220 It
1.11 ksf
0.00 ksf
2.00 ksf
0.556
+D40.450W
16.97 k
-0.915 ft
0,96 ksf
0.08 ksf
2.00 ksf
0.481
+0.60D+0.60W
7.61 k
-2.722 ft
1.91 ksf
0.00 ksf
2,00 ksf
0.955
+0.60D
7.61 k
0.000 ft
0.23 ksf
0.23 kaf
2.00 ksf
0.117
Moments about Left Edge k -ft Moments about Right Edge k -ft
Load Combination
Overturning
Reels ng
Ratio Overturning
Resisting
Ratio
D Oniv
0.00
0.00
999.000 0.00
0.00
999.000
+D+0.60W
55.20
133.79
2.424 34.50
154.49
4.478
+M.450W
41.40
125.16
3.023 25.88
140.69
5.437
+0.600+0.60W
55.20
94.07
1.704 34.50
114.77
3.327
++0..601)P
0.00
0.00
999.000 0.00
0.00
999.000
a a�ll�o�
kj
Load Combination...
Sliding Force
Resisting Force
Sliding SafetyRatlo
D Onlv
0.00 k
4.75 k
999
+D+0.60W
0.00 k
4.75 k
999
+D+0.450W
0.00 k
4.75 k
999
+0.60D+0.60W
0.00 k
2.85 k
999
+p t 0D
+a 140 k Xy"
2.85 k
999
2 A�tl�7s tg FiaX}1Fg
` 1�1� r u 4 r L C�
I tib
Distance Tension
Governed
Load Combination...
Mu
from left Side
As Req'd by
Actual As Phi"Mn
Mu I PhiMn
(ft -k)
(ft)
(InA2)
(inA2)
(ft -k)
+0.60D
0.000
0.000 0
0.000 0
0.000
0.000
0.000
+0.60D
0.000
0.016 0
0.000 0
0.000
0.000
0.000
+0.601
0.000
0.033 10
0.000 0
0.000
0.000
0.000
+1.20D -W
-0.016
0.049 Too
2.592 Min Temp %
2.790
255.413
0.000
+1.20D -W
-0.023
0.065 Top
2,592 Min Temp %
2.790
255.413
0.000
+1.20D -W
-0.030
0.081 Top
2.592 Mln Temp %
2.790
255.413
0.000
+1.20D -W
-0,039
0.098 Top
2.592 Min Temp %
2.790
255.413
0.000
+1.20D -W
-0.048
0.114 Too
2.592 Min Temp %
2.790
255.413
0.000
+120D -W
-0.058
0.130 Top
2.592 Min Temp %
2.790
255.413
0.000
+1.200-W
-0.069
0.146 Top
2.592 Min Temo %
2.790
255.413
0.000
+0.90D+W
0.081
0.163 Bottom
2.592 Min Temo %
2.790
255.413
0.000
+0.90D+W
0.101
0.179 Bottom
2.592 Min Temp %
2.790 '
255.413
0.000
Project Title:
Engineer: 61I
Protect ID:
Project Descr:
�1Naip9��itmdl�e
forts -.,
hJha14*#
Distance Tension
Governed
Load Combination...
Mu
from left Side
As Req'd
by Actual As Phi*Mn
Mu 1 PhiMn
(ft -k)
(ft)
(102)
(in*2)
(ft -k)
+0.90D -W
0.081
6.337 Bottom
2,592
Min Temp %
2.790
255.413
0.000
+1.20D+W
-0,069
6.354 Top
2,592
Min Temp %
2,790
255.413
0.000
+120D+W
-0.058
6.370 Top
2.592
Min Temo %
2,790
255.413
0.000
+1.20D+W
-0.048
6.386 Top
2.592
Min Temp %
2.790
255.413
0.000
+120D+W
-0.039
6.402 Top
2.592
Min Temp %
2,790
255.413
0.000
+1.20D+W
-0.030
6.419 Top
2.592
Min Temp %
2.790
255,413
0.000
+1.20D+W
-0.023
6.435 Top
2.592
Min Temo %
2.790
255.413
0.000
+1.20D+W
-0.016
6.451 Too
2.592
Min Temp %
2.790
255,413
0.000
+120D+W
0.000
6.467 0
0,000
0
0,000
0,000
0.000
+1.20D+W
0.000
6.484 0
0.000
0
0.000
0.000
0.000
+
0
z0.ry „l_
OsOQ,
ROa
,m��4
Vg
�(+<:h,..
5
Load Combination...
Phi Vn
vu @ Col #1
vu @ Col #2
Phi Vn
vu @ Col #1
vu @ Col #2
+1.40D
75.00 psi
0.23 psi
0,23 psi
150.00 psi
1.35psl
1.35 psi
+1201)
75.00 psi
0.20 psi
0.20 psi
150.00 psi
1.16psi
1.16 psl
+120D+0.50W
75.00 psi
5.77 psi
6.17 psi
150.00 psi
5.00psi
5.62 psi
+1.20D -0.50W
75.00 psi
6.17 psi
5.77 psi
150.00 psi
2,68psi
3.30 psi
+1.20D+W
75.00 psi
11.43 psi
11.83 psi
150.00 psi
9,00 psi
10.45 psi
+1.20D -W
75.00 psi
11.83 psi
11,43 psi
150.00 psi
6.14 psi
7.60 psi
+0.90D+W
75.00 psi
12.30 psi
12.60 psi
150.00 psi
9A2ps1
10.39 psi
40.90D -W
75.00 psi
12.60 psi
12.30 psi
150.00 psi
620psi
7.18 psi
+0.90D
75.00 psi
0.15 psi
0.15 psi
150.00 psi
0.87psl
0.87 psi
ESI/FME Inc.
STRUCTURAL ENGINEERS
Client: M
Project Name: YOKA Plan #: _
SOILS REPORT BY: 2016 CBC
JOB NO:
DATE:
ALLOWABLE SOIL BEARING PRESSURE = 1500 psf
SOIL SITE CLASSIFICATION = D
CONTINUOUS fOOTING DESIGN:
Page:
Date: 1/10/2019
Job #: H486
Wt.
L
Roof : ( 36
) (
2) =
72
plf
Wall : ( 14
) (
17) =
238
pif
Floor: ( 54
) (
7) =
378
pif
Deck : ( 64
) (
0) =
0
pif
TOTAL LOAD =
688
pif
Required .Min. Foundation
Width = ( 688
) / (
1500 -
50) = 0.47 ft.
EXTERIOR FOOTINGS:
1 -STORY FOOTING:
USE
12 in.
wide x
12
in. deep with
1-#4 bar T/B cont.
2 -STORY FOOTING:
USE
12 in.
wide x
12
in. deep with
1-#4 bar T/B cont.
INTERIOR FOOTINGS•
1 -STORY FOOTING:
USE
12 in.
wide x
12
in. deep with
1-#4 bar T/B cont.
2 -STORY FOOTING:
USE
12 in.
wide x
12
in. deep with
144 bar T/B cont.
POINT LOAD CHECK:
EXTERIOR: P max = Allowable x S x W/ 144
Pmax ( 1 -Story ) = 5500 Ibs.
Pmax ( 2 -Story ) = 5500 lbs.
INTERIOR: P max = Allowable x S x W/ 144
Pmax (1 -Story) = 5500 lbs.
Pmax ( 2 -Story ) = 5500 lbs.
I P lbs
_ POST
4x min.
8"t
S=(D+I* 8„)x2+4
2017
Page:
ESI/FME INC Date: 2/5/2019
STRUCTURAL ENGINEERS Job No: H486
Client: MORGAN
Project Name: YOKA Plan No:
SOILS REPORT
BY: 2016 CBC
JOB NO:
DATE:
DESIGN CRITERIA
SBP =1500 PSF (Allowable Sail Bearing Pressure)
OVB = 0 PSF (overburden Weight)
Soil Site Class = D
(Design)
D =24 IN (Depth of Footing)
SBP = 1500 - 0 =1500 PSF
AD NO 1 - Areg =_
P 8530 LB = _5.69 S'Q. Ff. Use
Load Source SBP 1500 PSF 30" Sq. x 24 " Pad w/
P= 8530 LB B6, 67, Size = (Areq)*12=28.62 IN. SQ. N 4 Bars @. 12" O.C.
E/W @ Bottom
AD NO 2 Areq _ P __ 8911 LB = 5.94 S'Q. FT. Use
Load Source SBP 1500- PSF
P= 8911 LB B5 Size = (A. "12=29.25IN. SQ.
E/W @Bottom
AD NO3 Use
Load Source
P = 1 4 12"
rPD NO oad4 Source
AD NO Use
Loa5 d - Source
P— 11
AD NO 6 Use
Load Source
P= _ .� 4 12.,
AD NO 7 Usa
Load _Source