Loading...
HomeMy WebLinkAbout20210524_Design Calcsm DESIGN LOADS PAD CAPACITY PAD/PIER SPACING COLUMN SUPPORT SEISMIC PIER QTY. TIMBER RET. WALL STATE APPROVAL DESIGN CALCULATIONS FOR: COMMERCIAL MODULAR FOUNDATION SYSTEM (REF: STA TE OF CALIFORNIA APPROVED COMMERCIAL MODULAR FOUNDATION SYSTEM SPA NO. 30-7F} PROJECT: (1) 36' x 60' MODULAR OFFICE BUILDING CARDEN HALL, LLC 1541 MONROVIA AVENUE NEWPORT BEACH, CALIFORNIA 92663 PREPARED FOR: 11450 MISSION BLVD. Your Project• Our Commitment PREPARED BY: 11624 NORTH 151ST LANE SURPRISE, ARIZONA 85379 (801) 571 -9877 1 ROOF LIVE LOAD: 6 FLOOR LIVE LOAD: 9 PARTITION LOAD: 10 WIND SPEED/ 12 EXPOSURE: 13 ALLOWABLE PAD A.01 BEARING PRESSURE: 20 PSF 50 PSF 15 PSF 115 MPH, EXP 'C' 1500 PSF PROJECT# 210446 MIRA LOMA, CALIFORNIA 91752 (951) 360 -6600 DESIGN CODE: 2019 CBC SEISMIC FACTOR: 1.00 RISK CATEGORY: II SPECTRAL RESPONSE ACCELERATION: (Ss) 1.500 g (S1) 0.600 g SITE CLASS: D (DEFAULT) Title to these calculations remains with ACUMEN ENGINEERING DESIGN, LLC. The information herein is for the sole use of MOBILE MODULAR MANAGEMENT CORP. and shall be held confidential. Re-use or reproduction in whole or in part is prohibited. PA2021-118 Acumen Engineering Design 11624 North 151 st Lane Surprise, Arizona 85379 801-571-9877 acumeneng@msn.com Code Search Code: ASCE 7 -16 Occupancy: Occupancy Group = B Business Risk Category & Importance Factors: Risk Category = II Wind factor = 1.00 Snow factor= 1.00 Seismic factor = 1.00 Type of Construction: Fire Rating: Roof= 0.0 hr Floor = 0.0 hr Building Geometry: Roof angle (8) Building length (L) Least width (B) Mean Roof Ht (h) Parapet ht above grd Minimum parapet ht Live Loads: 0.25 I 12 60.0 ft 36.0 ft 14.0 ft 0.0 ft 0.0ft Roof O to 200 sf: 20 psf 1.2 deg JOB TITLE Commercial Modular Foundation Design JOB NO. SHEET NO. 2 ------------ CALCULATED BY DATE -----CHECKED BY DATE 200 to 600 sf: 24 -0.02Area, but not less than 12 psf over 600 sf: 12 psf ~ Typical Floor Partitions 50 psf 15 psf PA2021-118 Acumen Engineering Design 11624 North 151 st Lane Surprise, Arizona 85379 801-571-9877 acumeneng@msn.com Wind Loads: Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Directionality (Kd) Kh case 1 Kh case 2 Type of roof ASCE 7-16 115 mph 89.1 mph II C Enclosed Building +/-0.18 0.85 0.849 0.849 Gable Topographic Factor (Kzt) . Topography Hill Height (H) Half Hill Length (Lh} Actual H/Lh = Use H/Lh = Modified Lh = From top of crest: x = Bldg up/down wind? H/Lh= 0.00 x/Lh = 0.00 z/Lh = 0.00 At Mean Roof Ht: Flat 0.0 ft 0.0 ft 0.00 0.00 0.0 ft 50.0 ft downwind K1 = 0.000 K2 = 0.000 K3 = 1.000 Kzt = (1+K1K2K3)"2 = 1.00 Gust Effect Factor h= 14.0ft B= /z (0.6h) = 36.0 ft 15.0 ft Rigid Structure e = 0.20 f = 500 ft Zmin = 15 ft c= go, gv = Lz = Q= lz = G= 0.20 3.4 427.1 ft 0.93 0.23 0.89 use G = 0.85 G= JOB TITLE Commercial Modular Foundation Design JOB NO. SHEET NO. 3 ------~ ----- CALCULATED BY DATE CHECKED BY DATE I V( ---- ---- Speed·up H< 15ft;exp C :. Kzt=1.0 ,,_. downwir,d) H ESCARPMENT V(z) z : Speed-up x~p. ~ H .. ' P,-J 20 RIDGE or 30 AXISYMMETRICAL HILL Flexible structure if natural frequency < 1 Hz (T > 1 second). If building h/8>4 then may be flexible and should be investigated. h/B = 0.39 Rigid structure (low rise bldg) 0.85 Using rigid structure default Flexible or Dynamically Sensitive Structure 34 1ey (111) = 0.0 Hz Damping ratio (13) = O lb= 0.65 /a= 0.15 Vz = 97.1 N1= 0.00 Kn= 0.000 Rh= 28.282 11 = 0.000 h= 14.0 ft Rs= 28.282 11 = 0.000 RL = 28.282 11 = 0.000 gR = 0.000 R = 0.000 Gf = 0.000 PA2021-118 Acumen Engineering Design 11624 North 151 st Lane Surprise, Arizona 85379 801-571-9877 acumeneng@msn.com JOB TITLE Commercial Modular Foundation Design JOB NO, ______ _ CALCULATED BY ______ _ CHECKED BY ______ _ SHEET NO. 4 ---- DATE ---- DATE Wind Loads -MWFRS h~60' (Low-rise Buildings) except for open buildings Kz = Kh (case 1) = Base pressure (qh) = GCpi = 0.85 24.4 psf +/-0.18 Wind Pressure Coefficients CASE A 0= 1.2deg Surface GCpf w/-GCpi w/+GCpi 1 0.40 0.58 0.22 2 -0.69 -0.51 -0.87 3 -0.37 -0.19 -0.55 4 -0.29 -0.11 -0.47 5 6 1E 0.61 0.79 0.43 2E -1.07 -0,89 -1.25 3E -0.53 -0.35 -0.71 4E -0.43 -0.25 -0.61 5E 6E Ultimate Wind Surface Pressures (psf) 1 14.2 5.4 2 -12.5 -21.3 3 -4.6 -13.4 4 -2.7 -11.5 5 6 1E 19.3 10.5 2E -21.7 -30.5 3E -8.6 -17.3 4E -6.1 -14.9 5E 6E Parapet Windward parapet = Leeward parapet = 0.0 psf (GCpn = +1.5) 0.0 psf (GCpn = -1.0) Horizontal MWFRS Simple Diaphragm Pressures (psfl Transverse direction (normal to L) Interior Zone: Wall 16.9 psf Roof -7.8 psf ** End Zone: Wall 25.4 psf Roof -13.2 psf ** Longitudinal direction (parallel to L) Interior Zone: Wall 16.9 psf End Zone: Wall 25.4 psf ** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames). The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof. Edge Strip (a)= End Zone (2a) = Zone 2 length = CASEB GCpf w/-GCpi -0.45 -0.27 -0.69 -0.51 -0.37 -0.19 -0.45 -0.27 0.40 0.58 -0.29 -0.11 -0.48 -0.30 -1.07 -0.89 -0.53 -0.35 -0.48 -0.30 0.61 0.79 -0.43 -0.25 -6.6 -12.5 -4.6 -6.6 14.2 -2.7 -7.3 -21.7 -8.6 -7.3 19.3 -6.1 3.6 ft 7.2 ft 18.0 ft w/+GCpi -0.63 -0.87 -0.55 -0,63 0.22 -0.47 -0,66 -1.25 -0.71 -0.66 0.43 -0.61 -15.4 -21.3 -13.4 -15.4 5.4 -11.5 -16.1 -30.5 -17.3 -16.1 10.5 -14.9 Windward roof overhangs= 17.1 psf (upward) add to windward roof pressure WINDWARD OVERHANG fff Wll.IDWARDROOF I I l I I l I I LEEWARDROOF I T j I r r r I TRANSVERSE ELEVATION ffi W!NDWARDROOF I I I I I I I I LEEWARDROOF _________ 1rr1r11 LONGITUDINAL ELEVATION PA2021-118 Acumen Engineering Design 11624 North 151 st Lane Surprise, Arizona 85379 801-571-9877 acumeneng@msn.com JOB TITLE Commercial Modular Foundation Design JOB NO. -------- CALCULATED BY -------- CHECKED BY -------- SHEET NO. 5 -----DATE ----- DATE ----- Seismic loads: ASCE 7-16 Strength Level Forces Risk Category : II Importance Factor (I): 1.00 Site Class : l -code default Ss (0.2 sec) = S1 (1.0 sec)= Fa= Fv = 1.200 1.700 150.00 %g 60.00 %g Seismic Design Category = D Redundancy Coefficient p = 1.30 Number of Stories: 1 Structure Type: Light Frame Horizontal Struct Irregularities: No plan Irregularity Sms= Sm1= 1.800 1.020 Vertical Structural Irregularities: 1 a ) Stiffness Irregularity-Soft Story Flexible Diaphragms: Yes Sos= 1.200 So1 = 0.680 Design Category = Design Category= Building System: Cantilevered Column Systems detailed to conform to the requirements for: Seismic resisting system: Steel special cantilever column systems System Structural Height Limit: 35 ft Actual Structural Height (hn) = 14.4 ft See ASCE7 Section 12.2.5 for exceptions and other system limitations DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) = 2.5 Over-Strength Factor (Oo) = 1.25 Deflection Amplification Factor (Cd) = 2.5 Sos= 1.200 S01 = 0.680 D D Seismic Load Effect (E) = Eh +/-Ev = p QE +/-0.2Sos D Special Seismic Load Effect (Em) = Emh +/-Ev= Oo QE +/-0.2Sos D = 1.3Qe +/-0.240D = 1.25Qe +l 0.240D QE = horizontal seismic force D = dead load PERMITTED ANALYTICAL PROCEDURES Simplified Analysis -Use Equivalent Lateral Force Analysis Equivalent Lateral-Force Analysis -Permitted Building period coef. (Cr)= 0.020 Approx fundamental period (Ta) = Crhn A= User calculated fundamental period (T) = Long Period Transition Period (TL) = ASCE7 map= Seismic response coef. (Cs)= Sosl/R = need not exceed Cs = but not less than Cs = USE Cs= Model & Seismic Response Analysis ALLOWABLE STORY DRIFT Sd1 I /RT= 0.5*S11/R = Structure Type: All other structures 0.148 sec x=0.75 sec 8 0.480 1.840 0.120 o:480 Cu= 1.40 Tmax = CuTa = 0.207 Use T = 0.148 Design Base Shear V = 0.480W -Permitted (see code for procedure) Allowable story drift b,,a = 0.020hsx where hsx is the story height below level x PA2021-118 Single Pad Configuration Calculations: Bearing Pad Capacity Calculations: Assumed Bearing Capacity: (Be) 1500 psf Pad Specifications Nominal: Actual: ci:, LF L.w UJ (T p) x (Wp) x (Lp) 2 X 12 X 24 1.5 X 11.25 X 24 Fb' = ci:, Fv' = 900 180 117 pli 2871 lbs Species: P.T DF-L #2 Cross Sectional Area: (Ap) Section Modulus: (Sx,p) 16.9 in2 4.2 in3 Assume Load on Pad is Centered Load Width on Pad: (Lw) 10 in Pad Cantilever: (Cp) 7 in X 0.8 X 1.2 X 0.8 = 691 psi (Cm) (C1u) (C;) X 0.8 X 0.8 = 115 psi (Cm) (C;) Uniform Distributed Load: W = (Be/ 144) x WP Maximum Moment: Mmax = 0.5 x W x c/ Allowable Bending stess: fb = Mmax I Sx, P 681 psi < Fb' => OK in B~nding Maximum Shear: Vmax = W x Cp 820 lbs Allowable Shear Stess: fv = 1.5 x (Vmax / Ap) 72.9 psi < Fv' => OK in Shear => Capacity of Each Pad is: 3000 lbs 6 PA2021-118 Triple Pad Configuration Calculations: Bearing Pad Capacity Calculations: Assumed Bearing Capacity: (Be) 1500 psf Pad Specs Nominal: Actual: (T p) x (Wp) x (Lp) 2 X 12 X 24 1.5 X 11.25 X 24 Species: P.T DF-L #2 Cross Sectional Area: (Ap) Section Modulus: (Sx,p) Assume Load on Pad is Centered Load Width on Pad: (Lw) Pad Cantilever: (Cp) Fb' = 900 X 1.2 X 1.25 X 0.8 = 1080 psi (Co) (C1u) (Ci) Fv' = 180 X 1.25 X 0.8 = 180 psi (Co) (Ci) Uniform Distributed Load: W =(Be/ 144) x WP Maximum Moment: Mmax = 0.5 x W x c/ Allowable Bending Stess: fb = Mmax / Sx, P Maximum Shear: Vmax = W x Cr Allowable Shear Stess: fv = 1.5 x (V max/ Ap) ⇒ Capacity of Each Pad is: Spreader Capacity Calculations: Pad Capacity: (Pc) Pc= Cbp / ((Wp X 0.5Lp)/144) = 3000 psf Pad Specs Nominal: Actual: (Tp) x (Wp) x (Lp) 2 X 12 X 24 1.5 X 11.25 X 24 117 pli 2109 lbs 500 psi 703 lbs Lw < Fb' ⇒ OK in Bending 62.5 psi < Fv' ⇒ OK in Shear 3000 lbs Species: P.T DF-L #2 Cross Sectional Area: (Ap) Section Modulus: (Sx,p) Assume Load on Pad is Centered Load Width on Pad: (Lw) Pad Cantilever: (Cp) Fb' = 900 X 1.2 X 1.25 X 0.8 = 1080psi (Co) (C1u) (Ci) Fv' = 180 X 1.25 X 0.8 = 180 psi (Co) (Ci) Uniform Distributed Load: W =(Be/ 144) x Wr Maximum Moment: Mmax = 0.5 x W x c/ Allowable Bending Stess: fb = Mmax / Sx, P Maximum Shear: Vmax = W x Cr Allowable Shear Stess: fv = 1.5 x (V max/ Ap) 234 pli 4219 lbs 1000 psi 1406 lbs 125 psi ⇒ Capacity of (2) Bearing Pads & (1) Spreader is: Cp Lw < Fb' ⇒ OK in Bending < Fv' ⇒ OK in Shear 6000 lbs 16.9 in2 4.2 in3 12 in 6 in 16.9 in2 4.2 in 3 12 in 6 in 7 PA2021-118 4 -Pad Configuration Calculations: Bearing Pad Capacity Calculations: Assumed Bearing Capacity: (Be) 1500 psf ·Pad Specs Nominal: Actual: (T p) x (Wp) x (Lp) 2 X 12 X 24 1.5 X 11.25 X 24 Species: P.T DF-L #2 Cross Sectional Area: (Ap) Section Modulus: (Sx,p) Assume Load on Pad is Centered Load Width on Pad: (Lw) Pad Cantilever: (Cp) Fb' = 900 X 1.2 X 1.25 X 0.8 = 1080 psi Lp (Co) (Cru) (Ci) Fv' = 180 X 1.25 X 0.8 = 180 psi (Co) (Ci) Uniform Distributed Load: W =(Be/ 144) x WP Maximum Moment: Mmax = 0.5 x W x c/ Allowable Bending Stess: fb = Mmax I Sx, P Maximum Shear: Vmax = W x Cp Allowable Shear Stess: fv = 1. 5 x (V max/ Ap) ⇒ Capacity of Each Pad is: Spreader Capacity Calculations: Pad Capacity: (Pc) Pe= Cbp / ((Wp x 0.5Lp)/144) = 2400 psf Pad Specs Nominal: Actual: (T p) x (Wp) x (Lp) 2 X 12 X 30 1.5 X 11.25 X 30 Lw UJ 117 pli 2109 lbs 500 psi < Fb' ⇒ OK in Bending 703 lbs 62.5 psi < Fv' ⇒ OK in Shear 3000 lbs Species: P.T DF-L #2 Cross Sectional Area: (Ap) Section Modulus: (Sx,p) Assume Load on Pad is Centered Load Width on Pad: (Lw) Pad Cantilever: (Cp) Fb' = 900 X 1.2 X 1.25 X 0.8 = 1080 psi L.p (Co) (Cru) (Ci) Fv' = 180 X 1.25 X 0.8 = 180 psi (Co) (Ci) Uniform Distributed Load: W =(Be/ 144) x Wp Maximum Moment: Mmax = 0.5 x W x c/ Allowable Bending Stess: fb = Mmax I Sx, p Maximum Shear: Vmax = W x CP Allowable Shear Stess: fv = 1. 5 x (V max / Ap) 188 pli 2344 lbs 556 psi 938 lbs 83.3 psi ⇒ Capacity of (3) Bearing Pads & (1) Spreader is: Cp Lw UJ < Fb' ⇒ OK in Bending < Fv' ⇒ OK in Shear 9000 lbs 16.9 in2 4.2 in3 12 in 6 in Cp 16.9 in2 4.2 in3 20 in 5 in 8 PA2021-118 PAD/PIER SPACING Input Data: Roof Live Load: (RI) Roof Dead Load: (Rd) Exterior Wall Dead Load: (Wd) Floor Live Load: (Fl) Floor Partition Load: (Fp) Floor Dead Load: (Fd) Module Width: (W) Sidewall Height: (H) Pad Capacity: ( P) Pier Capacity: (P) Calculations: Weight of Exterior Wall: We = (Wd x H) Live Load Acting on Outside Chassis Main Rails: Wlo = (Rl+FI) x (W/2) Dead Load Acting on Outside Chassis Main Rails: Wdo = ((Rd+Fp+Fd)(W/2)) + We Total Load Acting on Outside Chassis Main Rails: Wo=Wl+Wd Maximum Spacing of Piers on Outside Main Rails: S = P/Wo Live Load Acting on Inside Chassis Main Rails: Wli = Fl x (W/2) Dead Load Acting on Inside Chassis Main Rails: Wdi = (Fp+Fd) x (W/2) Total Load Acting on Inside Chassis Main Rails: Wi=Wli+Wdi Maximum Spacing of Piers on Inside Main Rails: S = P/Wi 20 psf 8 psf 6 psf 50 psf 15 psf 8 psf 11.83 feet 8.5 feet 3000 lbs 3000 lbs 51 plf 414.1 plf 234.4 plf 648.4 plf 4.63 feet 295.8 plf 136.0 plf 431.8 plf 6.95 feet 9 PA2021-118 Column Support (END COLUMN): Input Data Tributary Width: (Tw) End Column Tributary Length: (Te) Live Load: (Llr) Dead Load: (DLr) Calculations: Pad Capacity: (Cpad) Pier Capacity: (Cpier) Roof Tributary Area: Ar= 0.5 x Tw x Te ⇒ Ar> 200 :. Live Load (LLr) is Reducible: 24 -0.02Ar Column Load: (Pe)= (LLr + DLr) x Ar Qty of Pads: Npads =Pe/ Cpad Qty of Piers: Npiers = Pe/ Cpier 11.83 ft 30 ft 20 psf 8 psf 3000 lbs 6000 lbs 355 sq. ft. 17 psf 8838 lbs 2.95 1.47 ⇒ Use (2) 6000 LB. ASYMETRIC PIERS (ONE EACH SIDE OF MODULE LINE). EACH PIER MUST HAVE (1) 2x12x24 SPREADER OVER (2) 2x12x24 BEARING PADS PLACED TRANSVERSE TO SPREADER 10 PA2021-118 Column Support {INTERIOR COLUMN): Input Data Tributary Width: (Tw) Interior Column Tributary Length: (Ti) Live Load: (LLr) Dead Load: (DLr) Calculations: Pad Capacity: (Cpad) Pier Capacity: (Cpier) Roof Tributary Area: Ar= 0.5 x Tw x Ti 11.83 ft 30 ft 20 psf 8 psf 3000 lbs 6000 lbs ⇒ Ar> 200 :. Live Load (LLr) is Reducible: 24 -0.02Ar 355 sq. ft. 17 psf Column Load: (Pi) = (LLr + DLr) x Ar Qty of Pads: Npads = Pi/ Cpad Qty of Piers: Npiers =Pi/ Cpier ⇒ Use 9000 LB. COLUMN SUPPORT 2xl2x3e>" F.T. SFF<l::ADl=RS (3) 2xl2x2411 F.T. FADS 8838 lbs 2.95 1.47 FLOOR RIM JOISTS (2 > toe>iZ>e>li< ASYM!:fRIC STEEL FleRS 11 PA2021-118 SEISMIC PIER QUANTITY Input ~ata: Design Wind Pressure: (P) Seismic Load Factor: (SI) Damped Spectrical Response: (Sds) Roof Dead Load: (Rd) Floor Dead Load: (Fd) Exterior Wall Dead Load: (Wd) Roof Live Load used in Seismic Calculation: (RI) Partition / Fixture Load used in Seismic Calculation: (Pd) Floor Live Load used in Seismic Calculations: (Fl) Calculations: Total Dead Load of Building: 16 psf 0.480 W 1.200 8 psf 8 psf 6 psf 0 psf 5 psf 0 psf 12 Building Length: (L) 60.00 feet Building Depth: (D) 35.50 feet Building Area: (A) 2130 sq. ft. Exterior Wall Height: (H) 9.5 feet Roof Depth: (R) 2.5 feet Floor Depth: (F) 0.67 feet Sl<irting / Foundation Height: (S) 2.33 feet Miscellaneous Loads: (Ml) 1500 lbs Assumed Static Friction: (~t) 0.25 (2019 CBC, Table 1806.2) Dt = ((A) x (Rd+Fd+Rl+Pd+FI)) + ((L +D)x2xHxWd)) + Ml 57117 lbs Base Shear Due to Over Pressure: Vw = P x (R + F + H + S/2) . x L Base Shear Due to Seismic: Vs= SI x Dt Governing Transverse Base Shear:(V) Lateral Design Capacity of Restraint About Minor Axis: (Vy) About Major Axis: (Vx) Sliding Design Capacity of Restraint CP Anchor Pier (pins into ground): (Va) Lateral Restraint Quantity In Transverse Direction: Nt = VWy In Longitudinal Direction: Nt = VINx Total Quantity of Restraints Required: Check for Sliding: Total Friction Resisted: Fs = µ x Dt x (0.6 -0.14Sds) = (ASCE 7-16, Section 12.14.3.2) Try Adding ( 12 ) CP Anchor Piers: Transverse Load: 13282 lbs 27416 lbs 27416 lbs Ultimate Capacity Longitudinal Load: xD 7858 lbs 27416 lbs 27416 lbs 2273 lbs CP SEISMIC PIERS, 3203 lbs 18 "MAX HEIGHT 2840 lbs 18.09 12.84 say 19 say 13 F.S. = 1.50 Design Capacity 1515.3 lbs 2135.3 lbs 1893.3 lbs 19 Restraints => USE . 26 CP PIERS => TRY 14 CP SEISMIC PIERS 6169 lbs< Vf => CP ANCHOR PIERS REQ'D 28889 lbs > V => OK PA2021-118 tt V1 f>t:1L. 'rf~>p1;1 t-J lf0~l wi~L t>~i~'1t,N -~"" < ,...,_,="'.-""'"'"-. 'e-=7:"·:0--M~·~ 13 ""nz,.,Y I.Ac;;)~ ~L'1f7f?'Pf f~~;,~ (!.1 41"&-11 tit,,, " !,,~~1Z,;;,L, l.,tit>t? ftC1JNt1 t;;I.J ~1~,(i(f f~~;•f'"i ,, }'i~~~AJ t'-"i~: '1',,ff, e,-:p ~ .. :,p,J $) } e,J l~~:t~ "/\~'½11Ai~' C@~_,ff'it.-\\:c41~ IV~ ~\.'f1JFi~ l,:;)~~~,;i>J y;:,,77' .t-q,_g". ,:,, l ~ l';,,"'1, -c,.c;. = ,, ,if_,,, t=;l"' F/ n i ll, ·,.,_:;;,,_:··'vle'v~~-~ <~ (.: " l = if.7),.l tA 7-l ~A ~.,, 1 ·z~ l?f:•0 \*' 1= C 1~ t,'; ~ ~ ~'1 :!S( t, <1J) -~ l e1~:t1 pt~•·\ L rfl~~1~T,e,,, /1~-J ,~l~r ~ 11 "'? 1=·( I .>d&> ~/ ~:,:1:'( ~ \ ~ &I~ h ~ ) ·:J. 1~ ~z"'o'tl \ {'J ' = ' ((~;=~·~ •J f ,;v' ~ &l ~ 'f'~,; jPf'g /t,,-;, ,rJ~~ ft!;]~ 1::?~ ~ ~t~rt r•~f•~ ~ Fk- ·/,1~ "'° ~'~"'~·et<b, j'/1~-4~i"¥=-1N •';5fP6,~! \(r4fJ.::"{ ~ Jr(-,~r~ PA2021-118 14 y,/~¥:u ; f'\ -,g, 'b1 ~.~ fd ~ L,..,., A g"i:,_, .,,, tz!.'&, A al !l 'I I tl f'/ ""' \ "ti',j ._,. ~1,-:? ~ 7v -i. '§, £)"' le( L, ~ "t,'1, ~ ( =1 \ ~ ~. 1 &,/ r \ -~ 1 ·? , .; f?~ ~-b 7'? 1}{~ . ,:r__Z:,, ~ <7Ji_j7.l_f;!l('~. '\ l~.t-~(2> ~_, lh~7 Je;:v4 ';.~ /' ;,.,.:.'!lYf:?" <,:=!) )., •/ J ~ I ' f (·,•· ' ' ' ' 1,,,-J LI h?Y i 1 !#Wld+ itE":'j\.}{= tf'7-,U M'e: ~ . . pq= f\/O~~r ~~rY~'Dr"')0tvJ ' :v ~~·i. ?t ( ~l/~;; ~ ~7_.~1 ~;::· · Z~-t,~,=, ,C=~ ~~ PA2021-118 ~ REV. I DATE BY . & 104/17 /201 YW · & lo4/25/H31 YW · _&. 101/04/151 -YW ~ 102/25/141 YW / ,, ENGINEERED FOUNDATION PLAN G.P. SEISMIC PIER COMMENTS SPA 30~7F FOR: CENTRAL PIERS, INC. 284 N. THORNE AVE. FRESNO, CA 93706 559-268-0828 BY: ROCK SOLID ENGINEERING, INC. 1100 · MAIN .STREET. SUITE. A WATSONVILLE, CA 95076 831-724_.5868 •., '5bneo\: 4-l-::i--.zu STATE APPROVAL COMMERClAL/MODULARJCOMMERCIAL COACH .. FOUNDATION SYSTEM . : ::> HEALTH AND SAFETY CODE, SECTlON 18551 APPROVED c.. .,. --~ APPROVAL DOES NOT AUTHOR1ZE OR APPROVE ANY OMISSIONS OR DEVIATION FROM REQUIREMENTS OF '··-1 APPLlCAB.LESTATELA\VS.A."IDREGULATlONS STA TE OF CAUFORNTA DEPARTMENT OF HOUSING AND COMMUNITY DEVELOP:MENT D1)71!:0NOFCODESANDSTANDARDS '.-.-.. ----_ --: _"_.:.r. 13Y ll# ,11c --DATE t/ /3e,/"2Ci ~: SPA N~,0,7 <f'"'l-7,r.::;; . . ,. THiS,PLA4Z:P.PROVALEXP1RES ' ~12 l"1"7 _. l ~- :UP])ATE T.O. 2019 CBC/CRC UPDATE TO 2.016 CBC/CRC . REVISION TO TABLE, PAGE F5 UPDATE TO 2013 CBC/CRC TJJ),,. ~CK SOLID ENGINEERING, JNC. ENGINEERED FOUNDATION PLAN CENTRAL PIERS -SPA 30-7F SHEET Fl OF 6 PA2021-118 "''.REF:ERENCE: CALIFORNIA CODE.OF REGULATIONS, .TITLE· 25 &~~ l· 4. _QQ~im:J~Mmt!A'.l'JlQH~~h-,...,.._,......:...........,....,....,.~.~,,,..,,....--~ 1. DESIGN LOADS SHALL .BE CONSISTENT WITH LOCAL REQUIREMENTS WHERE -----------· -· INSTALLED. THE FOLLOWING DESIGN LOADS .ARE• INCORPORATED HEREIN: FLOOR LIVE LOAD: 50 PSF . . ROOF :LIVE.. · LOAD: 30 PSF -100 .~·. • · LISTED IN TABLE· SHEET F5 BASIC WIND SPEED· & EXPOSURE: 95-:·13 H. SEE TABLE SHEET F5 SEISM:ic DESIGN CATEGORY: E ·. · 1ED FOR USE IN FLOOD. H:AZA:RD .AREAS , UNLESS A SEPARATE DESIGN ADDRESSING THE FLOOD HAZARD· IS . UBMI'l"l'ED: F.Dl~ :..~PBQYJ\I:. ~BX~ 'D{E _Lru;;..U,_ J1JR,ISDICTION. 2~ FOOTINGS ARE.. TO BE .SUPPORTED BY EITHER FIRM;-UNSATURA'l'ED, UNDISTURBED SOIL OR COMPACTED FILL; ASPHALT OR CONCRETE. · FOOTINGS• ARE DESIGNED FOR 1500 PSF BEARING CAPACITY AND SHALL BE COMPATIBLE WITH LOCAL SOIL CONDITIONS. ALL FOOTINGS SHALL BE FOUNDED 1N ACCORDANCE . WITH H.C.D. GUIDI.INES AND TITLE 25 • 3. STRUCTURAL STEEL: · A: SHALL CONFORM TO. AS'l'M A36 Fy = 36 KSI MINIMUM. B. ·SHALL BE FABRICATED ACCORDING TO AISC SPECIFICATIONS. C. SHALL BE WELDED: ACCORDING TO AWS SPECIFICATIONS: ·. i. ELECTRODES: E70 ti. PLATES: ASTM A~6 ill. BOLTS: STANDARD c.ASTM A307 . iv. THREADED ROD: Com: DRAWN. LOW 'CARBON WELDABLE D.ALL METAL COMPONENTS INCLUDING NAILS & SCREWS .ETC .. ·ARE TO BE PROTECTIVE COATED; . . . 4. THE C.P. SEISMIC PIER SHALL BE I:JSTED & LABELED BY BSK ASSOCIATES FOR THESE· ULTIMATE LOADS: . 7" THRU 18 INCH PIERS: 3203 LBS. (STRONG DIR), 2273 (WEAK DIR) 19 INCH X-,LARGE PIER: 1553 LBS. (STRONG DIR.) 1462 (WEAK "DIR) 1s;ooo VERTICAL · 5. THIS .FOUNDATION &.l;STEM:C-IS FOR FI.ACING COMMERCIAL CO.!i,CHES CONSTRUCTED WITH LONGITUDINAL OR CROSS JOISTS •.. . . . . ... 6. THIS FOUNDATION SYSTEM IS DESIGNED TO BE CONSTRUCTED ON A FAIRLY LEVEL SITE WITH NO EXIS'l'ING SOIL PROBLEMS. SEE NOTE 2 AND TITLE 25, SECTION 1334(b). 7. ·.STANDARD PIER. & FOOTING SPACING PER COACH MAl<lUFACTURER'S lNSTALI:.ATION INSTRIJCTIONS. WITHOUT MANITAL; .SPACING -oF STANDARD PIERS TO BE DETERMINED BY TITLE 25; SECTION 1335.5. FOUNDATION ·PAD NOTES: l. TWO FOUNDATION PADS:ARE AVAILABLE FOR USE :WITH THIS SYSTEM. THE CUSTOMER MAY CHOOSE· ONE OF THE PADS· FOR THEIR COACH. ·sEE DETAIL 2, SHEET :F6. 2. FDTN PADS SHALL BE PLACED ON FIRM, LEVEL UNDISTURBED SOIL (SEE GEN. NOTE 2) . 3. THE FOUNO.ATION_ Po.ADS SHALL BE ORIENTED :AS SHOWN ON THE PLAN . VIEW DRAWING WITH THE ·BOLT HOLES PERPENDICULAR TO THE CHASSIS BEAM. SEE PLAN VIEW SHEETS F3 AND F4. 5. Cl:'lif.!.,Ii'VAJ!i &AMJJaU C Yl.ll."U,UU.,LV!~ OW A..3/4 INCH A.P~. 48/24 EXTERIOR P.SJ.-83 CC, PLUGGED; NER-.QA397,PRP-10B. . 6. ATTACHMENT TO EXISTING CONCRETE SLAB ·· THE. C.P. SEISMIC PIER MAY BE ATTACHED TO AN EXISTING COMPETENT CONCRETE -SLAB OR CONCRETE FOOTING ACCORDING TO THE: FOLLOWING CRITERIA: . . . . l •. AT'.1',ACH WITH TWO 5/8" DI.AM; REDHEAD WEDGE ANCHORS (OR E9UIV) . 2. MINIMUM .EMBEDMENT = Z5" . . -.. 3. MINIMUM iCONC;RETE . THICKNESS = 3¾" 4. MINIMUM EDGE DISTANCE = 2" . COACH SIZRNQTES: 1. UNLESS APPROVED·. BY ROCK. S.OLID -ENGINEERING, INC., THE ROOF PITCH SHOµLD NOT EXCEED: . . 0 A. SINGLE WIDES: .3:12 B. DOUBLE AND TRIPLE. WIDES: 3:12 ·· · 2. FOR ANY COACH·· SIZE OTHER THAN AS SHOWN ON THIS PLAN OR REFERENCED IN THE TABLE SHEET F5~ :'r.HE LAYOUT SHALL BE REVIEWED:' & APPROVED BY ROCK _SOIJD ENGINEERING,. :INC~ INSPECTION REQUIREMENTS: 1. THE DESIGN .OF THIS SYSTEM IS -BASED. ON STANDARD -COMMERCIAL COACHES AS BUILT :&Y THE MANUFACTURER. SITE BUILT ADDITIONS HAVE NOT BEEN INCLUDED IN THIS DESIGN. 2. ALL DIMENSIONS INCLUDED ON THIS PLAN; INCLUDlNG COACH SIZE. ROOF HEIGHT .AN.I:> PIER HEIGHT; SHOULD BE FIELD VERIFIED :BY THE LOCAL BUILDING OFFICIAL. ANY DISCREPENCIES SHOULD BE IMMEDIATELY BROUGHT TO .Tm). ENGINEER'S ATTENTION. . 3. THE BUILDDiG.iPAD .SHOULD. BE INSPECTED TO ENSURE THAT PROPER SOIL CONDI'J'IONS.AND DRAINAGE PATTERNS HAVE ·BEEN ESTABLISHED IN ACCORDANCE·. WITH TITLE · 25 & THE' COACH MANUFACTURER'S. REQUIREMENTS. 'Sb~ea: 4-l:\-2.U }lf!<:.cK souo ENGINEERING, 1Nc. ENGINEERED 'FOUNDATION PLAN !&04/17/2 CENTRAL PIERS -SPA 30-7F SHEET F2. OF 6 PA2021-118 ~, y; ~t41\~ea-: 4-n-iu . <..J-....,_~ ~- (0 f=l 0 < 0.. rn O' f=l ~ 0.. P'.l O' ~ INTERIOR RIDGE SUPPORTS AS SPECIFIED BY COACH ~lffi'FACTURER ~ L1J ~ . EXISTING l . HASSIS BEA . .. ~ EXISTING. ~ HASSIS BEAM.. ·. . .. f ~~ ~- . . . QJ ._rh w ' QJ rn ·CrJ· Cr] Cr] rn ~ $ ·.~ Cr] • Cr] ~.-rn + ~ rn QJ rn QJ Cr] rn rn ~ I Cr] cp rn ·. rn $ ~ m m_ LP T liJ· . rn qJ· rn $. ~J STANDARD · CHASSIS . PIER SUPPORT. TYPE SIZE & LOCATION PER CO'ACH . MANUFACTURER .·· PAD ORIENTATION PAD: MUST. BE PLACED M!, SHOWN. .WITH BOLT HOLES PERPENDICULAR· TO CliM!!,SIS BEAM .PLACE c;P. SEISMIC PIERS (DETAIL ~.·SHEET F6) IN ROWS OF 4 II PIERS PER TABLE . II OF .ROWS PER TABLE, SHEET F5 EACH SEISMIC. PIER 1UY REPLACE · 1 STANDARD PIER TIEDOWNS: PLACE .. C~P. ANCHOR PIER (DETAIL 1 SHEET F6) ON OUTER CHM!!,SIS BEAM IN PLACE OF SEISMIC PIER, WHEN · REQUIRED II PER. TABLE SHEET F5 (Ult, Capacity=2840 Lat .& 3170 Uplift) cor l II I ITI I III III I III II! V OUTLINE OF COACH '-------30•..:..4a•---------' PLAN-Not to .Scale TRIPLE WIDE COACH J!DkcKSOLID ENGINEER/NG, INC. ENGINEERED -FOUNDATION PLAN CENTRAL PIERS -SPA 30-?F stz/2.,-;e.., L.&.04/17/2 SHEET F3 OF ·5 PA2021-118 -' -STANDARD CHASSIS PIER SUPPORT •. TYPE; SIZE &. LOCATION PER COACH lUNUFACTURER . r--~ ~ ~ ·~ ~ I . I I. l -~ ~ rh [II [El II] [I] PAD qRIEN'l'ATIQN w w EXISTING ·· EXISTING · . . PAD WST. i3E EXISTING . PAD · ~TIQN . VeHASSIS" BEAt-is-J . VeHASSIS BEA~ · PLACED. AS-SHOWN Vc1-1ASSIS BEAt-is-J PAD YUST BE [tJ ·ct] $. $ , lflTH BOLT HOLES'. $ $ PLACED AS SHOWN · · · . · · . -~. PERPENDICULAR ·To ~-.. 1flTH BOLT HOLES · ·. < CHASSIS· BEAll 7' PERPENDICULAR TO I l ! I . ii. . • . CHASSIS BEAll Cf] Cf] Cf] Cf] : Cf] cp PLACE C.P. SEISMIC PIER_ s IN m m m m m m ROWS OF 4 . TOTAL # PER TABLE. . . · . . . SHEET F5 I l I ·1 I I If OF ROWS PER TABLE;. . . -. . . SHEET. FS . ·l)RJ .fit,i . lWl ~-~ EACH SEISMIC PIER YAY !Ej:Y· L¥J · 'cpl . .. .1¥J REPLACE· 1 STANDARD-PIER I I l I I I cp cp cp cp cp cp .m mm m m ctJ TlEDOWN~ . I I . I I I I PLACE c_ .P. ANCHOR PIER ct]· ·ct]· $ $ $. ~ (DETAIL 1 · SHEET F'.6) . . . . · · . · ON OUTER CHASSIS BEAM . IN PLACE OF SEISMIC PIER I I 1 ·1 I l WHEN REQUIRED l SEISMIC PIER & . /I ·PER TABLE SHEET F5 Cf] cp cp m FOUNDATION. PAD . ·cp Cf] (Ult. Capacity=2840 Lat ;& · · _. L:J #·PER UBLE . · 3170 Uplift I SHEET F5. @J @J • EACH SEISMIC PIER . @J · -· · . MAY REPLACE 1 . . . · . . ~ STANDARD PIER . . . . . ·r: 0~ OF\, I rS. r±-,. r±-, r±-i ~-OUTI.INE .. J_,. . l ......... . © OF COACH ~~-_ ~ §) '-----20'-32'----' '-16' ---I PLAN Not to Scale PLAN Not to Scale DOUBLE WIDE-COACH SThrGLE WIDE COACH JNSTALL•:HOYE" PRIDE. OR. OLIVER TECHNOLOGIES EARTH -·•ANCHORS 2900· lbs CAPACITY. NUMBER PER ~TABLE SHEET F5 . SPACE ·1ST.Row:c2 .FT-'FROM . END)THEN 'SP.ACE: C:EiENLY; WHEN .#TIEDOWN~ •IN .. 'l'ABµ: IS SHOWN lffl'H.ASTERICK (•t INSTALL' MIN~ .. 2 AUGERS · AT EACH ENDWALL. 45hnea: 4-1➔-z..o ~CK SOUD ENGINEERING, JNC. ENGINEERED FOUNDATION PLAN CENTRAL PIERS -SPA 30-7F ,£04/17/2 SHEET F4 OF 6 PA2021-118 ._ ~TABLE· REVISED lN · ACCORDANCE Wl'l'H 2019 CBC .CAI.CS , .. · LOAD 60 PSF ·LOAD{·· 120B COACH·SIZE TH LENGTH 20'-48' · . 48~5' ..:.so' 3:12 8 :S ROWS ·4 6 3 ROWS·. 4* -6 3 ROWS 4* 6 s Rows1-6* 60~5'.'-78' 3:12 B 4 ROWS 4 8 . . . 4 ROWS . 4* B 4RO:WS . 4* 8 4 ROWS I 6* 25'._;48' 3:12 .B 2 ROWS 0 4 ·2 ROWS 4 4 2 ROWS .4 4 ·2 Rows· 4 45;5•...:55-' 3:12 12 3 ROWS .. 0 .··. 8· s·-Rows ·4 B -3 ROWS, 4 8 3 ROWS 4 66.5'-78' 3:12 16 ... 4 ROWS ... 0 12 ·4 ROWS . -4 .12 ·• 4 ROWS 4. 10 -.<iROWSI 6 ·-· 30!-48' 3:12 12 · 3 ROWS . 0 8 3:RO:WS 4 8 ··. 3ROWS · .. 4 . B 3 ROWSI 4 45~5•:...so· I 3:1:2 . I 12. I 3 ROWS I -0 I 8 Ja Rows 4 .·. B 3 ROWS' ,4 I -6 13 ROWS! 6 60.5'-78' I 3:12 I 16 14 ROWS! 0 I 12 F4 ROW:S ·4 .12 4 ·ROWS 4 ·r 10 14 ROWS.I. fl TABLE NOTES TC> ·USE TABLE. FIND COACH WIDTH THEN 1.EN.GTIL FOLLOW :ROW ACROSS TO DESIG~ ROOF (SNOW) LOlilYTHEN DESIGN WIND LOAD. -RE!J) TOTAL NUMBER OF C:P. SEISMIC-P:IERS, NUMBER OF ROWS & TIEDOWNS REQUIRED. '.SEE PLAN· SHEETS F3 AND F4 FOR PLACEMENT OF' CJ>. SEISMIC 'PIERS AND TIEDOWN SPECIFICATIONS~ . FOR EXAMPLE. FOR A 24':x:60' . COACH WITH· A DESIGN SNOW LOAD OF 60 PSF. & 100 · MPH, EXPOSURE C WIND I:iOAD, READ 8 C.P. SEISMIC PIERS,-PLACED.IN 3 -ROWS, WITH 4 CJ> •. ANCHOR PIER .TIEDOWNS. LAYOUT SHOWN 1N DOUBLE WIDE PLAN VIEW SHEETS F4. •FOR SINGLE ·wmEs; WHEN THE NUMBER, OF TIEDOWNS IS SHOWN-lffl'H AN ASTERISK (•), INSTALL MIN. 2 EARTH AUGER TIEDOWNS AT EACH ENDWALL OF THE HOME. THIS GE!>lERALLY APPLIES EXCEPT FOR 95 MPH, EXPOSURE C WITH A 30 PSF ROOF LOAD. COACH .SIZES REFER TO NOMINAL SIZES THAT ARE COMMONLY MANUFACTURED.. IF THE EXACT SIZE OF THE COACH IS NOT LISTED, .. CHECK THE NEXT HIGHER OR LOWER SIZE AND· USE· THE ONE "THAT REQUIRED MORE .PIERS. . THE TIEDOWNS SHALL. BE ·LISTED & INSTALLATION INSTRUCTIONS SHALL BE ON SITE AT TIME OF INSPECTION. NO MORE ·TJiAN 1/3 OF THE TOTAL NUMBER OF C:P. SEISMIC AND ANCHOR P~S MAY BE EXTENDED ABOVE 22~75 INCHES MEASURED FROM THE BASE OF THE PIER. TO THE TOP PLATE OF THE PIER. '5bneo..: '4--l::li-Z-a ]~CKSOLJD ENGINEERING, INC. ENGINEERED FOUNDATION PLAN CENTRAL PIERS -SPA 30-7F l,&04/17/2 SHEET F5 OF 6 PA2021-118 I C.P. ANCHOR PIER m:DO. D, lfflEN REQUIREO FOR 1 · DOUBLE k TRIPLE .WIDES, SP!E'''UBLE Sm:ET F5 3'X6'Xl/4' PLATE 4 -1/2' BOLTS & NUTS ~_.":_ll~M. · STANDAAll -STEEL. PIPE cscHEDUU:· .io> 10•, 12', 18', DR 24' LENGTH · 11116'>< 18' ANCHOR RODS,. 4 EA 'JHE:N CONll!TIDNS-.RE:llUIRE:, PRE c-DRIU.: 8-111 IN/ \IITH A l/2' DIAM. llJT. FDR ANCHOR RODS. ·0 C.P. ANCHOR PIER NOT TO:SCALE ·. 1 LISTING #186;6 BY CTC PATENT #5873679 HOLES FOR 1/2'x2-1/21 C.B. \\ \-\ ·v\ 5/8"x3' FLANGED PLASTIC ANCHOR INSERTS r i ~----,·,-,_41. ___ _, 5/8'x3' FLANqED Pt.AS~ ANCHOR INSERTS · · . · - ·. .-11 I j3;5• 4x4-4x4 vvF-1sii{_?§ 1 .. J }PLYWOOD ·pADI JPRECAST C~P.· P-RO.·PADI @ FOUNDATION PADS 'NOT TO SCALE · 3•· X 3' PLATE MAXHT.ABOVE CLAMP 1 3 IN F□R THE 6 IN PIPE -, 7 IN F□R THE ·10 IN 'PIPE •1:•1 · 12 IN FOR THE 15 IN PIPE _ 14 IN T□R. THE 18 IN PIPE TUBE MUST EXTEND,' 3" MIN IN T□ CLAMP BASE HEIGHT . 7 INCH SMALL1 11,5 INCH . REGULAR· 18.5 INCH EXTRA LARGE COACH I BEAM 4 -3/8' BOLT ',/I:TH VASHER&. NUT 2" DIA STD PIPE· 4 -3/.8' BOLTS riiHr~:tl~· · . (15 FT-LBS> TORQUE 3/16' PLATE C.LAMP 3/4" THREADED ROD 3/16' PLATE LEGS · TYP OF 2 STEEL INSERT, 5/8'xt5' BOLT OR. PLASTIC INSERT, s1s•x2.s· BOLT 1 -I rt7 re, =7)3 ',/ITH HARDENED \vASHER . · . ....__ 1/4' PLATE 0 SEISMIC PIER . . NOT TO SCALE C.P ~ SEISMIC PIER #1-PATENT #5595366 LISTING #C03-,-Q44-60F BY BSK - 2 -3/8' x 11 . BOLTS FIELD DRILL HOLES □PTION □F 4-#14 SELF TAP SCREv/S 1/4"x21 x41 ANGLE 3" . WIDE COACH C ·OR J BEAM 3' X 3' PLATE PACER AS NEEDED FDR J-BEAM SEISMIC PIER 45bt'\ea: 4-1::j-20 ©TYPICAL BEAM CONNECTION NOT TO SCALE J!Bk,cK SOLID ENGINEER/NG, INC .. E GINEERED FOUNDATION PLAN CENTRAL PIERS~· SPA 30-7F '&,04/17/2 SHEET F6 OF 6 PA2021-118