Loading...
HomeMy WebLinkAboutB9906933 - Calcs (3)TBG TAYLORp& GAINES STRUCTURL ENGINEERS A TMAO COMPANY VOLUME 1 STRUCTURAL CALCULATIONS FOR PARKING STRUCTURE HOAG MEMORIAL HOSPITAL PRESBYTERIAN NEWPORT BEACH, CALIFORNIA Taylor & Associates Architects )2, Ho C. Gaines Structural Engineer S1034 Taylor & Gaines 1395 320 N. Halstead Street, Suite 200, Pasadena, CA 91107 • (626) 351-8881 • Fax (626) 351-5319 • www.taylorgaines.com HOAG PARKING STRUCTURE TABLE OF CONTENTS VOLUME 1 DESIGN DATA D1 - D2 P.T. SLAB DESIGN S1 - S134 P.T. BEAM DESIGN B1 - B193 VOLUME 2 COLUMN DESIGN C1 - C44 SHEAR WALL DESIGN SW1 - SW18 FOOTING/GRADE BEAM DESIGN F1 - F109 BASEMENT WALL DESIGN W1 - W10 VOLUME 3 LATERAL ANALYSIS L1 - L277 ICU TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NO. HALSTEAO ST. • SUITE 200 PASADENA. CALIPOPNIA 91 107 (9191 391-9991 FAX (919] 351-9319 x 0 pb$JN4 'st►LUCCuRe sheet of by job no \'' laS date 5 / 41 STRUCTURAL DESIGN 1. Building Code - U.B.C. 1 91 1 /Title /Title 2. Buidina Construction - Type a) Sprinklers: b) Fire protection: 3. Building Materials a) Roofing. (comp. -tile -rock -other) b) Flooring (wood-tile-terrazo-other) c) Ceiling Interior. Exterior. d) Walls: Interior: Exterior. e) Mechanical Equipment ✓ Info complete? Information Needed: f) Special Equipment Info complete? Information Needed: @ N p.s.f. DL p.s.f. DL @ W /A p.s.f. DL p.s.f. DL @ p.s.f. DL psf. DL Kass 4. Live Loads (Basic) a) Roof: b) Snow: c) Floors: 50 p.s.f. 50 p.s.f. p.s.f. Stress increase Stress increase Partitions @ N/A N/A p.s.f. 5. Lateral Loads a) Seismic Zone: 4 I= ( �+ if b) Seismic factor on equipment c) Wind velocity: 1 0 mph Wind Load: p.s.f. to ft. Wind exposure: G.. p.s.f. to ft. Bldg. max. height 4201 p.s.f. to ft. 6. Foundation Investigation a) Report No:-1-01701-1-D%9% °On% Soil Type: b) By: L6t4 / CRAW c) Dated: BUST 1 [ , 1 �l`t 1 Amended d) Spread Footings: Ca C-OLUM Continuous Footings: a Whin.,, e) Driven Piles: tq/t f) Drilled Cast -In Place Piles: hl/A g) Slab on grade: Sub -base: Geologic Report a) Report No.: ^j T %% -' 1 o�Tj� l a t% b) Br L:464s I Cahn Pink. c) Dated: d) Special requirements above the code? 511,E SCAN° -t-1 — 0334 —don.. TETAYLOR & GAINES �-] STRUCTURAL ENGINEERS 320 NO. HALSTEAD ST. • SUITE 200 PASADENA. CALIFORNIA 1 107 01E1 391-8B81 FAX (S1B7 331-5319 sheet I1)2" of by pittie-046, Lfrl241.[-Tusz!E job no 13I 5 date 5 / 1 q 1 STRESSES Foundations Type - spread/ drwa de M * BiT mS t Bearing/ Capacity crap ps '— Active Pressure tikt- ail lt Passive Pressure '3 at pc-"F- Friction O', 5 Minimum Depth z:w Concrete Foundations 45tsJ t%I spxrraa Minimum Width 1 t Slabs on Grade 3 oan 'p S S Structural Columns Gam Structural Beams and Slabs 4-5 ewe �S 1 Miscellaneous Concrete 'fin pSi 51/i't tor$$C REMARKS inctitAcis R%-rbtri tMd,, k4it4, 'tett 1 Reinforcing Steel ASTM A615 Foundations LsttS 6 0 Structural Concrete - Columns CI R (sc. Structural Concrete - Beams and Slabs C114. Ema Slabs on Grade 6rIC 64D Miscellaneous Concrete 4Lb• Welded Rebar ASTM A706 G *. 6n Masonry Units - ASTM C90 Concrete Brick P*D% Units - ASTM C62 Brick N N-1 Grout - 2000 psi Masonry -1800 psi Structural Steel Shapes and Plates ASTM A 34, Columns and Special Struts ASTM A '3 L Pipe Columns ASTM A53 Gr. B Tube Columns ASTM A5OO Gr. B Bolts - Standard ASTM A307 Bolts - H.S.B. ASTM A's"1-5 Metal Decking Roof Decking Floor Decking N/A N /A Lumber Horizontal Framing Studs, Blocks, Sills_, Etc. Glu-Lam Beams - tb- fv - E- Prefabricated Joist Prefabricated Trusses 0 TS TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASADEN A. CALIFORN IA 91 1 O7 (6261 351-0601 FAX [6261 351-5319 He f *NCIN4 61leuc1t11SE sheet of by lob no. 1315 date 5 /9 I7 �.T.S1_1' 4 12 Tb dtwt7 ® 14) , I$' I$I ash I*4aI6' G LEve—b&--&' I II 1 II I I"3'4 a-v.- I vt I I V+ 134 Pen- N� 51.a 13 e'b (as, Nvw'tit- $. f dotty, -re It S" -Th-Hres y2ht 1.14-gam Ur4etNPH7. Apt:I1 D tiost osta LotQi' I e, [- 1°ko 5b rtvr— <rock 1111 LAP- > t1-0 0014e.1101 . 17%$ta4 bL o Sci x 15 d) + 1 Nt.'s 11--f5'F- -t1.tp4+., etementsa 0-"A '4.4" (-.4stknew 'Ms muss $v`x 64 / %-b.bt t/12"41' 10 ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, Califomia 94061 'T-PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software stem 33 Woodside Road, Suite 220, Redwood ity, California 94,61 1 . (650)306-2400 Fax: (650)364-4678 Email: Support�Ad aptSof.com I Web site: htip://www.AdaptSof.com 1 DATE AND TIME OF PROGRAM EXECUTION: May 16,1999 At Time: 19:1 PROJECT TITLE: HOAG PARKING STRUCTURE ( ) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At all locations .450 REINFORCEMENT: YIELD Strength 60.00 ksi Minimum Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: S' =M UNBONDED L e strength of strand 270.00 ksi AY' effective stress in strand (final) 175.00 ksi St area .153 in"2 Min t.,GS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. Min average precompression 125.00 psi Max sparing between strands (factor of slab depth) 8.00 1.00 in 1.75 in Page 2 PT SLAB ( ) ADAPT -PT V- 5.30 53 Tendon profile type and support widths (see section 9) A' "SIS OPTIONS USED: /'-cal system ONE-WAY MQ of Inertia over support is NOT INCREASED Ma s REDUCED to face of support YES Limited plastification allowed(naments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP 'BOTTOM/MIDDLE! P O I FLANGE I FLANGE I REF I MULTIPLIER A RI LENGTH) WIDTH DEPTH' width thidc.I width thick.IHEIGHTI left right N MI ft' in ini Si inI in in I in I -1-3--4---5 6 7-8 9 10-11 12 13 1 1 18.00 12.00 5.00 5.00 .50 .50 2 1 14.00 12.00 5.00 5.00 .50 .50 3 1 14.00 12.00 5.00 5.00 .50 .50 4 1 18.00 12.00 5.00 5.00 .50 .50 5 1 18.00 12.00 5.00 5.00 .50 .50 6 1 18.00 12.00 5.00 5.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3-FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line . 3UPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN -> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CM' LENGTH B(DIA) D CBC' JOINT in ft in in ft in in 1 2 1 4 5--6 7-8-9-10- Page 3 PT SLAB ( ) ADAPT -PT V- 5.30 .00 .00 .00 2 .00 .00 .00 .00 (1) .00 .00 .00 (1) 00 .00 .00 .00 (1 .00 .00 .00 0 ilij �-QO.00 .00 .00 (((1 .00 .00.00 1 .00 .00 6 A .00 .00 .00 (1 .00 .00 .00 1) 7 .00 .00 .00 .00 1) .00 .00 .00 (1) 'THE COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends ...(STANDARD) = 1 Hinged at near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <-CLASS-> < TYPE > D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L - LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT U= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE k/ft"2 ( ft ft) (k-ft or k ...ft) k/ft 1-2-3 4 5 6 7-8 9- 1 D U .00 18.00 .072 1 L Li .00 18.00 .050 2 D Li .00 14.00 .072 2 L U .00 14.00 .050 3 D U .00 14.00 .072 3 L U .00 14.00 .050 4 U .00 18.00 .072 a U .00 18.00 .050 5 U .00 18.00 .072 5 L. Li .00 18.00 .050 6 D U .00 18.00 .072 6 L U .00 18.00 .050 Page 4 PT SLAB ( ) ADAPT -PT V- 5.30 S� NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 ir 3.1 JADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k1fM2 , ( CON. or PART. (MOMENT) SPAN CLASS TYPE LINE(k183 4.5) (fi or ft-ft) (k-ft ft ) 1-1 D L .072 .00 18.00 1 L L .050 .00 18.00 2 D L .072 .00 14.00 2 L L .050 .00 14.00 3 D L .072 .00 14.00 3 L L .050 .00 14.00 4 D L .072 .00 18.00 4 L L .050 .00 18.00 5 D L .072 .00 18.00 5 L L .050 .00 18.00 6 D L .072 .00 18.00 6 L L .050 .00 18.00 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 4.2 - Computed Section Properties for Segments of Nonprisma0c Spans S n properties are listed for all segments of each span A -.-4y-sectional geometry Yt= centroidal distance to top fiber W moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA 1 Yb (SEGMENT)2 in^2 3 in^4 4 in SPAN 1 1 60.00 .1250E+03 2.50 2.50 Yt in 5- Page 5 PT SLAB ( ) ADAPT -PT V- 5.30 SPAN 2 1 3 60.00 .1250E+03 2.50 2.50 SPAN' 60.00 .1250E+03 2.50 2.50 S 1 60.00 .1250E+03 2.50 2.50 SPAN 5 1 60.00 .1250E+03 2.50 2.50 SPAN 6 1 60.00 .1250E+03 2.50 2.50 5- DEAD LOAD MOMENTS, SHEARS & REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(q• Midspan M(r)• SH(I) SH(r) 1 2 4 5 6 1 -2.11 1.06 -1.61 -.68 .62 2 -1.61 .48 -.95 -.55 .46 3 -.95 .47 -1.63 -.46 .55 4 -1.63 1.09 -2.03 -.63 .67 5 -2.03 .94 -1.92 -.65 .64 6 -1.92 .98 -1.95 -.65 .65 Note: • = Centerline moments JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1 2 Lower columns -Upper columns- 1 .68 .00 .00 2 1.17 .00 .00 3 .91 .00 .00 4 1.18 .00 .00 5 1.32 .00 .00 6 1.29 .00 .00 7 .65 .00 .00 6 ir'E LOAD MOMENTS, SHEARS & REACTIONS <- 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> <- left -> <- midspan -> <- right -> <-SHEAR FORCE-> SPAN max min max min max min left right Page 6 PT SLAB ( ) ADAPT -PT V- 5.30 S� 1 2 3 4-5--13-7 8-9- 1 -1.74 .28 .87 -.14 -1.25 -.34 -.52 .44 25 -.34 .82 -.48 -1.11 -.07 -.43 .40 ^11 -.07 .90 -.57 -1.51 -.13 -.42 .45 4( 31 -.13 1.23 -.48 -1.70 -.53 -.50 .51 5 .10 -.53 1.19 -.54 -1.57 -.38 -.51 .50 6 -1.57 -.38 .92 -.24 -1.83 .48 -.47 .53 Note: • = Centerline moments <- 6.2 REACTIONS (k) -> <- 6.3 COLUMN MOMENTS (k-ft) > <- LOWER COLUMN -> <- UPPER COLUMN -> JOINT max min max min max min -1 2 3 4 5 7 1 .52 -.05 .00 .00 .00 .00 2 .87 .32 .00 .00 .00 .00 3 .82 .21 .00 .00 .00 .00 4 .96 .25 .00 .00 .00 .00 5 1.02 .40 .00 .00 .00 .00 6 .97 .35 .00 .00 .00 .00 7 .53 -.08 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- eft -> <- midspan -> <- right* -> 1 2 3- 1 -2.11 1.06 -1.61 2 -1.61 .48 -.95 3 -.95 .47 -1.63 4 -1.63 1.09 -2.03 5 -2.03 .94 -1.92 6 -1.92 .98 -1.95 N ao4support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <-left•-> <- midspan -> <-right Page 7 PT SLAB ( ) ADAPT -PT V- 5.30 Sg SPAN max min max 1 2 3 4 -1.75 25 3 .11 4 .51 5 -1.70 6 -1.57 .28 .87 -.34 .82 -.07 .90 -.13 1.23 -.53 1.19 -.38 .92 Note: • = face -of -support min max min 5 6 7 -.14 -1.25 -.34 -.48 -1.11 -.07 -.57 -1.51 -.13 -.48 -1.70 -.53 -.54 -1.57 -.38 -.24 -1.83 .48 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) Maxima of dead load and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL ) <- left* -> <- midspan -> <- right* -> SPAN max min max min max min 1 2 3 1 5 6 7 1 -3.86 -1.83 1.93 .92 -2.86 -1.95 2 -2.86 -1.95 1.30 .00 -2.06 -1.03 3 -2.06 -1.03 1.37 -.10 -3.14 -1.76 4 -3.14 -1.76 2.32 .61 -3.72 -2.55 5 -3.72 -2.55 2.14 .41 -3.49 -2.30 6 -3.49 -2.30 1.90 .74 -3.79 -1.48 Note: • = face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: = reversed parabola simplearped parabolatendon with straight portion over support h For 1/4.antilever. 1 = simple parabola 2 = partial parabola 3 = harped tendon Page 8 PT SLAB ( ) ADAPT -PT V- 5.30 9.2 TENDON PROFILE TYPE X1/L X2/L X3/L AA_ - (-"1 2 3 4 5- .000 .500 .000 .000 2 .000 .500 .000 .000 3 2 .000 .500 .000 .000 • 4 2 .000 .500 .000 .000 5 2 .000 .500 .000 .000 6 2 .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE x:xxx_-x x x s s zxxxxxxxx x x Tendon editing mode selected: FORCE SELECTION <- SELECTED VALUES -> <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> P/A Wbal SPAN (k/-) Left Center Right (psi) (k/-) -1 2 3 4 5 6 7- 1 20.000 2.50 1.75 3.75 333.33 .057 2 12.000 3.75 2.25 3.75 200.00 .061 3 12.000 3.75 2.25 3.75 200.00 .061 4 12.000 3.75 1.25 3.75 200.00 .062 5 12.000 3.75 1.25 3.75 200.00 .062 6 20.000 3.75 1.75 2.50 333.33 .057 Approximate weight of strand 52.0 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT' CENTER RIGHT' LEFT CENTER RIGHT 1 2--3-4---5--6 7 1 16.75 3.20 8.36 7.50 7.50 7.50 2 8.36 .00 3.22 7.50 7.50 7.50 3 3.22 .00 8.67 7.50 7.50 7.50 4 8.67 5.12 9.51 7.50 7.50 7.50 9.51 3.63 11.38 7.50 7.50 7.50 k ( 1.38 3.00 17.18 7.50 7.50 7.50 Note: = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) Page 9 PT SLAB ( ) ADAPT -PT V- 5.30 Sao LEFT• TOP f^"tT max-C 3 1 .48-212.48 2 - -47.47 3 67.09 - 4 235.40 - 5 244.55 - 6 33.12 - RIGHT* BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T 4 5-6-7 8 9- --940.13 - -47.47 --619.19 - -619.19 67.09 - - -467.09 - -467.09 235.40 - - 635.40 - -635.40 244.55 - - -644.55 - -644.55 33.12 - --699.79 - -699.79 292.64 -261.92 --959.31 Note: • = face -of -support 1 1 2 3 4 5 6 CENTER TOP BOTTOM max-T max-C max-T max-C 2 3--4 - -605.91 --304.03 - -366.44 --346.67 - -441.24 41.24 -310.57 - -540.87 140.87 -270.07 - -472.38 72.38 -342.74 - -615.49 --328.72 max-C 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <-SPAN MOMENTS(k-ft)-> <-SPAN SHEARS(k)-> SPAN left* midspan right* SH(I) SH(r) 1-2 3 5 6 1 1.33 -.79 1.67 .10 .10 2 1.67 -.61 .95 -.01 -.01 3 .95 -.36 1.33 -.03 -.03 4 1.33 -.90 1.87 -.03 -.03 5 1.87 -1.00 1.96 .04 .04 6 1.96 -.72 1.18 -.07 -.07 Note. 'ceof-support -REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) -> -Joint 2 Lower columns -Upper columns- 1 -.097 .000 .000 2 .105 .000 .000 3 .019 .000 .000 4 .003 .000 .000 Page 10 PT SLAB ( ) ADAPT -PT V- 5.30 5 -.072 6 .114 7 -.073 .000 .000 .000 .000 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <- left* -> <- midspan -> right* -> SPAN max min max min max min -1 2 3--4-5---6 7- 1 -4.59 -1.15 3.42 1.70 -4.79 -3.25 2 -4.79 -3.25 1.71 -.51 -3.52 -1.76 3 -3.52 -1.76 2.07 -.42 -4.77 -2.43 4 4.77 -2.43 3.97 1.06 -5.10 -3.11 5 -5.10 -3.11 3.60 .66 -5.47 -3.46 6 -5.47 -3.46 3.46 1.49 4.67 -.75 Note: • = face -of -support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left' -> <- midspan -> <- right* -> 3- 4 -.42 -.30 .08 .62 -.12 1.18 1 1 1.33 2 -.42 3 -.30 4 .08 5 .62 6 -.12 Note: = face -of -support -.36 -.11 .35 .25 .53 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min 1 2 3 4 5 6 7 1 1.73 .77 .00 .00 .00 .00 2 3.22 2.29 .00 .00 .00 .00 Page 11 PT SLAB ( ) ADAPT -PT V- 5.30 3 2.70 1.65 .00 .00 .00 .00 4 3.28 2.09 .00 .00 .00 .00 5 3.51 2.46 .00 .00 .00 .00 ( �"4.57 2.52 .00 .00 .00 .00 74 .70 .00 .00 .00 .00 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading 1.00 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off len fh for minimum steel((lengdyspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Sodom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 104.2 lb AVERAGE = 1.0 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (iM2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1-2 -4 5 6 7 8 9- 1 .00 r .00 .00 .00 .12 .00 .12 .07 2 .00 .00 .00 .00 .12 .00 .12 .04 3 .00 .00 .00 .00 .12 .00 .12 04 4 .00 .00 .00 .001 .12 ( .03 .12 .08 5 .00 .00 .00 .00 .12 ( .00 .12 .07) 6 .00 .00 .00 .00) .12 ( .00 .12 07) 11.2 2 SELECTION OF REBAR A TOP STEEL -> (M2) <_ SELECTION -> T MID -SPAN <- BOTTOM STEEL -> 3 4 5 6 (iM7)�-SEL9 ECTION -> --- 1 .00 1#4x 14-0" 2 .00 1 # 4 x 10'-6" 3 .00 1#4x 10'-0" 4 .00 1#4x 15'-0" 5 .00 1 # 4 x 14'-0" .12 .12 .12 .12 .12 -1. Page 12 PT SLAB ( ) ADAPT -PT V- 5.30 513 6 .00 .12 1 # 4 x 14'-0" 1 co^ STEEL AT SUPPORTS TOP BOTTOM DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT 0n"2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1-2 3 4 C 6 7 8- 9- 1 .14 ( .07 .12 .14) .00 ( .00 .00 .00 2 .12 ( .00 .12 .10) .00 .00 .00 .00 3 .12 ( .00 .12 .07)) .00 .00 .00 .00 4 .12 ( .08 .12 .11) .00 .00 .00 .00 5 .13 ( .10 .12 .13 .00 .00 .00 .00 6 13 ( .00 .12 .13) .00 .00 .00 00) 7 .13 ( .07 .12 .13) .00 ( .00 .00 .00) 11.3.2 SELECTION OF REBAR A T SUPPORT S <- TOP STEEL -> <- BOTTOM STEEL -> JOINT (in"2) <- SELECTION -> (inA2) <_ SELECTION -> 1- -3-4 S 6 7-8-9- 1 .14 1#4x 6'-6" .00 2 .12 1#4x 1T-0" .00 3 .12 1#4x 9'-0" .00 4 .12 1#4x 171-0" .00 5 .13 1 # 4 x 11'-0" .00 6 .13 1#4x 11'-0" .00 7 .13 1 # 4 x 6'-6" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft) 4-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 2 3 4 5- 1 .00(1) 4.50(1) .00(1) 3.60(1) 2 4.50(t) 10.50(1) 2.70(1) 3.50(1) 3 3.50(1) 3.50(1) 2.10(1) 2.10(1) 4 10.5p0(1)) 4.50(1)4.50(1)2.70(1) .50(1)) 3.50(1)02.700(1 6 4.50(1) 4.50(1) 2.70(1) 2.70(1) 4.50(1) .00(1) 3.60(1) .00(1) L common Case of rebar ,ebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") Page 13 PT SLAB ( ) ADAPT -PT V- 5.30 5 lg- 11-MILD STEEL as==== Baas===========s==== E /'c4C CRITERIA for ONE-WAY or BEAM SYSTEM r * 25% of unreduced Live bad capacity requirement k of reduced to total Live loading 1.00 - Minimum steel O.6114A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... 17 Span cut-off length for minimum steelgengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 108.9 lb AVERAGE = 1.1 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <-left'-> <- midspan -> <-right'-> COEFFICIENT(%) SPAN max min max min max min left right -1 2-3 4 5 6 7 8 9- 1 -4.59 -1.15 3.61 1.98 -4.23 -2.87 .00 12.10 2 -4.23 -2.87 2.03 .03 -3.00 -1.50 11.67 14.74 3 -3.00 -1.50 2.36 .15 -4.15 -2.11 14.74 13.01 4 -4.15 -2.11 4.33 1.70 -4.44 -2.71 13.45 12.97 5 -4.44 -2.71 4.01 1.32 4.81 -3.04 12.97 12.10 6 4.81 -3.04 3.67 1.83 -4.67 -.75 12.10 .00 Note: • = far -of-support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <-ler-> <- midspan -> <-right*-> COEFFICIENT(%) SPAN max min max min max min left right 1-2-3 4 5 6 7 8 9- 1 -2.55 -2.04 1.43 1.20 -1.57 -1.38 .00 18.37 2 -1.57 -1.38 .94 .66 -1.00 -.79 18.37 18.96 3 -1.00 -.79 .94 .63 -1.64 -1.36 18.96 18.29 64 -1.36 1.74 1.37 -2.01 -1.77 18.29 17.91 5 11 -1.77 1.62 1.24 -1.89 -1.65 17.91 18.03 6 d9 -1.65 1.39 1.13 -2.41 -1.84 18.03 .00 Note: = face -of -support Page 14 PT SLAB ( ) ADAPT -PT V- 5.30 4519 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM Aa DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA I (""`(an2) <-ULT--MIN-D+.25L-> (IM2) <-ULT--MIN-D+.25L-> 1 ..A .00 .00 .00) .126( .007 .12 8 08)9- 2 .00 .00 .00 .00) .12 ( .00` .12 .05) 3 .00 .00 .00 .00) .12 ( .00 .12 .05) 4 .00 .00 .00 .00) .12 .05 .12 .09) 5 .00 .00 .00 .00) .12 .03 .12 .09) 6 .00 .00 .00 .00) .12 .00 .12 .08) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (irM2) <- SELECTION -> (nA2) <- SELECTION -> 1-22-3-4 5 6 7-8-9- 1 .00 .12 1#4x 15'-0" 2 .00 .12 1#4x 12'-0" 3 .00 .12 1#4x 12'-6" 4 .00 .12 1t4x 151-6" 5 .00 .12 1#4x 15'-0" 6 .00 .12 1#4x 15'-0" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (IM2) <-ULT-MIN-D+.25L-> (iM2) <-ULT-MIN-D+.25L-> 1 2 3---4-5--6-7-8-9- 1 1 .14 .07 .12 .14) .00 .00 .00 .00 2 .12 ' .00 .12 .09) .00 .00 .00 .00 3 .12 .00 .12 .05) .00 .00 .00 .00 4 .12 ' .04 .12 .09) .00 .00 .00 .00 5 .12 .06 .12 .11 .00 .00 .00 .00 6 .12 .00 .12 .10 .00 .00 .00 .00 7 .13 .07 .12 .13 .00 .00 .00 .00 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <- TOP STEEL -> <- BOTTOM STEEL -> JOI"'T OM2) <- SELECTION -> (inA2) <- SELECTION -> 22-3-4-5 3 4 5 6 7-8-9- '4 1#4x 6'-6" .00 2 .12 1#4x 171-0" .00 3 .12 1#4x 9'-0" .00 4 .12 1#4x 17*-0" .00 5 .12 1#4x 1V-0" .00 6 .12 1 # 4 x 11'-0" .00 7 .13 1#4x 6'-6" .00 Page 15 PT SLAB ( ) ADAPT -PT V- 5.30 1 11STANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) c—TOP BARS—> <—BOTTOM BARS—> JO' .. TO LEFT TO RIGHT TO LEFT TO RIGHT 1 2 3 4 S 1 .00(1) 4.50(1) .00(1) 3.60(1) 2 .50(1) 10.50(1) 1.80(1) 2.80(1) 3 3.50(1) 3.50(1) 1.40(1) 1.40(1) 4 10.50(1) 4.50(1) 2.10(1) 1.80(1) 5 4.50(1) 4.50(1) 2.70(1) 2.70(1) 6 4.50(1) 4.50(1) 2.70(1) 2.70(1) 7 4.50(1) .00(1) 2.70(1) .00(1) Legend: 1 = Common Case of rebar 2 = Reber is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (tile "SELBAR.DAT") 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI 318-89) No shear reinforcement required Page 16 PT SLAB ( ) ADAPT -PT V- 5.30 511 13-MAXIMUM SPAN DEFLECTIONS rte's modulus of elasticity Ec = 3600.00 ksi actor K = 2.00. letn..,nvellgross...(due to cracking) K = 1.00 Where stresses exceed 6(fc y 1/2 cracking of sec ion is allowed for. Values In parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1-2-3 4 5 6 1 .09 .03 .08( 2552) .06( 3534) .15( 1482) 2 .02 -.01 03 5402 .01(13366) -.02( 9067) 3 .02 .01 02((7232 .01(14191) 04( 4790) 4 .09 .02 .06( 3622 .06( 3356) .12( 1742) 5 .07 -.01-.04( 5844) 05( 4419) .01(18123) 6 .08 .03 .09( 2447) .05( 4097) .14( 1532) tab lk i 2011 y Ng Nit 1 i 1 . M • t ._ ..._. 4 RA* 4 4 1 + -Lis--.�. .�.� ---•-13- +:r Ti J1 ^r1 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SKEET • SUITE 200 PASADENA. CALIFORNIA 91 1 O7 (626) 351-6661 FAX (626) 351-5319 I &NCIN4 sersuc-tur& sheet S of by Job no. 1315 date 5 711 �. T. 5L9-t3 4124n Q 10 dtwl7 U Ca Level_ Mi4" 14- o - 1$ 1 , -. _/ 1 f ell-1Ig WIttM = I St.t , = I'2-% X I bi = r)-16k Ike , or - ►%nM$ . '''I l'��.b�b q�l t$tw Q to b ^ I/ il4 .ttlboh}$ rAtweos9'lx Ib/ =111-k o. or_ -(5ytxf4s 0`/.-4,2,15e (11 y finsoa 41 3— Wit 1194ecWs MroErts S'Th-e) ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, California 94061 AD -PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System II 3 Woodside Road, Suite 220, Redwood City, California 9461 I (650)306-2400 Fax: (650)364-4678 Emai: SupportifAdaptSoft.com I Web site: http://www.AdaptSoft.com II DATE AND TIME OF PROGRAM EXECUTION: May 16,1999 At Time: 17:55 PROJECT TITLE: HOAG PARKING STRUCTURE ( ) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS 2:031=SSSS3 = ===- CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (Pc)) At all locations .450 REINFORCEMENT: YIELD Strength 60.00 ksi Minimum Cover at TOP 1.00 In Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED Ur s of strand 270.00 ksi A ( stress in strand (final) 175.00 ksi Sb.. Area .153 kt2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. 1.00 in Min CGS of tendon from BOTTOM for EXTERIOR spans.. 1.75 in Min average eng betweentrands (factor of slab depth)n sresslon 125 00 psi Max spadng 8.00 Page 2 PTSLAB ( ) ADAPT -PT V- 5.30 1-1 Tendon prone type and support widths (see section 9) ANAL SIS OPTIONS USED: Sr l system ONE-WAY A of Inertia over support Is NOT INCREASED AA,... _ rts REDUCED to face of support YES Limited plastifcatlon allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP BOTTOMIMIDDLEI P O I I FLANGE I FLANGE I REF I MULTIPLIER A R LENGTH' WIDTH DEPTH) width thick.' width thick.IHEIGHTI left right N kiI ft I in in I in in I in in I in I -1 3-4-5 6 7 8 9-10-11 12 13- 1 1 14.00 12.00 5.00 5.00 .50 .50 2 1 14.00 12.00 5.00 5.00 .50 .50 3 1 18.00 12.00 5.00 5.00 .50 .50 4 1 18.00 12.00 5.00 5.00 .50 .50 C 1 7.50 12.00 5.00 5.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3 - FORM 1 = Rectangular section 2 = T or Inverted L section 3 =1 section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line SUPPORT WIDTH AND COLUMN DATA ?PORT <- LOWER COLUMN -> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CBC• LENGTH B(DIA) D CBC• JOINT In ft in in ft in in 1 2 3 4 5 6 7 8 9 10- 1 .00 .00 .00 .00 (1) .00 .00 .00 (1) 2 .00 .00 .00 .00 (1) .00 .00 .00 (1) Page 3 PTSLAB ( ) ADAPT -PT V- 5.30 5 00 .00 .00 .00 (1) .00 .00 .00 (1) • , LUMN BOUNDARY CONDITION CODES (CBC) Fi..._ .. both ends ...(STANDARD) = 1 Hinged at near end, faced at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING ___________ ___=====s =____ __ <—CLASS—> < TYPE > D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT LI= LINE LOAD SW= SELF WEIGHT Computed from geometry Input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Tdb SPAN CLASS TYPE k/ftA2 (ft ft) (k-ft or k ...ft) k/ft 1 2 3 1 5 6 7 8 9- 1 D Li 1 L U 2 D Li 2 L U 3 D U 3 L Li 4 D U 4 L Li CANT D U CANT L U .00 14.00 .072 .00 14.00 .050 .00 14.00 .072 .00 14.00 .050 .00 18.00 .072 .00 18.00 .050 .00 18.00 .072 .00 18.00 .050 .00 7.50 .072 .00 7.50 .050 f .NE LOADING is SKIPPED with a skip factor of 1.00 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING Page 4 PTSLAB ( ) ADAPT -PT V- 5.30 UNIFORM (k/R"2), ( CON. or PART. (M 0 M E N T SPANS CLASTYPE LINE(kM) (k l or ft-ft) (kk-ft @ ft ) '�3 L .072 .00 14.00 . 1 L .050 .00 14.00 2 D L .072 .00 14.00 2 L L .050 .00 14.00 3 D L .072 .00 18.00 3 L L .050 .00 18.00 4 D L .072 .00 18.00 4 L L .050 .00 18.00 CANT D L .072 .00 7.50 CANT L L .050 .00 7.50 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 42 - Computed Section Properties for Segments of Nanpdsmatic Spans Section properties are fisted for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber I= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA I Yb Yt (SEGMENT) innin"4 in in 2 3 4 5- SPAN 1 1 60.00 .1250E+03 2.50 2.50 SPAN 2 1 60.00 .1250E+03 2.50 2.50 SPAN 3 1 60.00 .1250E+03 2.50 2.50 SP,:40-4 1( 60.00 1250E+03 2.50 2.50 C. .EVER RIGHT 1 60.00 .1250E+03 2.50 2.50 Page 5 PTSLAB ( ) ADAPT -PT V- 5.30 S z6 5- DEAD LOAD MOMENTS, SHEARS & REACTIONS /P.M SPAN MOMENTS (k-ft) > < 5.2 SPAN SHEARS (k) > 2M(I)• Midspan M(rr SH(I) SH(r) -1- 3 4 5 6 1 -1.24 2 -1.05 3 -1.62 4 -2.00 CANT -2.03 .62 -1.05 -.52 .49 .43 -1.62 -.46 .54 1.11 -2.00 -.63 .67 .90 -2.02 -.65 .65 - -.54 - Note: • = Centerline moments JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1 2 Lower columns -Upper columns- 1 .52 .00 .00 2 .95 .00 .00 3 1.17 .00 .00 4 1.32 .00 .00 5 1.19 .00 .00 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS <- 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> <- let -> <- midspan -> <- right* -> <-SHEAR FORCE-> SPAN max min max min max min left right 1 2 3---4-5-6-7-8 9- 1 -1.19 .33 .60 -.17 -1.01 -.06 -.43 .37 2 -1.01 -.06 .83 -.54 -1.54 -.11 -.41 .44 3 -1.54 -.11 1.32 -.55 -1.88 -.28 -.52 .52 4 -1.88 -.28 1.53 -.91 -1.41 .00 -.55 .49 CR -1.41 Note: • = Centerline moments ..2 REACTIONS (k) <- LCWE JOINT max min -1 2 3 1 .43 -.07 2 .78 .20 -> <- 6.3 COLUMN MOMENTS (k-ft) -> R COLUMN -> <- UPPER COLUMN -> max min max min 4 5 -6 7- .00 .00 .00 .00 .00 .00 .00 .00 Page 6 PTSLAB ( ) ADAPT -PT V- 5.30 SlaS 3 .96 .26 .00 .00 .00 .00 4 1.08 .32 .00 .00 .00 .00 5 .87 .35 .00 .00 .00 .00 odk 6.2 and 6.3 values are maxima of all skipped loading cases 7 - MOMENTS REDUCED TO FACE -OF -SUPPORT s=-=-=`_--_____- 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <-left•-> <- midspan-> <- righr-> 1 2 3- 1 1 -1.24 .62 -1.05 2 -1.05 .43 -1.62 3 -1.62 1.11 -2.00 4 -2.00 .90 -2.02 CANT -2.02 - - Note: • = face -of -support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <-left -> <- midspan -> <- right -> SPAN max min max min max min -1 2 3- 4 5 6 7- 1 -1.19 .33 .60 -.17 -1.01 -.06 2 -1.01 -.06 .84 -.54 -1.54 -.11 3 -1.54 -.11 1.32 -.55 -1.88 -.28 4 -1.88 -.28 1.53 -.91 -1.41 .00 CR -1.41 - - Note: • = face -of -support 8 -(rmNI OF DEAD AND LIVE MOMENTS (k-ft) M. . of dead load and five toad span moments combined for serviceability checks ( 1.0ODL + 1.00LL ) <- ler-> <- midspan -> <- right* -> SPAN max min max min max min -1 2 3 4 5 6 7- Page 7 PTSLAS ( ) ADAPT -PT V- 5.30 1 -2.43 -.90 1.22 .45 -2.06 -1.11 2 -2.06 -1.11 1.27 -.10 -3.16 -1.73 3 -3.16 -1.73 2.42 .56 -3.88 -2.28 r.88 -2.28 2.43 -.01 -3.43 -2.03 3.43 - - Note: * = face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES =mvz=====_= a===== ====x =_ 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever. 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1IL X2/L X3IL AIL 1 2 3 4 5- 1 2 .000 .500 .000 .000 2 2 .000 .500 .000 .000 3 2 .000 .500 .000 .000 4 2 .000 .500 .000 .000 CANT 1 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE _======a=== -__-------- Tr ^^editing mode selected: FORCE SELECTION - SELECTED VALUES -> <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in -> P/A Wbal SPAN (Id-) Left Center Right si) (k-) 17 1 12.000 2.50 1.75 3.75 200.00 .056 2 12.000 3.75 2.25 3.75 200.00 .061 Page 8 PTSLAB ( ) ADAPT -PT V- 5.30 Sz1 3 12.000 3.75 1.25 3.75 200.00 .062 4 12.000 3.75 1.25 3.75 200.00 .062 CAA 16.000 3.75 2.50 266.67 .059 Api a...amate weight of strand 37.2 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT' CENTER RIGHT' LEFT CENTER RIGHT -1 2 3 4 5---6 7- 1 6.14 .00 3.25 7.50 7.50 7.50 2 3.25 .00 8.71 7.50 7.50 7.50 3 8.71 5.79 10.32 7.50 7.50 7.50 4 10.32 5.74 10.66 7.50 7.50 7.50 CANT 10.66 - - 7.50 - - Note: = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT' RIGHT* TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 9- 1 184.56 -181.92 --584.56 70.10 - - -470.10 2 70.10 - - -470.10 236.69 - - -636.69 3 236.69 - - -36.69 289.55 - - -689.55 4 289.54 - - -689.54 156.93 - - -690.27 CR 156.93 -180.67 - -690.27 - - - - Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C -+t,0"--- 2-3 5 - -373.87 --209.59 2 - -416.36 16.36 -312.57 3 - -563.14 163.14 -284.29 4 29.84 -555.81 155.81 -429.84 CR - - - - Page 9 PTSLAB ADAPT -PT V- 5.30 5' 9.7 POST -TENSIONING BALANCED MOMENTS, SHEARS & REACTIONS <-SPAN S%^ left' 1 .83 2 .93 3 1.34 4 1.84 CANT 1.67 MOMENTS(k-ft)-> <- SPAN SHEARS(k)-> midspan right' SH(I) SH(r) 3 4 5 6 -.49 .93 .08 .08 -.36 1.34 -.03 -.03 -.91 1.84 -.03 -.03 -.95 1.67 .03 .03 - - .00 - Note: • = face -of -support <-REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) -> -joint 2 Lower columns -Upper columns- 1 -.082 .000 .000 2 .111 .000 .000 3 -.001 .000 .000 4 -.061 .000 .000 5 .033 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <- left* -> <- midspan -> <-right•-> SPAN max min max min max min 1 2 3 1 5 6 7 1 -2.93 -.34 2.14 2 -3.50 -1.89 1.91 3 -4.79 -2.37 4.13 4 -5.41 -2.68 4.17 CR -5.23 - a -of -support .84 -3.50 -1.89 -.42 -4.79 -2.37 .96 -5.41 -2.68 .02 -5.23 -2.84 10.2 SECONDARY MOMENTS (k-ft) SPAN c-left•-> <- midspan -> <- right* -> 1 2 3 4 Page10 PTSLAB ( ) ADAPT -PT V- 5.30 S'� 1 .83 2 -.32 3 .09 r" ` .60 Not.. = face -of -support .26 -.32 -.11 .09 .34 .60 .30 .00 10.3 FACTORED REACTIONS 10.4 (k) <- LOWER column -> JOINT max min max min 1 2 1 4 5 1 1.38 .52 .00 .00 2 2.78 1.79 .00 .00 3 3.27 2.08 .00 .00 4 3.61 2.32 .00 .00 5 3.17 2.29 .00 .00 11-MILD STEEL FACTORED COLUMN MOMENTS (k-ft) <- UPPER column -> max min 6 7- .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of urueduoed Live bad capacity requirement Ratio of reduced to total Uve loading 1.00 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cuto0Iength for minimum steel(Ierggthfspan) ... .17 Span cut-off bngth for minimum steei(lengih/span) ... .33 Top bar extens on beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 72.1 lb AVERAGE = 1.0 psf 1'r STEEL AT MID -SPAN TOP BOTTOM DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (in"2) <-ULT--MIN-D+.25L-> (in"2) <-ULT-MIN-D+.25L-> 1 2 3 4 5 6 7 8 9- 1 .00 ( .00 .00 00 .12 .00 .12 .04) 2 .00 ( .00 .00 .00 .12 .00 .12 03) 3 .00 ( .00 .00 .00 .12 .04 .12 .08) Page 11 PTSLAB ( ) ADAPT -PT V- 5.30 Sao 4 .00 ( .00 .00 .00) .12 ( .04 .12 .07) 1' (' SELECTION OF REBAR A T MID - SPA N - TOP STEEL -> <- BOTTOM STEEL -> SPA.. (inA2) <- SELECTION -> (inA2) <- SELECTION -> -1 2 3-4 5 6 7-8--9- 1 .00 .12 114 x 116" 2 .00 .12 1 # 4 x 10'6" 3 .00 .12 1#4x 15'-0" 4 .00 .12 1 # 4 x 14'-0" 11.3.1 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <-ULT--MIN-D+.25L-> (in*2) <-ULT-MIN-D+.25L-> 1-2-3 4 5 6 7 8 9- 1 .12 .03 .12 .08) .00 i .00 .00 00 2 .12 .00 .12 .07) .00 .00 .00 .00 3 .12 .08 .12 .11) .00 .00 .00 .00 4 .14 .12 .12 .14) .00 ( .00 .00 00) 5 .13 .04 .12 .13) .00 ( .00 .00 .00) 11.3. < SELECTION OF REBAR A T S U BOTTOM STEEL -> TOP STEEL -> <- JOINT ('xN2) <- SELECTION -> (int2) <- SELECTION -> 1-2-3-4-75 6 7-8-9- 1 .12 1 # 4 x " - .00 2 .12 1 # 4 x 9'-0" .00 3 .12 1 # 4 x 1616" .00 4 .14 1 # 4 x 11'-0" .00 5 .13 1#4x 15'-0" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 2 3 1 .00(1) 3.50(1) 00(1) 2.80(15) - P 3.50(1) 3.50(1) 2.10(1) 2.10(1) 10..500(1)) 3.60(1) 3.50((1))) 2.70(1)() 4 5 5.40(1) 4.50(1)50(2.70(1) 7.50(1) Legend: i = Common Case of rebar 2 = Reber is needed continuos over the entire span 3 = Range of rebar requirement is not fully explicit In this table. Page 12 PTSLAB ( ) ADAPT -PT V- 5.30 53i Refer to either the print plot U detailed printout of rebar at 120tr points (file "S BAR 1 r_D STEEL ...=======================_===_==========''======_----_-'-----_-_ SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Uve loading ..11.00 - Minimum steel 0.004A Moment capacity > factored (design) moment Support cut-off length for minimum steel(bnnggthlspan) ... .17 Span cut-off length for minimum steel(bngthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 74.8 lb AVERAGE = 1.0 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION • Ier-> <- midspan -> right* -> COEFFICIENT(%) SPAN max min max min max min left right 1-2-3 4 -5- 5 7 8 9 1 -2.93 -.34 2.28 1.10 -2.99 -1.61 .00 14.74 2 -2.99 -1.61 2.20 .15 -4.17 -2.06 14.74 12.99 3 -4.17 -2.06 4.45 1.61 -4.73 -2.34 13.42 12.51 4 4.73 -2.34 4.33 .36 -5.23 -2.84 12.51 .00 CR -5.23 -2.84 Note: • = face -of -support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION • lefts -> <- midspan -> <- rights -> COEFFICIENT(%) SPAN max min max min max min left right 1-2-3 4 5 6 7--8---9- 1. S54 -1.15 .87 .70 -1.06 -.86 .00 18.90 76 -.86 .89 .60 -1.64 -1.34 18.90 18.30 .64 -1.34 1.77 1.37 -2.03 -1.70 18.30 17.89 4 -2.03 -1.70 1.47 .90 -2.38 -2.03 17.89 .00 CR -2.38 -2.03 Note: • = face -of -support Page 13 PTSLAB ( ) ADAPT -PT V- 5.30 5 t- 11.7.1 REDISTRIBUTED STEELAT MID -SPAN r TOP BOTTOM DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA St-, ... (inA2) <-ULT-MIN-D+.25L-> (int2) <-ULT-MIN-D+.25L-> 1 2 2 1 5 6 7 8 9- 1 .00 ( .00 .00 .00) .12 ( .00 .12 .05) 2 .00 ( .00 .00 00 .12 ( .00 .12 05 3 .00 .00 .00 .00 .12 ( .06 .12 10 4 .00 ( .00 .00 .00 .12 ( .05 .12 .08 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT M I D- S P A N <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (m"2) <- SELECTION -> (InA2) <- SELECTION -> 1 2 3-4---5 6 7-8-9 1 .00 .12 19 4 x 121-0" 2 .00 .12 1 t 4 x 121-6" 3 .00 .12 1 9 4 x 16'-6" 4 .00 .12 19 4 x 15'-0" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (mA2) <_ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3 4 5 6 7 8 9- 1 .12 .03 .12 .08' .00 ( .00 .00 .00) 2 .12 .00 .12 .06 .00 ( .00 .00 00) 3 .12 .04 .12 .09 .00 ( .00 .00 .00 4 .12 .08 .12 .11 .00 ( .00 .00 .00 5 .13 .04 .12 .13 .00 ( .00 .00 .00 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT S U P P O R T S <- TOP STEEL -> <- BOTTOM STEEL -> JOINT (mA2) <- SELECTION -> (inA2) <- SELECTION -> 1 2 3-4--5 6 7-89- 1 .12 19 4 x 5'-6" .00 - 2 .12 1 0 4 x 9'-0" .00 3 .12 1t4x 16'-6" .00 c\12 194x 111-0" .00 13 1 9 4 x 14'-0" .00 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT Page 14 PTSLAB ( ) ADAPT -PT V- 5.30 V5 1 2 3 4 5- 1 .00(1) 3.50(1) ((1) 2.8811) 00(( 2 3.50(1) 3.50(1)(() ) 1040(11.(1)4. 1 4. 4.50(1)) 7.50(1)) 2. 0(1)) 20 .50(1)) Legend: • 1 =Common Case of rebar 2 = Reber is needed oontinuosy over the enlre span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 120th points (file "SELBAR.DAT") 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI 318-89) suss===-c-rr=-====xxx-=======m===============s=_____===xx ===x=== No shear reinforcement required Page 15 PTSLAB ( ) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS =========================================== =======R============== == C r --.teictor K s modulus of elasticity Vol;3600.00 ksi = 2. lei. .eAgross...(due to cracking) K = 1.00 Where stresses exceed 6(fc y 1/2 cracking of section is allowed for. Values in parentheses are (spanlmax deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1---2 3 1 .03 .01 ( 4 ) 5( 7953) .04( 6 7) 2 .01 .00 .01(23545) .01(18498) .02(10359) 3 .10 .02 .06( 3357) .07( 3253) .13(1652) 4 .06 -.02-.05(4204) .04( 4868) -.01(30819) CANR .13 .07 .21( 40) .09( 997) .30( 296) TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOENA. CALI FORNIA S 1 1 O7 (B213) 351-BBB 1 FAX (0213) 351.531 S 7AN41N4 S'leuc-tul& i1eet S35 of by lob no. 1315 dote 5 /91 1• 1.51.8f GwnV Io 4Pt7 0 0 141 14t p52 I 1b I -•I ty 4 . &W +46t) = 9i' I) -50241 1 HPbt4S O TD I a 10-140% x = Hoer - Nib. or ►ear}s s I I o1�.,b01-fl •N 44- co►t/-twI41 ti) frover, ertmaftiS a Leff Ion r c b 14.00,0 pax2-in! :130" t1D, yr 'fBHo.FK. 136�y6,8k�i ►+' z;�Aixeo 3) kncra, -Mao a p164*f Grua q-X/i 001610 p= the drel:1 36e)k No.ot-fl990'$S1 36$1, bZ. N ' 1- r I�l <e Ia-. Sp'-4"> Ib' s Immo ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, California 94061 I Af WPT-PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-951UBC-1994 (V-5.30) I ,e—N, ADAPT Structural Concrete SoftwareSystem r 3 Woodside Road, Suite 220, Redwood , California1 F. ,: (650)306-2400 Fax: (650)364-4678 Emai : SuppolAdaptSoft.corn Web site: httpl/www.AdaptSoft.com I DATE AND TIME OF PROGRAM EXECUTION: May 16,1999 At Time: 18:30 PROJECT TITLE: HOAG PARKING STRUCTURE ( ) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)12) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At aft locations .450 REINFORCEMENT: YIELD Strength 60.00 ksi Minimum Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED I streno8i of strand 270.00 ksi ve stress in strand (final) 175.00 ksi .ea .153 in"2 Min (:tiS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. 1.00 In Min CGS of tendon from BOTTOM for EXTERIOR spans.. 1.75 ki Min avveerrooppee precompression 125.00 psi Max apactrq between strands (factor of slab depth) 8.00 S 36 Page 2 PT SLAB ( ) ADAPT -PT V- 5.30 S;1 Tendon profile type and support widths (see section 9) 7.1M"' SIS OPTIONS USED: S I system ONE-WAY M of Inertia over support is NOT INCREASED Moth...its REDUCED to face of support YES Umited plastilication allawed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOMIMIDDLE P O1 I I FLANGE I FLANGE I REF MULTIPLIER A RI LENGTH' WIDTH DEPTHI width thick.' width thidc.IHEIGHTI left right N MI ft I in in I in in I in in I in I 1-3-4-5-6--7-8 9-10--11 12 13- 1 1 18.00 12.00 5.00 5.00 .50 .50 2 1 14.00 12.00 5.00 5.00 .50 .50 3 1 14.00 12.00 5.00 5.00 .50 .50 4 1 18.00 12.00 5.00 5.00 .50 .50 5 1 18.00 12.00 5.00 5.00 .50 .50 C 1 7.50 12.00 5.00 5.00 .50 .50 LEGEND: 1 - SPAN C - Cantilever 3-FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line ("SUPPORT WIDTH AND COLUMN DATA JPPORT <- LOWER COLUMN --> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CDC* LENGTH B(DIA) D CSC' JOINT in ft in in ft in in 1 2 2 1 5 -6 7--8---9 10- 1 .00 .00 .00 .00 (1) .00 .00 .00 (1 2 .00 .00 .00 .00 (1) .00 .00 .00 (1 Page 3 PT SLAB ( ) ADAPT -PT V- 5.30 36 S .00 .00 .00 1 .00 .00 �• .00 .00 .00 .00 I 1) .00 .00 .00 (1) 'Th.- ..OLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends ...(STANDARD) =1 Hinged at near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING _____ _x=====________________________ _____-------________ <-CLASS-> < TYPE > D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Tdb SPAN CLASS TYPE W M2 (f ft) (k-ft or k ...f) k/fr 1 2 3 4 5 -6 7 8 9- 1 D U .00 18.00 .072 1 L U .00 18.00 .050 2 D U .00 14.00 .072 2 L U .00 14.00 .050 3 D Li .00 14.00 .072 3 L U .00 14.00 .050 4 D U .00 18.00 .072 4 L U .00 18.00 .050 5 D Li .00 18.00 .072 • U .00 18.00 .050 G.. D Li .00 7.50 .072 CANT L Li .00 7.50 .050 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 Page 4 PT SLAB ( ) ADAPT -PT V-5.30 53� 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING a= --emu ===ua=aza= M===== =s=u=====_===== ========a=a_____________ UNIFORM (kM"2, (CON. or PART. (MOMENT SPAN CLASS TYPE LINE(k/ft) (kltt or ftKt) (k-ft @ ft ) 1-2 3 4 5 6 7 8 1 D L .072 .00 18.00 1 L L .050 .00 18.00 2 D L .072 .00 14.00 2 L L .050 .00 14.00 3 D L .072 .00 14.00 3 L L .050 .00 14.00 4 D L .072 .00 18.00 4 L L .050 .00 18.00 5 D L .072 .00 18.00 5 L L .050 .00 18.00 CANT D L .072 .00 7.50 CANT L L .050 .00 7.50 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 42 - Computed Sedan Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geomety Yt= centroldal distance to top fiber t= gross moment of inertia - Yb= centroidal distance to bottom fiber SPAN AREA I Yb Yt (SFGMENT) in"2 in"4 in in C-2 3 4 5- 1 60.00 .1250E+03 2.50 2.50 SPAN 2 1 60.00 .1250E+03 2.50 2.50 SPAN 3 1 60.00 .1250E+03 2.50 2.50 SPAN 4 Page 5 PT SLAB ( ) ADAPT -PT V- 5.30 54b 1 60.00 .1250E+03 SPAN 5 1 60.00 1250E+03 C ("EVER RIGHT 1 60.00 .1250E+03 2.50 2.50 2.50 2.50 2.50 2.50 5- DEAD LOAD MOMENTS, SHEARS & REACTIONS nt==u=====__----__------_ =_______-______ <5.1 SPA SPAN M(I)' 1 2 1 .00 2 -2.24 3 -.78 4 -1.68 5 -1.99 CANT -2.03 N MOMENTS (k-ft)> < 5.2 SPAN SHEARS (k) > Midspan M(r)' SH(I) SH(r) 3 1 5 6 1.80 -2.24 -.52 .77 .25 -.78 -.61 .40 .53 -1.68 -.44 .57 1.08 -1.99 -.63 .67 .91 -2.02 -.65 .65 - -.54 - Note: = Centerline moments JOINT < 5.3 REACTIONS (k) > -1 2 Lower 1 .52 .00 2 1.38 .00 3 .84 .00 4 1.20 .00 5 1.31 .00 6 1.19 .00 <- 5.4 COLUMN MOMENTS (k-ft) -> columns -Upper columns- .00 00 .00 .00 .00 .00 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS <- 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> cleft -> <- midspan -> <- right' -> <-SHEAR FORCE-> max min max min max min left right -1• 2-3-4--5---6 7 8 9- 1 .00 .00 1.49 -.24 -1.66 -.29 -.39 .54 2 -1.66 -.29 .66 -.68 -1.12 .08 -.47 .41 3 -1.12 .08 .98 -.61 -1.62 -.11 -.42 .47 4 -1.62 -.11 1.33 -.58 -1.87 -.26 -.53 .52 5 -1.87 -.26 1.54 -.91 -1.41 .00 -.55 .49 Page 6 PT SLAB ( ) ADAPT -PT V- 5.30 Note: fr-nteriine moments <- 6.2 REACTIONS ( ) <- OWE JOINT max min 1 2 3 4 5 6 2 3 .39 -.03 1.01 .31 .83 .14 1.00 .25 1.07 .31 .87 .35 CR -1.41 -.38 - k -> <- 6.3 COLUMN MOMENTS (k-ft)-> L R COLUMN -> <- UPPER COLUM-> max min max min S 6 7 4 .00 .00 .00 .00 .00 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left -> <- midspan-> <- right -> 1 2-3-4 1 .00 1.80 -2.24 2 -2.24 .25 -.78 3 -.78 .53 -1.68 4 -1.68 1.08 -1.99 5 -1.99 .91 -2.02 CANT -2.02 - - Note: • = face -of -support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) left" -> <- midapan -> <- right• -> max min max mm max min 2 3 4 5 -43 7 1 .00 .00 1.49 -.24 -1.66 -.29 2 -1.66 -.29 .86 -.68 -1.12 .08 3 -1.12 .08 .98 -.61 -1.62 -.11 4 -1.62 -.11 1.33 -.58 -1.87 -.26 5 -1.87 -.26 1.54 -.91 -1.41 .00 Page 7 PT SLAB ( ) ADAPT -PT V- 5.30 542 - CR -1.41 Not.: /tee -of -support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) ..12__=====ss===a=ram Maxima of dead bad and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL ) <-left•-> <-midspan -> <- right* -> SPAN max min max min max min -1 2 3 4 5 b 7 1 .00 .00 3.28 1.56 -3.90 -2.53 2 -3.90 -2.53 1.11 -.43 -1.91 -.70 3 -1.91 -.70 1.51 -.08 -3.30 -1.79 4 -3.30 -1.79 2.41 .50 -3.86 -2.24 5 -3.86 -2.24 2.45 .00 -3.43 -2.03 CR -3.43 - - Note: • -face-of-support s=ss== ssaass 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES aa=aaa====r_======a=========__________=====r-__----====a====a===ssss=r_===s= 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight potion over support 3 = harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.4 ENDON PROFILE TYPE X1IL X2/L X3IL AIL 1-2 3 4 5- 1 2 .000 .500 .000 .000 2 2 .000 .500 .000 .000 3 2 .000 .500 .000 .000 Page 8 PT SLAB ( ) ADAPT -PT V- 5.30 4 2 .000 .500 .000 .000 CANT 2 1.000 .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE nn:_a = ¢== a Tendon editing mode selected: FORCE SELECTION <- SELECTED VALUES -> <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in -> P/A cabal SPAN (Id-) Left Center Right psi) (k/-) 1 2 3 4 7 1 20.000 2.50 1.75 3.75 333.33 .057 2 12.000 3.75 2.25 3.75 200.00 .061 3 12.000 3.75 2.25 3.75 200.00 .061 4 12.000 3.75 1.25 3.75 200.00 .062 5 12.000 3.75 1.25 3.75 200.00 .062 CANT 16.000 3.75 2.50 266.67 .059 Approximate weigh of strand 46.5 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT* CENTER RIGHT* LEFT CENTER RIGHT -1 2 3--4---5-6--7 1 .00 12.86 13.45 7.50 7.50 7.50 2 13.45 .00 2.34 7.50 7.50 7.50 3 2.34 .00 9.40 7.50 7.50 7.50 4 9.40 5.77 10.23 7.50 7.50 7.50 5 10.23 5.85 10.66 7.50 7.50 7.50 CANT 10.66 - - 7.50 - - Note: • - face -of -support r ,^E R V I C E STRESSES (psi) (tension shown positive) LEFT* RIGHT• TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3 4 5-6--7 8 9 1 - -333.33 --333.33 108.14 - - -774.81 2 108.14 - - -774.81 56.40 -233.08 - -456.40 Se{-3 Page 9 PT SLAB ( ) ADAPT -PT V- 5.30 3 56.40 -233.08 - -456.40 265.54 - - -665.54 4 265.54 - - -665.54 285.08 - - -685.08 5 m15.08 - - -685.08 156.93 - - 490.27 C /"'S93 -180.67 - -90.27 - - - - Noffh.. • = face -of -support -1 1 2 3 4 5 CENTER TOP BOTTOM max-T max-C max-T max-C 2-3--4--5 CR - 419.23 152.56 -262.23 15.09 -355.27 --415.09 - -466.37 66.37 -314.26 - -563.52 163.52 -295.84 29.97 -559.66 159.66-429.97 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <-SPAN SPAN left• 1-2 1 .00 2 2.06 3 .84 4 1.36 5 1.84 CANT 1.67 MOMENTS (k-ft)-> <-SPAN SHEARS (k)-> midspan tight* SH(I) SH(r) -1.26 2.06 .00 .00 -.47 .84 .03 .03 -.40 1.36 -.04 -.04 -.90 1.84 -.03 -.03 -.95 1.67 .03 .03 - - - Note: • = face -of -support <-REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) -> 2 Lower columns -tipper columns- 1 -.001 .000 .000 2 -.027 3 .065 -.011 -.059 6 .033 .000 .000 .000 .000 .000 .000 .000 .000 S¢q- Page 10 PT SLAB ( ) ADAPT -PT V- 5.30 54S 10-FACTORED MOMENTS & REACTIONS a=fl==i=======n3=ia=====_=_=ii==ii=ii======i=i=======z== C fled as (1.40D + 1.70L + 1.00 secondary moment effects) 10.. . ACTORED DESIGN MOMENTS (k-ft) <- left* -> <- midspan -> <- right* -> SPAN max min max min max min 1 2-3--4-5 6 7 1 .00 .00 5.03 2.10 -5.98 -3.65 2 -5.98 -3.65 1.60 -1.02 -3.42 -1.37 3 -3.42 -1.37 2.26 -.44 -5.00 -2.43 4 -5.00 -2.43 4.13 .88 -5.38 -2.63 5 -5.38 -2.63 4.19 .02 -5.23 -2.84 CR -5.23 - - Note: • = face -of -support 10.2 SECONDARY SPAN <- left• -> -1 2 1 .00 2 -.02 3 -.41 4 .11 5 .59 Note: • = face -of -support MOMENTS (k-ft) <- midspan -> <- right* -> a a -.01 -.02 -.22 -.41 -.15 .11 .35 .59 .29 .00 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <_ UPPER column -> JOINT max min max min max min 1 2-3-4--5-6--7- 1 1.40 .69 .00 .00 .00 .00 2 3.62 2.43 .00 .00 .00 .00 3 2.66 1.48 .00 .00 .00 .00 . .36 0 2. 0 2.09 .0000 .00.00 .00.00 .00 0 3.17 2.29 .00 .00 .00 .00 11-MILD STEEL Page 11 PT SLAB ( ) ADAPT -PT V- 5.30 S4, SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM n- + 25% of unreduced Live load capacity requirement of reduced to total Live loading 1.00 um steel 0.664A - capacity > factored (design) moment Span cut-off length for cut-off length rmini um ateel(mum IengttWspan))... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero-polm 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 92.2 lb AVERAGE = 1.0 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (in"2) <-ULT--MIN--D+.25L-> (in"2) <-ULT-MIN-D+.25W 1-2 3 4 5- 6 7-8 9- 1 .00 .00 .00 .00) .12 .03 .12 .12) 2 .00 .00 .00 .00 .12 .00 .12 .03) 3 .00 .00 .00 .00 .12 .00 .12 .04) 4 .00 .00 .00.00 .12 .04 .12 08 5 .00 .00 .00 .00 .12 .04 .12 07 11.2.2 SELECTION OF REBAR AT MID -SPAN <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (iM2) <- SELECTION -> (in^2) <- SELECTION -> 1 32 3--4 s -6 7-8 9- 1 .00 .12 1#4x 1T-0" 2 .00 .12 1.4x 10'-0" 3 .00 .12 1.4x 12'-0" 4 .00 .12 11/ 4 x 15'-0" 5 .00 .12 1.4x 14'-0" 11.3.1 STEEL AT SUPPORTS TOP BOTTOM DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA Ju, (in^2) <-ULT--MIN-D+.25L-> (in^2) <_ULT-MIN-D+.25L-> 1-2 (-3 4 5) 6 7 8- 9- 2 15 ( .02 .12 .15) .00 ( .00 .00 .003 3 .12 (( .00 .12 .06) .00 (( .00 .00 003 4 .12 .09 .12 .11) .00 .00 .00 00 Page 12 PT SLAB ( ) ADAPT -PT V- 5.30 5¢1 6 .13 ( .04 .12 .13) .00 ( .00 .00 .0(4 1", SELECTION OFREBAR AT SUPPORTS - TOP STEEL -> <- BOTTOM STEEL -> JOINT (inA2) <- SELECTION -> (ih*2) <- SELECTION -> 1 2 3-4 5 6 7-8 9 1 .00 .00 2 .15 1#4x 1T-0" .00 3 .12 1* 4 x 9'-0" .00 4 .12 1 t 4 x 17-0" .00 5 .13 1#4x 111-0" .00 6 .13 1 .4 x 15.-0" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1.00(1) .00(1) .00(1) .00(1)5- 2 .50(i 10.50(1) 2.70(1) 3.50(1) 3 3.50(1 3.50(1) 2.10(1) 1.40(1) 4 10..55000(( ))) 45.5000((1))) 2.800(1)) 2.70(1)) 5 legend:65.40(1) 7.50(1) 2.70(1) 7.50(1) 1 = Common Case of rebar 2 = Reber is needed continuosy over the entire aspan 3 Refer�to ei�8reer t print pplolott or r requirement Is dyprinntout off rebar lb 1/20th points (file "SELBAR.DAfl 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduosd Live bad capacity requirement Ratio of reduced to total Live loading .... 1.00 - Minimum steel 0.I S4A rent capacity > factored (design) moment b.., . i cutoff length for minimum steel(krgth/span) ... .17 Span cut-off length for minimum ateel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -paint 12.00 in Page 13 PT SLAB ( ) ADAPT -PT V- 5.30 S 4.$ REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 94.2 lb AVERAGE = 1.1 psf 11.L. .4EDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <-left•-> <- midspan -> right* -> COEFFICIENT(%) SPAN max min max min max min left right 1 2-3-4-5-6-7 $ 9- 1 .00 .00 524 2.43 -5.31 -3.24 .00 11.65 2 -5.31 -3.24 1.90 -.44 -2.91 -1.17 11.21 14.74 3 -2.91 -1.17 2.51 .13 -4.36 -2.12 14.74 12.69 4 -4.36 -2.12 4.45 1.53 -4.70 -2.30 13.12 12.56 5 -4.70 -2.30 4.36 .35 -5.23 -2.84 12.56 .00 CR -5.23 -2.84 Note: • = face -of -support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION ft* -> <- midspan -> <- right* -> COEFFICIENT(%) SPAN max min max min max min left right 1 2 3 4 5 6 7 8 9- 1 .00 .00 2.37 1.97 -2.18 -1.90 .00 17.73 2 -2.18 -1.90 .75 .42 -.86 -.62 17.73 19.11 3 -.86 -.62 1.01 .67 -1.71 -1.40 19.11 18.23 4 -1.71 -1.40 1.75 1.35 -2.02 -1.68 18.23 17.90 5 -2.02 -1.68 1.48 .90 -2.38 -2.03 17.90 .00 CR -2.38 -2.03 Note: • = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inn) <-ULT-MIN-0t.25L-> (inn) <-ULT-MIN-D+.251-> 1 2 3 4 5 -6 7- 8-9- 1 .00 ( .00 .00 .00 2 .00 (( .00 .00 .00 i-QO .00 .00 .00 7 .00 .00 .00 .. J .00 .00 .00 .13 ( .04 .12 .13) .12 ( .00 .12 .04) .12 ( .00 .12 05} .12 ( .06 .12 .10 .12 ( .05 .12 .08 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (iM2) <_ SELECTION -> (inn) <- SELECTION -> Page 14 PT SLAB ( ) ADAPT -PT V- 5.30 1-2 3 4 5 6 7-8---9- 1 .00 .13 1 *4 x 176" 2 .00 .12 1 # 4 x 11'-6" r:00 .12 1#4x 1T6" •00 .12 1#4x.1616" 5 .00 .12 1#4x 15'-0" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <-ULT--MIN-D+.25L-> (inA2) <-ULT-MIN-D+.251-> 1 2 3-4--5 6 7 -8- 9 1 .00 .00 .00 .00) .00 ( .00 .00 00 2 .12 .00 .12 .12 .00 ( .00 .00 .00 3 .12 .00 .12 .05 .00 ( .00 .00 .00 4 .12 .05 .12 .09 .00 ( .00 .00 .00 5 .12 .07 .12 .11 .00 .00 .00 .00) 6 .13 ( .04 .12 .13) .00 .00 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT S U P P O R T S <- TOP STEEL -> <- BOTTOM STEEL -> JOINT ((1'nA2) <- SELECTION -> (inA2) <- SELECTION -> 1-2-3- -5 6 7--8-9- 1 .00 .00 2 .12 1#4x 17.0" .00 3 .12 1#4x 9'-0" .00 4 .12 1 *4 x 17-0" .00 5 .12 1 *4 x 11'-0" .00 6 .13 1#4x 14'-0" .00 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 1 2 .00(1) ((3 pp�4) )5 2 4500((i)1) 100.50(1)1) 2.710(1) 03.50(1)) 3 4 0.50(1) 4.50(1)3.2.10(1) .40(1) 110(1) 4.50(1) 4.50(1) 1.80(1) 2.70(1) 1-f 4.50(1) 7.50(1) 2.70(1) 7.50(1) li .: 1 = Common Case of rebar 2 = Reber is needed continuosy over the entire span 3 - Range of rebar requirement Is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") Page 16 PT SLAB ( ) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS /—e's modulus of elasticity Ec = 3600.00 ksi t ( ctor K = 2.00 lett, dlgross...(due to cracking) K = 1.00 Where stresses exceed 6(fc')"12 krac king of section is allowed for. Vales M parentheses are (spanhnax deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1 2 3 -4 5 6- 1 .21 .07 .21( 1038) .14( 1509) .35( 615) 2 -.02 -.04 -.11( 1529) -.01(13590) -.12( 1374) 3 .02 .01 .03( 5883) .02(10495) .04( 3769) 4 .09 .02 .06( 3767) .06( 3382) 12( 1782) 5 .07 -.02 -.05( 4397) .05( 4776) .00(55424) CANR .13 .07 .21( 425) (1008) .30( 299) S T^,� TAYLOR & GAINES y STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOENA. CALIFORNIA 91 1 07 (6261 351-68S 1 FAX (6261 351.5319 h0,e(-1. 3+14c-11-14 5?i¢uci1JRE sheet S 51 of by Ono. 139 5 dodo 5 /19 r. Sl ti ' GP n e '(a gri'RI p I 4 Ike I lvt Pr) (a LevaL ¶k O ,D I N �, I t' , l b� y t 61-h IL'4 Iv't twi 4 oil rs3 �, [ �- 14u 4_ brt fflzits (-Wm 124-0" I� 1lW$tu-«ao.r*s p' rod., x l a, s 9161 `' 140 , bF -rS}W NS OtS4 b"Yre4• * -IH$w 1194t►+S 2) 154On4 s is WFr Vo roma, t r T EA x I $1 -1')` tio, or 15Hn•4S' 1''' yb,$%wj s 3 Abe Lert Imo 3J /worst, , n vet1S e 12J4tfI4b bray I z 1K/' X lai9 36K Nb, br -Te4001+367).b.S" C,Irte 7- Morey a 1�14N�' 6ae ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, California 94061 II AfnAPT-PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95IUBC-1994 (V-5.30) ADAPT Structural Concrete Software System I ''3 Woodside Road, Suite 220, Redwood City, California 94061 I I•. e: (650)306-2400 Fax: (650)364-4678 Email: Support©AdaptSoft.com Web site: httpJ/www.AdaptSoft.com II DATE AND TIME OF PROGRAM EXECUTION: May 16,1999 At Time: 18:16 PROJECT TITLE: HOAG PARKING STRUCTURE ( ) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (tic)) At aN locations .450 REINFORCEMENT: YIELD Strength 60.00 kal Minimum Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED U' strength of strand 270.00 ksi effective stress in strand (final) 175.00 ksi Str tea .153 irt2 Min LxiS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. 1.25 in Min CGS of tendon from BOTTOM for EXTERIOR spans.. 1.75 in Min average precompresslon 125.00 psi Max spacing between strands (factor of slab depth) 8.00 532. Page 2 PT SLAB ( ) ADAPT -PT V- 5.30 s51 Tendon profile type and support widths (see section 9) ANALYSIS OPTIONS USED: syysatem ONE-WAY M, of Inertia over support is NOT INCREASED ....s REDUCED to faceof supportYES United plastfication allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY .."=== = S S S 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP BOTTOM/MIDDLEI P O� I I FLANGE FLANGE REF, MULTIPLIER A RI LENGTH' WIDTH DEPTH] width thidc.I width thick.IHEIGHTI left right N I ff l in in I In in I In in I in I 1 3 4 5 6 7 -8 9-10-11 12-13- 1 1 16.50 12.00 5.00 5.00 .50 .50 2 1 16.50 12.00 5.00 5.00 .50 .50 3 1 18.00 12.00 5.00 5.00 .50 .50 4 1 18.00 12.00 5.00 5.00 .50 .50 5 1 18.00 12.00 5.00 5.00 .50 .50 6 1 18.00 12.00 5.00 5.00 .50 .50 C 1 7.50 12.00 5.00 5.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3-FORM 1 = Rectangular section 2 = T or Inverted section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line SUPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN -> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CBC' LENGTH B(DIA) D CBC' JOINT in ft In in ft in in 1-2-3-4---5 6 7 8 9-10- Page 3 PT SLAB ( ) ADAPT -PT V- 5.30 5 St 1 .00 .00 .00 00 (1) .00 00 .00 1) 2 .00 .00 .00 .00 1) .00 .00 .00 1) 3 .00 .00 .00 .00 1)) .00 .00 .00 1)) / '0 .00 .00 .00 1 .00 .00 .00 1 6 l .00 .00 .00.00 .00 1 .00 (1) .00 .00 .00 .00 .00 1 .,A .0((1)) 7 .00 .00 .00 .00 (1) .00 .00 .00 0 (1) 'THE COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends ...(STANDARD) = 1 Hinged at near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <-CLASS-> < TYPE > D - DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE Idft^2 ( ft ft) (k-ft or k ...ft) k/ft 1-2-3---4-5 6 7 8 9- 1 D U .00 16.50 .072 1 L Li .00 16.50 .050 2 D Li .00 16.50 .072 2 L U .00 16.50 .050 3 D Li .00 18.00 .072 3 L U .00 18.00 .050 4 D Li .00 18.00 .072 4 ,-- U .00 18.00 .050 5 U .00 18.00 .072 5 L Li .00 18.00 .050 6 D Li .00 18.00 .072 6 L LI .00 18.00 .050 Page 4 PT SLAB ( ) ADAPT -PT V- 5.30 CANT D Li .00 7.50 .072 CANT L Li .00 7.50 .050 f t LIVE LOADING is SKIPPED with a skip factor of 1.00 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM CON. or M SPAN CLASS TYPE ( LINE(k/f) (k@ft or ft-ft M(k-ftT) @ ft) 1 2-3-4 5 6 7--6 1 D L .072 .00 16.50 1 L L .050 .00 16.50 2 D L .072 .00 16.50 2 L L .050 .00 16.50 3 D L .072 .00 18.00 3 L L .050 .00 18.00 4 D L .072 .00 18.00 4 L L .050 .00 18.00 5 D L .072 .00 18.00 5 L L .050 .00 18.00 6 D L .072 .00 18.00 6 L L .050 .00 18.00 CANT D L .072 .00 7.50 CANT L L .050 .00 7.50 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 4 mputed Section Properties for Segments of Nonpdsmatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber I= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA 1 Yb Yt Page 5 PT SLAB ( ) ADAPT -PT V- 5.30 5 (SEGMENT)2 in"2 in"4 in in 3 4 5 SPAN 1 60.00 .1250E+03 2.50 2.50 5 1 60.00 .1250E+03 2.50 2.50 SPAN 3 1 60.00 .1250E+03 2.50 2.50 SPAN 4 1 60.00 .1250E+03 2.50 2.50 SPAN 5 1 60.00 .1250E+03 2.50 2.50 SPAN 6 1 60.00 .1250E+03 2.50 2.50 CANTILEVER RIGHT 1 60.00 .1250E+03 2.50 2.50 5- DEAD LOAD MOMENTS, SHEARS 8 REACTIONS <5.1 SPAN MOMENTS (k-ft)> < 5.2 SPAN SHEARS (k) > SPAN M(l)' Midspan M(r)• SH(I) SH(r) 1 23 5 6 1 -1.66 .83 -1.59 -.60 .59 2 -1.59 .76 -1.80 -.58 .61 3 -1.80 1.03 -1.98 -.64 .66 4 -1.98 .96 -1.94 -.65 .65 5 -1.94 .99 -1.92 -.65 .65 6 -1.92 .94 -2.02 -.64 .65 CANT -2.03 - - -.54 - Note: • = Centerline moments JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1 2 Lower columns -Upper columns- 1 .60 .00 .00 2 1.17 .00 .00 ?/,-- 1.24 .00 .00 1.31 .00 .00 5 1.29 .00 .00 6 1.29 .00 .00 7 1.19 .00 .00 Page 6 PT SLAB ( ) ADAPT -PT V- 5.30 5s1 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS '-'--------------_____=__�___= __= z------------- _ ,r 1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> < Hefts -> <- midspan -> <- tights -> <-SHEAR FORCE-> SPAN max min max min max • min left right 1 2 3-4-5 6 7 8 9- 1 -1.58 .43 .79 -.21 -1.35 -.25 -.49 .43 2 -1.35 -.25 1.07 -.54 -1.61 -.37 -.47 .48 3 -1.61 -.37 1.30 -.58 -1.79 -.45 -.51 .52 4 -1.79 -.45 1.34 -.68 -1.86 -.40 -.53 .53 5 -1.86 -.40 1.42 -.73 -1.92 -.19 -.54 .53 6 -1.92 -.19 1.60 -.94 -1.41 .00 -.56 .50 CR -1.41 - - -.38 - Note: Centerline moments <- 6.2 REACTIONS (k) > <- 6.3 COLUMN MOMENTS (k-ft) -> <- LOWER COLUMN -> <- UPPER COLUMN -> JOINT max min max min max min -1 2 3 4 i 6 7- 1 .49 -.08 .00 .00 .00 .00 2 .90 .30 .00 .00 .00 .00 3 .99 .35 .00 .00 .00 .00 4 1.05 .38 .00 .00 .00 .00 5 1.07 .36 .00 .00 .00 .00 6 1.09 .29 .00 .00 .00 .00 7 .87 .34 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all slipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left` -> <- midspan -> <- right* -> 2 -1.66 .83 -1.59 2 -1.59 .76 -1.80 3 -1.80 1.03 -1.98 4 -1.98 .96 -1.94 5 -1.94 .98 -1.92 6 -1.92 .94 -2.02 CANT -2.02 - - Page 7 PT SLAB ( ) ADAPT -PT V- 5.30 SSt Note: `= face -of -support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <- left' -> <- midspan -> <-- right` -> SPAN max min max min max min 1 2 3_4 5 6 7- 1 -1.58 .43 .79 -.21 -1.35 -.25 2 -1.35 -.25 1.07 -.54 -1.61 -.37 3 -1.61 -.37 1.30 -.58 -1.79 -.45 4 -1.79 -.45 1.34 -.68 -1.86 -.40 5 -1.86 -.40 1.42 -.73 -1.92 -.19 6 -1.92 -.19 1.59 -.94 -1.41 .00 CR -1.41 - - Note: • = face -of -support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) Maxima of dead load and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL ) <-left•-> <-midspan -> <- right* -> SPAN max min max min max min 1 2 3 1 5 6 7 1 -3.23 -1.23 1.62 .62 -2.94 -1.83 2 -2.94 -1.83 1.83 .22 -3.41 -2.17 3 -3.41 -2.17 2.33 .44 -3.77 -2.43 4 -3.77 -2.43 2.30 .28 -3.80 -2.34 5 -3.80 -2.34 2.40 .25 -3.85 -2.12 6 3.85 -2.12 2.54 .00 -3.43 -2.03 CR -3.43 - - Note: • = face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS Page 8 PT SLAB ( ) ADAPT -PT V- 5.30 LEGEND: For Span: reversed parabola simple parabola with straight portion over support harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1IL X2/L X3/L AIL 1 2 3 4 5- 1 2 .000 .500 .000 .000 2 2 .000 .500 .000 .000 4 2 .000 .500 .000 .000 5 2 .000 .500 .000 .000 6 2 .000 .500 .000 .000 CANT 1 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE ----_-____- - = =_ `__ Tendon editing mode selected: FORCE SELECTION <- SELECTED VALUES -> <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> P/A cabal SPAN (k/-) Left Center Right (psi) (Id-) -1 2 3 5 6 7 1 18.000 2.50 1.75 3.75 300.00 .061 2 12.000 3.75 1.75 3.75 200.00 .059 3 12.000 3.75 1.25 3.75 200.00 .062 4 12.000 3.75 1.25 3.75 200.00 .062 5 12.000 3.75 1.25 3.75 200.00 .062 6 12.000 3.75 1.25 3.75 200.00 .062 CANT 16.000 3.75 2.50 266.67 .059 A, rate weight of strand 58.5 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT* CENTER RIGHT' LEFT CENTER RIGHT Page 9 PT SLAB ( ) ADAPT -PT V-5.30 1 2 3 4 5 6 7 1 12.43 .35 8.54 7.50 7.50 7.50 2 8.54 1.91 9.13 7.50 7.50 7.50 •ri8.13 5.26 10.39 7.50 7.50 7.50 0.39 5.16 10.80 7.50 7.50 7.50 5 10.80 6.05 10.43 7.50 7.50 7.50 6 10.43 6.29 10.66 7.50 7.50 7.50 CANT 10.66 -- - 7.50 - - Note: • = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT• RIGHT• TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3- 1 5- 6 7--8 9 1 202.04 -278.86 --802.04 19.22 - - -619.22 2 19.22 - - -619.22 241.14 - - -641.14 3 241.14 - - -641.14 297.80 - - 697.80 4 297.80 - - -697.80 320.54 - - -720.54 5 320.54 - - -720.54 297.73 - - -697.73 6 297.73 - - -697.73 156.93 - - -690.27 CR 156.93 -180.67 - 690.27 - - - - Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C 1 2-3--4 5 1 - -523.31 --317.43 2 --465.42 65.42 -321.01 3 - -550.64 150.64 -301.13 4 - -551.22 151.22 -333.81 5 - -585.14 185.14 -331.29 6 37.17 -571.47 171.47 -437.17 CR - - - - 9., JST-TENSIONING BALANCED MOMENT S, SHEARS 8 REACTIONS <-SPAN MOMENTS(k-ft)-> <-SPAN SHEARS (k)-> SPAN Ie8• midspan right` SH(I) SH(r) 1 2 3 4 5 6- 1 1.14 -.69 1.61 .09 .09 Page 10 PT SLAB ( ) ADAPT -PT V- 5.30 5 bl 2 1.61 -.72 1.57 -.04 -.04 3 1.57 -.87 1.70 -.01 -.01 't 163 -.80 1.77 -.01 -.01 1.77 -.99 1.67 .03 .03 CAI.. 1.67 - - .0 - Note: • = face -of -support <-REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) -> -joint 2 Lower columns -Upper columns- 1 -.085 .000 .000 2 .121 .000 .000 3 -.029 .000 .000 4 -.011 .000 .000 5 .012 .000 .000 6 -.037 .000 .000 7 .029 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <- left* -> <-midspan -> <- right* -> SPAN max min max min max min -1 2 3 4 5----6 7- 1 -3.86 -.45 2.94 1.23 -4.79 -2.91 2 -4.79 -2.91 2.91 .17 -4.94 -2.82 3 -4.94 -2.82 4.03 .83 -5.37 -3.10 4 -5.37 -3.10 4.04 .60 -5.50 -3.02 5 -5.50 -3.02 4.24 .58 -5.44 -2.50 6 -5.44 -2.50 4.29 -.02 5.23 -2.84 CR -5.23 - N ' ..x-of-support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left* -> <- midspan -> <- right` -> 1 2 3 4 Page 11 PT SLAB ( ) ADAPT -PT V- 5.30 1 1.14 .44 -.27 2 -.27 .03 .32 3 .32 .38 .45 3 .45 .41 .38 .38 .45 .52 6 .52 .26 .00 Note: • = face -of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min -1 2 3 1 5 6 7 1 1.59 .62 .00 .00 .00 .00 2 3.30 2.26 .00 .00 .00 .00 3 3.40 2.31 .00 .00 .00 .00 4 3.60 2.46 .00 .00 .00 .00 5 3.64 2.44 .00 .00 .00 .00 6 3.62 2.26 .00 .00 .00 .00 7 3.18 2.28 .00 .00 .00 .00 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced five load capacity requirement Ratio of reduced to total Live loading 1.00 - Minimum steel 01004A - Moment capacity > factored (design) moment Support cutoff length for minimum steel(lengthfspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 1 OTAL WEIGHT OF REBAR = 108.5 lb AVERAGE = 1.0 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT-MIN-D+.25L-> (inA2) <_ULT-MIN-D+.25L-> Page 12 PT SLAB ( ) ADAPT -PT V- 5.30 1 2 1 .00( 2 .00( 3-4-5-6 .00 .00 .00 .00 .00 .00 .00 .00 .00) .00 .00 .00) .00 .00 00 .00 .00 .00 11.2.2 SELECTION OF REBAR A <- TOP STEEL -> SPAN ((m^2) <- SELECTION -> 1 2-3-4-5 1 .00 2 .00 3 .00 4 .00 5 .00 6 .00 .12 .12 .12 .12 .12 .12 7 8 9 ..00 00 .1212 .0066) .03 .12 .07) .03 ..12 .07) .04 .12 .07) .05 .12 .07) T MID -SPAN <- BOTTOM STEEL -> (inA2) <- SELECTION -> 6 7-8-9- 1#4x 13'-0" 1 # 4 x 13'-0" 1 *4 x 15'-0" 1 # 4 x 15'-0" 1 # 4 x 15'-0" 1 *4 x 15'-0" 11.3.1 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <-ULT-MIN-D+.25L-> (inA2) <-ULT--MIN-D+.25L-> 1 2 3---4 5 6 7 8 9- 1 .12 .04 .12 .11 .00 ( .00 .00 .00) 2 .12 .00 .12 .10 .00 .00 .00 .00 3 .12 .09 .12 .12 .00 .00 .00 .00 4 .13 .12 .12 .13 .00 .00 .00 00) 5 .13 .13 .12 .13) .00 ( .00 .00 .00) 6 .13 .12 .12 .13).00 .00 .00 .00) 7 .13 .04 .12 13 .00 .00 .00 .00) 11.3.2 SELECTION OF REBAR AT SUPPORTS <- TOP STEEL -> <- BOTTOM STEEL -> JOINT (inA2) <- SELECTION -> (inA2) <- SELECTION -> 1 2 3-4-5 6 7-8-9- 1 .12 1#4x 6'-6" .00 2 .12 1 # 4 x 10.-6" .00 3 .12 1#4x 11'-6" .00 sir-13 1* 4 x 11'-0" .00 .13 1#4x 11'-0" .00 6. .13 1 # 4 x 11'-0" .00 7 .13 1#4x 15'-0" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) Page 13 PT SLAB ADAPT -PT V- 5.30 <-TOP B JOINT TO LEFT -1 2 er .00(1) 4.13(1) S 4.95(1) 4 5 4.504.50(1))) 6 4.50(1) 7 5.40(1 Legend: 1 = Common Case of rebar ARS-> <-BOTTOM BARS-> TO RIGHT TO LEFT TO RIGHT 3 4 5 4.13(1) .00(1) 3.30(1) 4.13() 2.48(1) 2.48(1) 4.50(1) 3.30(1) 2.70(1) 4.50(1) 4.50(1)2.70(1) 2.70 1) 2.701 2.7 1)) 4.50(1) 2.70(1) 2.70 1) 7.50(1) 2.70(1) 7.50 1 2 = Reber is needed conhnuosy over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading 1.00 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(lergthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 109.6 lb AVERAGE = 1.0 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- left* -> <- mdspan -> <- right* -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3 4 5 6 7 8 9 1 /"'86 -.45 3.13 1.54 -4.17 -2.53 .00 12.87 17 -2.53 3.28 .80 -4.28 -2.45 12.87 13.21 3 .28 -2.45 4.41 1.49 -4.70 -2.71 13.21 12.57 4 -4.70 -2.71 4.42 1.28 -4.82 -2.65 12.57 12.38 5 -4.82 -2.65 4.58 1.26 -4.76 -2.19 12.38 12.47 6 -4.76 -2.19 4.45 .32 -5.23 -2.84 12.47 .00 CR -5.23 -2.84 Page 14 PT SLAB ( ) ADAPT -PT V- 5.30 5 CS Note: • = face -of -support 1 D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION let-> <- midspan -> <-right*-> COEFFICIENT(%) SPAN max min max min mat min left right 1 2 3- 5 6 7--8-9- 1 -2.05 -1.55 1.18 .95 -1.57 -1.35 .00 18.37 2 -1.57 -1.35 1.35 1.00 -1.80 -1.55 18.37 18.13 3 -1.80 -1.55 1.71 1.30 -1.99 -1.72 18.13 17.93 4 -1.99 -1.72 1.66 1.22 -1.97 -1.67 17.93 17.95 5 -1.97 -1.67 1.70 1.23 -1.97 -1.62 17.95 17.95 6 -1.97 -1.62 1.52 .92 -2.38 -2.03 17.95 .00 CR -2.38 -2.03 Note: • = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1-2 3-4-5---6--7-8---9-- 1 .00 .00 .00 .00) :12 ( .00 .12 .06) .00 .00 .00 00) 12 ( .02 .12 07) 3 .00 .00 .00 .00) .12 ( .05 .12 .09) 4 .00 .00 .00 .00) .12 ( .06 .12 .09) 5 .00 .00 .00 .00 .12 (( .07 .12 .09) 6 .00 .00 .00 .00 .12 .06 .12 .08) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (inA2) <- SELECTION -> (inA2) <- SELECTION -> -1 2 3 1 5 8 7-8-9 1 .00 .12 1 # 4 x 14.-0" 2 .00 .12 1#4x 14'-0" 3 .00 .12 114 x 15'-6" 4 .00 .12 1#4x 15'-0" 5 .00 .12 1 *4 x 151-6" f /-^ .00 .12 1 # 4 x 15'-0" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <-ULT-MIN-D+_25L-> (inA2) <-ULT--MIN-D+.25L-> 1 2 3--4 5 6 7 8 9 Page 15 PT SLAB ( ) ADAPT -PT V- 5.30 S" 1 .12 ( .04 .12 .11) .00 ( .00 .00 N)) 2 .12 ( .00 .12 .09) .00 ( .00 .00 .00) 3 .12 ( .05 .12 .10) .00 ( .00 .00 .00 ( .07 .12 .11) .00 ( .00 .00 .00 ( .08 .12 .11).00 ( .00 .00 .00 6 . 2 ( .08 .12 .11.00 ( .00 .00 .00 7 .13 ( .04 .12 .13) .00 ( .00 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT S U P P O R T S <- TOP STEEL > <- BOTTOM STEEL -> JOINT QnA2) <- SELECTION -> (inA2) <- SELECTION -> 1 2-3--1 5 6 7-8--9- 1 .12 1 # 4 x 6-0" .00 2 .12 1 # 4 x 101-6" .00 3 .12 1#4x 111-0" .00 4 .12 1 if 4 x 11'-0" .00 5 .12 1 R 4 x 11'-0" .00 6 .12 1 # 4 x 11'-0" .00 7 .13 1#4x 14'-0" .00 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <-TOP BARS-> JOINT TO LEFT TO RIGHT 1 2 3 .00(1) 4.13(1) 4.13(1) 4.13(1)3() 4.50(((4.13(1)1) 4.50(1) 4.50 1) 4.50 1 4.50 1) 4.501 4.50(1) 7.501 1 2 3 4 5 6 7 Legend: 1 = Common Case of rebar 2 = Reber Is needed continuosy over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 120th points (file "SELBAR.DAT") <-BOTTOM BARS-> TO LEFT TO RIGHT 4 5 .00(1) 2.48(1) 2.4488'1) (1) 2.48 1 1.80 1 2.70 2.48 1 2.70 1 2.70 1 2.70 1)) 1.801 2.70(1 2.70'1 7.50(1 12 .EAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI 318-89) No shear reinforcement required Page 16 PT SLAB ( ) ADAPT -PT V- 5.30 5 (1 13-MAXIMUM SPAN DEFLECTIONS r^te's modulus of elasticity Ec = 3600.00 ksi actor K = 2.00 _.ive/lgross...(due to cracking) K = 1.00 Where stresses exceed 6(fc')"1/2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1-2-3 4 5 6 1 .05 .01 .03( 6397) 30(4 5233) 09) .0((( 72878) .0 635 3 .08 .01 .04( 4985) .06( 362724) .10( 2131) 4 .07 .01 .02( 9103) .05( 4295) .07( 2918) 5 .08 .02 .06( 3631) .05( 4044) .11(1913) 6 .07 -.02 -.05( 4307) .05( 4435) .00(``''1 CANR .12 .07 .21( 422) .09( 1054) .30( 301) TC TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 PASADENA. CALIFORNIA 91 1 O7 (829) 351-9991 FAX [5251 351-5319 Fr rttrwirtiei 5TRI4 Ulte sheet 5 (5b of by lob no. I395 date to /19 4Lk aBH c - *°. I &61.S- 414I2 tfr/ 1$, ��,- tat ® (& ` - tk ® l 6L4 - 4gd 14�% 4 4p,r7 ‘400 40r1 4tse 3 lli 34i61 Iyz '�'�[} vat )ht.4;4:1_ 'f� �'�914,6 tit t 911 ri. h0 � tp1 <®10 ®> bL %ItiNx o,15}1- ,s01du = a , pit Ar- id,- Krs1aN LbAV it < 0 T8 W e UN>; LSvr�a84 I2L �l 1-�a15) t-Co.to I. -Awls) t�q'5,6g12'sb;Ov.a, 13 kAic 17fSSI4N 1.a417 e C b 1 17L, Cjt,e o115) t (bit, 14$ k3 . Alll lats `eN ttu& -r nDeMst 11.4 x 1n',4 n; 11 - W' 4 Arum, a L - z19-4x14fn%a 1- Yart k'v t o C lei-v 6,5'` s 1' /34.1). t ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, Califomia 94061 541 / (' -PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System , r33 Woodside Road, Suite 220, Redwood City, Califomia 94061 I Phone: (650)306-2400 Fax: (650)364-4678 Email: Support@AdaptSoft.com i Web site: htlp://www.AdaptSoft.com w.AdaptSoft.com DATE AND TIME OF PROGRAM EXECUTION: Jun 20,1999 At Time: 9:56 PROJECT TITLE: HOAG PARKING STRUCTURE (PTSLAB61) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (Pc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (Pc)) At all locations .450 REINFORCEMENT: YIELL Strength 60.00 ksi N. Cover at TOP 1.00 in Mi. , Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 inA2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. Min average precompression 125.00 psi Max spacing between strands (factor of slab depth) 8.00 1.25 in 1.75 in 14 Slrea L GRIO 19 p+bsub Page 2 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 Ste Tendon profile type and support widths (see section 9) AP't...''eJS OPTIONS USED: St system ONE-WAY Mon.- . of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S Fl I I TOP IBOTTOMIMIDDLEI P O) I I FLANGE I FLANGE ) REF I MULTIPLIER A RI LENGTH' WIDTH DEPTH) width thick.' width thidc.IHEIGHTI left right N MI ft I in in I in in I in in I in 1 3--4 5-6 7-8 9 10-11-12-13- 1 1 16.50 12.00 8.00 8.00 .50 .50 2 1 16.50 12.00 8.00 8.00 .50 .50 3 1 18.00 12.00 5.00 8.00 .50 .50 4 1 18.00 12.00 5.00 8.00 .50 .50 5 1 18.00 12.00 5.00 8.00 .50 .50 6 1 18.00 12.00 5.00 8.00 .50 .50 C 1 7.50 12.00 5.00 8.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3 - FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN --> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CSC* LENGTH B(DIA) D CBC* JOINT in ft in in ft in in 1 2 3-4 5---6 7-8 9 10- Page 3 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 s� l 1 .00 .00 .00 .00 (1) .00 .00 .00 (1) 2 .00 .00 .00 .00 (1) .00 .00 .00 (1) 2 /"°0 .00 .00 .00 (1) .00 .00 .00 (1) 4 I .00 .00 .00 (1) .00 .00. .00 (1) 5 .00 .00 .00 (1) .00 .00 .00 (1) 6 .00 .00 .00 .00 (1) .00 .00 .00 (1) 7 .00 .00 .00 .00 (1) .00 .00 .00 (1) 'THE COLUMN BOUNDARY CONDITION CODES (CDC) Fixed at both ends ...(STANDARD) = 1 Hinged at near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <-CI ASS-> c TYPE > D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Tdb SPAN CLASS TYPE k/ftA2 ( ft ft) (k-ft or k ...ft) k/ft 1 2 3 1 5 6 7 8 9- 1 D Li .00 16.50 .110 1 L Li .00 16.50 .050 2 D Li .00 16.50 .110 2 L Li .00 16.50 .050 C 3 Li .00 18.00 .130 3 L Li .00 18.00 .050 4 D Li .00 18.00 .072 4 L Li .00 18.00 .050 5 D Li .00 18.00 .072 5 L Li .00 18.00 .050 6 D Li .00 18.00 .072 6 L Li .00 18.00 .050 Page 4 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 S1 Z CANT D Li .00 7.50 .072 CANT L Li .00 7.50 .050 A IVE LOADING is SKIPPED with a skip factor of 1.00 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/ft^2), ( CON. or PART.) (MOMENT) SPAN CLASS TYPE LINE(k/ft) (k@ft or ft-ft) (k-ft © ft ) 1 2 3--4 5--6 7 8 1 D L .110 .00 16.50 1 L L .050 .00 16.50 2 D L .110 .00 16.50 2 L L .050 .00 16.50 3 D L .130 .00 18.00 3 l L .050 .00 18.00 4 D L .072 .00 18.00 4 L L .050 .00 18.00 5 D L .072 .00 18.00 5 L L .050 .00 18.00 6 D L .072 .00 18.00 6 L L .050 .00 18.00 CANT D L .072 .00 7.50 CANT L L .050 .00 7.50 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 4.2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber I= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA 1 Yb Yt Page 5 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 (SEGMENT) in^2 in^4 in in 2 3 4 5 Sri"" 96.00 .5120E+03 4.00 4.00 SPAT. 1 96.00 .5120E+03 4.00 4.00 SPAN 3 1 60.00 .1250E+03 2.50 2.50 SPAN 4 1 60.00 .1250E+03 2.50 2.50 SPAN 5 1 60.00 .1250E+03 2.50 2.50 SPAN 6 1 60.00 .1250E+03 2.50 2.50 CANTILEVER RIGHT 1 60.00 .1250E+03 2.50 2.50 5- DEAD LOAD MOMENTS, SHEARS & REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(I)• Midspan M(r)- SH(I) SH(r) 1 2 3-4 5--6 1 -2.66 1.33 -2.16 -.94 .88 2 -2.16 .83 -3.67 -.82 1.00 3 -3.67 2.06 -2.74 -1.22 1.12 4 -2.74 .68 -1.74 -.70 .59 5 -1.74 1.06 -1.97 -.63 .66 6 -1.97 .92 -2.02 -.65 .65 CANT -2.03 - -.54 - Note; • = Centerline moments JC < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1 2 Lower columns -Upper columns- 1 .94 .00 .00 2 1.69 .00 .00 3 2.22 .00 .00 4 1.82 .00 .00 5 1.23 .00 .00 6 1.31 .00 .00 7 1.19 .00 .00 S13 Page 6 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> <- left` -> <- midspan -> <- right* -> <-SHEAR FORCE--> SPAN max min max min max min left right 1 2 3-4 5 --6 7 8 9- 1 -1.67 .51 .83 -.25 -1.47 -.07 -.51 .44 2 -1.47 -.07 1.27 -.77 -1.73 .15 -.51 .49 3 -1.73 .15 1.07 -.38 -1.67 -.45 -.52 .49 4 -1.67 -.45 1.29 -.62 -1.83 -.41 -.52 .52 5 -1.83 -.41 1.40 -.72 -1.92 -.20 -.54 .53 6 -1.92 -.20 1.59 -.94 -1.41 .00 -.56 .50 CR -1.41 Note: = Centerline moments <- 6.2 REACTIONS (k) -> <- 6.3 COLUMN MOMENTS (k-ft) -> <- LOWER COLUMN -> <- UPPER COLUMN -> JOINT max min max min max min -1 2 3 -4 5 6 7- 1 .51 -.09 .00 .00 .00 .00 2 .95 .23 .00 .00 .00 .00 3 1.01 .28 .00 .00 .00 .00 4 1.01 .38 .00 .00 .00 .00 5 1.06 .36 .00 .00 .00 .00 6 1.09 .29 .00 .00 .00 .00 7 .87 .34 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT .. I REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left' -> <- midspan -> <- right' -> -1 2 2 -4 1 -2.66 1.33 -2.16 2 -2.16 .83 -3.67 3 -3.67 2.06 -2.74 4 -2.74 .68 -1.74 5 -1.74 1.06 -1.97 6 -1.97 .92 -2.02 CANT -2.02 - - Page 7 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 S'15 Note: 'r-=ceof-support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <- left• -> <- SPAN max min 1 2 3 1 -1.67 .51 2 -1.47 -.07 1 3 -1.73 .15 1 4 -1.67 -.45 1 5 -1.83 -.41 1 6 -1.92 -.20 1 CR -1.41 midspan -> <- right" --> max min max min 5 -6 7 -.25 -1.47 -.07 -.77 -1.73 .15 -.38 -1.67 -.45 -.62 -1.83 -.41 -.72 -1.92 -.20 -.94 -1.41 .00 Note: • = face -of -support 83 .27 .07 .29 .40 .59 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) Maxima of dead load and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL ) <- left* -> <- midspan -> <- right* -> SPAN max min max min max min 1 2 3 5 6 7 1 -4.33 -2.15 2.17 1.08 -3.63 -2.23 2 -3.63 -2.23 2.10 .06 -5.39 -3.52 3 -5.39 -3.52 3.13 1.68 -4.41 -3.19 4 -4.41 -3.19 1.97 .06 -3.57 -2.15 5 -3.57 -2.15 2.46 .34 -3.89 -2.18 6 ("3.89 -2.18 2.51 -.02 -3.43 -2.03 CI' 3.43 - - Note: • = face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS Page 8 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 LEGEND: For Span: r reversed parabola simple parabola with straight portion over support _ - harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1/L X2IL X3IL AIL 1 2 3 -4 5- 1 2 .000 .500 .000 .000 2 2 .000 .500 .000 .000 3 2 .000 .500 .000 .000 4 2 .000 .500 .000 .000 5 2 .000 .500 .000 .000 6 2 .000 .500 .000 .000 CANT 1 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE Tendon editing mode selected: FORCE SELECTION <- SELECTED VALUES > <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> P/A Wbal SPAN (k/-) Left Center Right (psi) (k/-) -1 2 3--4 5----6 7 1 20.500 4.00 3.50 6.75 213.54 .094 2 20.500 6.75 4.75 6.75 213.54 .100 3 20.500 6.75 4.25 6.75 341.67 .105 I ir4.000 6.75 4.50 6.75 233.33 .065 L .000 6.75 4.50 6.75 233.33 .065 6 14.000 6.75 4.50 6.75 233.33 .065 CANT 16.000 6.75 5.50 266.67 .059 Approximate weight of strand 58.5 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT* CENTER RIGHT* LEFT CENTER RIGHT 5'I Page 9 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 -1 2 34 5-6 7 1 1.33 .00 .00 12.00 12.00 12.00 00 .00 3.82 12.00 12.00 12.00 0.50 10.00 14.24 7.50 7.50 7.50 4 t4.24 3.03 10.56 7.50 7.50 7.50 5 10.56 6.68 11.52 7.50 7.50 7.50 6 11.52 6.65 10.66 7.50 7.50 7.50 CANT 10.66 Note: • = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT' RIGHT* TOP BOTTOM TOP max-T max-C max-T max-C max-T 1 2 3--4 5-6 7 1 - -204.49 --426.44 - -32.61 2 - -32.60 --394.48 --348.14 3 379.62 -71.30 --1062.95 81.01 - 4 81.01 - - -764.34 224.32 - 5 224.32 - - -690.99 259.74 - 6 259.74 - --726.41 156.93 - CR 156.93 -180.67 - -690.27 - - Note: • = face -of -support 2 3„r", 4 5 6 CR CENTER TOP BOTTOM max-T max-C max-T max-C 2 3 4 5 - -292.67 --236.44 - -402.00 --215.94 - -672.35 ---357.96 - -510.98 44.32 -412.62 - -614.35 147.68 -361.09 5.31 -600.78 134.11 -471.98 BOTTOM max-C max-T max-C 8 9 - -394.47 - -255.07 - -764.34 - -690.99 - -726.41 - -690.27 9.7 POST -TENSIONING B A LAN C E 0 M O M E N T S. SHEARS 8 REACTIONS <-SPAN MOMENTS(k-ft)-> <-SPAN SHEARS (k)-> SPAN left* midspan right* SH(I) SH(r) -1 2 2 4 5 6 1 2.06 -1.32 1.70 .31 .31 sit Page 10 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 2 1.70 -.09 4.95 -.20 -.20 3 2.39 -1.75 2.65 -.01 -.01 ,^2.65 -.81 1.66 .02 .02 .66 -.87 1.84 -.01 -.01 6 1.84 -.98 1.67 .02 .02 CANT 1.67 -- -- .00 - Note: ` = face -of -support <-REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) --> -joint 2 Lower columns -Upper columns- 1 -.306 .000 .000 2 .503 .000 .000 3 -.183 .000 .000 4 -.032 .000 .000 5 .027 .000 .000 6 -.031 .000 .000 7 .021 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <-left`-> <-midspan -> <-right*-> SPAN max min max min max min -1 2 3 -4 5 -6 7- 1 -4.50 -.81 2.82 .97 -8.52 -6.13 2 4.52 -6.13 1.95 -1.51 -7.82 -4.62 3 to•-•82 -4.62 5.08 2.63 -6.16 -4.09 4 16 -4.09 3.50 .26 -5.34 -2.93 5 ...34 -2.93 4.16 .56 -5.65 -2.73 6 -5.65 -2.73 4.18 -.12 -5.23 -2.84 CR -5.23 - - Note: `= face -of -support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left` -> <- midspan -> <- right* -> 1 2 3 4 SI� Page 11 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 1 2.06 -.47 -3.00 2 -3.00 -1.37 .25 3 re,. .25 .38 .51 A .51 .36 .20 5 .20 .29 .38 6 .38 .19 .00 Note: • = face -of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min -1 2 3 4 5 ----6 7- 1 1.87 .85 .00 .00 .00 .00 2 4.49 3.27 .00 .00 .00 .00 3 4.64 3.41 .00 .00 .00 .00 4 4.23 3.16 .00 .00 .00 .00 5 3.55 2.36 .00 .00 .00 .00 6 3.65 2.29 .00 .00 .00 .00 7 3.17 2.27 .00 .00 .00 .00 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Uve loading .... 1.00 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Trp'Mar extension beyond zero -point 12.00 in B. bar extension beyond zero -paint 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 130.3 lb AVERAGE = 1.2 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT--MIN-D+25L-> (inA2) <-ULT-MIN--D+.25L-> Page 12 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 S - 1-2 3-4 5 -6 7-8 9 1 .00 ( .00 .00 .00) .19 ( .00 .19 .05) 7 pate ( .00 .00 .00) .19 ( .00 .19 .03) ( .00 .00 .00) .13 ( .00 .12 .13) 4 .i ( .00 .00 .00) .12 ( .00 .12 .06) 5 .00 ( .00 .00 .00) .12 ( .02 .12 .08) 6 .12 ( .00 .12 .00) .12 ( .02 .12 .07) 11.2.2 SELECTION OF REBAR AT MID -SPAN <- TOP STEEL > <- BOTTOM STEEL -> SPAN (inA2) <- SELECTION -> (inA2) <- SELECTION -> -1 2 3-4 5 -6 7-8 9- 1 .00 2 .00 3 .00 4 .00 5 .00 6 .12 1#4x 4'-0" .19 1 # 4 x 13-0 .19 .19 1#4x 111-6" .13 1#4x 14'-0" .12 1#4x 13'-0" .12 1#4x 15'-0" .12 1#4x 15'-0" 11.3.1 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> - 1-2-3 4 5 6 7 8 9 1 .19 ( .00 .19 .09) .00 ( .00 .00 .00) 2 .19 ( .00 .19 .08) .00 ( .00 .00 .00) 3 .23 ( .14 .19 .23) .00 ( .00 .00 .00) 4 .17 ( .02 .12 .17) .00 ( .00 .00 .00) 5 .12 ( .08 .12 .12) .00 ( .00 .00 .00) 6 .13 ( .10 .12 .13) .00 ( .00 .00 .00) 7 .13 ( .04 .12 .13) .00 ( .00 .00 .00) 11.3.2 SELECTION OF REBAR AT SUPPORTS <- TOP STEEL > <- BOTTOM STEEL -> <- SELECTION -> (inA2) <- SELECTION -> - 2 3-4 5 6 7-8 9 1 .19 1#4x 6'-6" .00 2 .19 1 # 4 x 10'-6" .00 3 .23 2 # 4 x 19'-0" .00 4 .17 1 # 4 x 13'-0" .00 5 .12 1#4x 111-0" .00 6 .13 1#4x 11'-0" .00 7 .13 1#4x 19'-6" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) Page 13 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 s �1 <-TOP BARS-> <-BOTTOM BARS -> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT -- C 2 3 4 5- .00(1) 4.13(1) .00(1) . 3.30(1) 2 4.13(1) 4.13(1) 2.48(1) 3.30(1) 3 12.38(1) 4.50(1) 4.13(11 3.60(1) 4 4.50(1) 6.30(1) 2.70(1) 4.50(1) 5 4.50(1) 4.50(1) 2.70(1) 2.70(1) 6 4.50(1) 4.50(3) 2.70(1) 2.70(1) 7 9.90(3) 7.50(1) 2.70(1) 7.50(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live bad capacity requirement Ratio of reduced to total Live loading .... 1.00 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(Iength/span) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 121.2 lb AVERAGE = 1.1 psf 11' EDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION ter -> <- midspan -> <-right*-> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3 4 5 6 7-8-9- 1 -4.50 -.81 3.27 1.60 -7.25 -5.22 .00 14.97 2 -7.25 -5.22 2.61 -.53 -7.13 -4.22 14.97 13.23 3 -7.13 -4.22 5.52 3.32 -5.46 -3.62 8.77 11.37 4 -5.46 -3.62 3.91 .95 -4.67 -2.56 11.37 12.61 5 -4.67 -2.56 4.51 1.24 -4.96 -2.39 12.61 12.16 6 -4.96 -2.39 4.34 .23 -5.23 -2.84 12.16 .00 CR -5.23 -2.84 Page 14 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 Note: • = face -of -support 11.0._ ,0+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <- le8•-> <- midspan -> <-right•-> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3- 5-6 7 8 9-- 1 -3.08 -2.53 1.75 1.51 -2.04 -1.75 .00 19.35 2 -2.04 -1.75 1.66 1.22 -3.43 -3.03 19.35 18.02 3 -3.43 -3.03 2.87 2.58 -2.61 -2.36 16.43 17.28 4 -2.61 -2.36 1.41 1.00 -1.80 -1.51 17.28 18.13 5 -1.80 -1.51 1.76 1.30 -2.01 -1.66 18.13 17.90 6 -2.01 -1.66 1.50 .90 -2.38 -2.03 17.90 .00 CR -2.38 -2.03 Note: '= face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (in1'2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+25L-> 1 2 3-4 5 C 7-8-9- 1 .00 ( .00 .00 .00) .19 ( .00 .19 .05) 2 .00 ( .00 .00 .00) .19 ( .00 .19 .05) 3 .00 ( .00 .00 .00) .16 ( .00 .12 .16) 4 .00 ( .00 .00 .00) .12 ( .01 .12 .08) 5 .00 ( .00 .00 .00) .12 ( .05 .12 .10) 6 .12 ( .00 .12 .00) .12 ( .04 .12 .08) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL > <- BOTTOM STEEL -> SPAN (in"2) <- SELECTION -> (in"2) <- SELECTION -> -1 2 3-4--5 6 7-8 9 ' er 00 .19 1 # 4 x 14-0" 4. JO .19 1#4x 13'-0" 3 .00 .16 1 # 4 x 151-6" 4 .00 .12 1#4x 15'-0" 5 .00 .12 1 # 4 x 16'-6" 6 .12 1#4x 9'-6" .12 1#4x 15'-0" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+.25L-> -1-2 3- 4 5 7 -8 9- Page 15 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 5B3 1 .19 ( 2 .19 ( ( ( 5 -.2 ( 6 .12 ( 7 .13 ( ao.o(S$ .19 .09) .00 ( .00 .00 .00) .19 .06) .00 ( .00 .00 .00) .19 .19) .00 ( .00 .00 .00) .12 .14) .00 ( .00 .00 .00) .12 .10) .00 ( .00 .00 .00) .12 .11) .00 ( .00' .00 .00) .12 .13) .00 ( .00 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <- TOP STEEL > <-- BOTTOM STEEL -> JOINT (inA2) <- SELECTION -> (inA2) <- SELECTION --> -1 2 3-4 5 6 7-8 9- 1 .19 1 # 4 x 6'-6" .00 2 .19 1 # 4 x 10'-6" .00 3 .19 1#4x 19'-0" .00 4 .14 1#4x 111-0" .00 5 .12 1 *4 x 11'-0" .00 6 .12 1 # 4 x 11-0" .00 7 .13 1#4x 14'-0" .00 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( 8 ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT -1 2 3 4 5- 1 .00(1) 4.13(1) .00(1) 3.30(1) 2 4.13(1) 4.13(1) 1.65(1) 2.48(1) 3 12.38(1) 4.50(1) 3.30(1) 2.70(1) 4 4.50(1) 4.50(1) 1.80(1) 3.60(1) 5 4.50(1) 4.50(1) 1.80(1) 1.80(1) 6 4.50(1) 4.50(3) 1.80(1) 2.70(1) 7 4.50(3) 7.50(1) 2.70(1) 7.50(1) Legend: 1 = Common Case of rebar 2 = Reber is needed continuo* over the entire span range of rebar requirement is not fully explicit in this table. er to either the print plot or detailed printout of rebar at .,20th points (file "SELBAR.DAT') 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI 318-89) u = No shear reinforcement required Page 16 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS C 's modulus of elasticity Ec = 3600.00 ksi Creur .actor K = 2.00 leffectivellgross...(due to cracking) K = 1.00 Where stresses exceed 6(fc')^1/2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1 2 34 5 0 1 .02 -.01-.02(11796) .01(21070) -.01(26801) 2 .01 .03 .09( 2153) .01(28584) .10( 2003) 3 .18 .03 .08( 2804) .05( 3952) .13( 1640) 4 .03 -.02 -.07( 3225) .05( 4313)-.02(12788) 5 .09 .03 .08( 2718) .05(4043) .13( 1625) 6 .07 -.02 -.05( 4348) .05( 4426) .00(""') CANR .13 .07 .20( 440) .09( 1055) .29( 310) s$t TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 PASADENA. CALIFORNIA 91 1 O7 f5251 351-9951 FAX 03251 351.5319 &$4ClH4 sSuc1use sheet S 65 of by Job no. 1315 date 5 /11 r-- r. 'T. 51.att14,46 � c w -rtt 4P4p <e l.Evsl_ 9`� i to tl t $' , (opt, j L 0,6" , lid S'Y 4" 41 I1�4 et, r5 44" eM J.'t inn C44:4 fl)_ Gj I� -r i u -rtwn.ss 4. op Ibltxr4Sa 11°9$044271124bs1i ► 42. 14„ st 40„:142,4 oftt kwto -Tellobt4s e ltrort etin N : t'4•' p= gyp"%x,ti = 3bbIL µ., et ¶Eth'tfV 34.b7emsyseekin It )vv ey e. Litt 3) hwtp-rmsaerts G Kidierri r.gk, tb • dr- 1 ct.Fs-x 1367,4•42'%I 24 4v a, @ IJ 'r t ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, Califomia 94061 IT -PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System i 13 Woodside Road, Suite 220, Redwood City, California 94061 (650)306-2400 Fax: (650)364-4678 Email: Support©AdaptSoft.com I Web site: http://www.AdaptSoft.com DATE AND TIME OF PROGRAM EXECUTION: May 16,1999 At Time: 19:9 PROJECT TITLE: HOAG PARKING STRUCTURE ( ) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.00000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At afl locations .450 REINFORCEMENT: YIELD Strength 60.00 ksi Minimum Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POT -TENSIONING: E :M UNBONDED L /tea strength of strand 270.00 ksi A4 effective stress in strand (final) 175.00 ksi Str. Area .153 in"2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. 1.00 in Min CGS of tendon from BOTTOM for EXTERIOR spans.. 1.75 in Min average precompression 125.00 psi Max spacing between strands (factor of slab depth) 8.00 S gb Page 2 PT SLAB ( ) ADAPT -PT V- 5.30 Tendon profile type and support widths (see section 9) A 'SIS OPTIONS USED: S. rat system ONE-WAY Md of Inertia over support is NOT INCREASED Mo.....s REDUCED to face of support YES Limited plastiflcation allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOMIMIDDLE P O1 I I FLANGE I FLANGE I REF MULTIPLIER A RI LENGTH' WIDTH DEPTH) width thick.] width thick.IHEIGHTI left right N MI ft 1 in in I in in I in in I in I 1 3--4---5-6 7-8 9-10-11 12 13- 1 1 18.00 12.00 5.00 5.00 .50 .50 2 1 16.50 12.00 5.00 5.00 .50 .50 3 1 16.50 12.00 5.00 5.00 .50 .50 4 1 18.00 12.00 5.00 5.00 .50 .50 5 1 18.00 12.00 5.00 5.00 .50 .50 6 1 18.00 12.00 5.00 5.00 .50 .50 7 1 18.00 12.00 5.00 5.00 .50 .50 C 1 7.50 12.00 5.00 5.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3-FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN -> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CBC' LENGTH B(DIA) D CBC' JOINT in ft in in ft in in Sal Page 3 PT SLAB ( ) ADAPT -PT V- 5.30 81) 1 2 3 -4 5-6 7-8 9 10- 1 .00 .00 .00 .00 (1) .00 .00 .00 (1) ' 00 .00 .00 .00 ((1)) .00 .00 .00 1) .00 .00 .00 :in .00 .00 .00 (1) .00 .00 .00 1)) 5 ..W .00 .00 .00 (1) .00 .00 .00 1) 6 .00 .00 .00 .00 (1) .00 .00 .00 (1) 7 .00 .00 .00 .00 (1) .00 .00 .00 (1) 8 .00 .00 .00 .00 (1) .00 .00 .00 (1) 'THE COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends ...(STANDARD) = 1 Hinged at near end, fixed at far end = 2 Foxed at near end, hinged at far end = 3 Foxed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <-CLASS-> < TYPE > 0 = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE k/81'2 ( ft ft) (k-ft or k ...ft) k/ft 1 2 3 4 5-6 7 8 9- 1 D Li .00 18.00 .072 1 L Li .00 18.00 .050 2 D Li .00 16.50 .072 2 L Li .00 16.50 .050 3 0 Li .00 16.50 .072 3 Li .00 16.50 .050 4!^ Li .00 18.00 .072 4 Li .00 18.00 .050 5 D Li .00 18.00 .072 5 L Li .00 18.00 .050 6 D Li .00 18.00 .072 Page 4 PT SLAB ADAPT -PT V- 5.30 S 84 6 L Li .00 18.00 .050 7 u 7' ' u CAS. D Li CANT L Li .00 18.00 .00 18.00 .00 7.50 .00 7.50 .072 .050 .072 .050 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/ft"2), ( SPAN CLASS TYPE 1-2-3----4 1 D L .072 1 L L .050 2 D L .072 2 L L .050 3 D L .072 3 L L .050 4 D L .072 4 L L .050 5 D L .072 5 L L .050 6 D L .072 6 L L .050 7 D L .072 7 L L .050 CON. or PART.) (MOMENT) LINE( 5- 6 or ft-fl (k_ft fl ) .00 18.00 .00 18.00 .00 16.50 .00 16.50 .00 16.50 .00 16.50 .00 18.00 .00 18.00 .00 18.00 .00 18.00 .00 18.00 .00 18.00 .00 18.00 .00 18.00 CANT D L .072 .00 7.50 C /-� L L .050 .00 7.50 N' LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES Page 5 PT SLAB ( ) ADAPT -PT V- 5.30 5 4.7 Computed Section Properties for Segments of Nonprismadc Spans S. rrnoperties are listed for all segments of each span A=r •sectional geometry Yt= centroidal distance to top fiber I= g. . . moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA (SEGMENT)2 in^2 SPAN 1 1 60.00 SPAN 2 1 60.00 SPAN 3 1 60.00 SPAN 4 1 60.00 SPAN 5 1 60.00 SPAN 6 1 60.00 .1250E+03 SPAN 7 1 60.00 1250E+03 CANTILEVER RIGHT 1 60.00 .1250E+03 in^4 3 .1250E+03 .1250E+03 .1250E+03 .1250E+03 .1250E+03 Yb Yt In in 1 5- 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 5- DEAD LOAD MOMENTS, SHEARS 8 REACTIONS <5.1 SPAN MOMENTS (k-ft) SPAN M(I)' Midspan M(r)' 1-2 3 4 1 -2.02 1.01 -1.80 2 -1.80 .78 -1.55 3 -1.55 .77 -1.81 4 -1.81 1.02 5 -1.98 .96 r -1.94 .98 .94 C! -2.03 - Note: = Centerline moments -1ae -1.94 -1.92 -2.02 > <5.2 SPAN SHEARS (k) > SH(I) SH(r) 5- 8 -.66 .64 -.61 .58 -.58 .61 -.64 .88 -.65 .65 -.65 .65 -.64 .65 -.54 - JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> Page 6 PT SLAB ( ) ADAPT -PT V- 5.30 1 2 Lower columns -Upper columns 1. .66 .00 .00 1.24 .00 .00 ./^ 1.16 .00 .00 4� 1.25 .00 .00 5 1.31 .00 .00 6 1.29 .00 .00 7 1.29 .00 .00 8 1.19 .00 .00 6- LIVE LOAD MOMENTS, SHEARS 8 REACTIONS <- 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> <- left• -> <- midspan -> <- right* -> <-SHEAR FORCE-> SPAN max min max min max min left right 1 2 3 -4 5-6 7 8 9 1 -1.81 .41 .90 -.20 -1.44 -.44 -.53 .46 2 -1.44 -.44 1.07 -.53 -1.48 -.30 -.48 .47 3 -1.48 -.30 1.15 -.62 -1.67 -.34 -.48 .50 4 -1.67 -.34 1.32 -.61 -1.79 -.46 -.52 .52 5 -1.79 -.46 1.35 -.68 -1.86 -Al -.53 .53 6 -1.86 -.41 1.42 -.74 -1.92 -.20 -.54 .53 7 -1.92 -.20 1.60 -.94 -1.41 .00 -.56 .50 CR -1.41 - - -.38 - Note: • = Centerline moments <- 6.2 REACTIONS (k) -> <- 6.3 COLUMN MOMENTS (k-ft) <- LOWER COLUMN -> <- UPPER COLUMN -> JOINT max min max min max min -1 2 3 4 6 6 7- 1 .53 -.07 .00 .00 .00 .00 2 .94 .36 .00 .00 .00 .00 3 .95 .32 .00 .00 .00 .00 4 1.01 .34 .00 .00 .00 .00 ' 1.05 .38 .00 .00 .00 .00 t .r- 1.07 .36 .00 .00 .00 .00 71 1.09 .29 .00 .00 .00 .00 8 .87 .34 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases Page 7 PT SLAB ( ) ADAPT -PT V- 5.30 7 - MOMENTS REDUCED TO FACE -OF -SUPPORT r1 REDUCED DEAD LOAD MOMENTS (k-ft) SP. <- left' -> <- midspan -> <- right* -> 1 2 3 4 1 -2.02 1.01 -1.80 2 -1.80 .78 -1.55 3 -1.55 .77 -1.80 4 -1.80 1.02 -1.98 5 -1.98 .96 -1.94 6 -1.94 .98 -1.92 7 -1.92 .94 -2.02 CANT -2.02 - - Note: • = face -of -support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <- left* -> <-midspan -> <- right* -> SPAN max min max min max min 1 2 3 5 6 7 1 -1.81 .41 .90 -.20 -1.44 -.44 2 -1.44 -.44 1.07 -.53 -1.48 -.30 3 -1.48 -.30 1.15 -.62 -1.67 -.34 4 -1.67 -.34 1.32 -.61 -1.79 -.46 5 -1.79 -.46 1.35 -.68 -1.86 -.41 6 -1.86 -.41 1.42 -.74 -1.92 -.20 7 -1.92 -.20 1.60 -.94 -1.41 .00 CR -1.41 - - Note: 'it= face -of -support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) N. rot dead load and live load span moments combined fort *ability checks ( 1.00DL + 1.00LL ) <- left* -> <- midspan -> right* -> SPAN max min max min max min -1 2 3 4 5 6 7- 1 -3.82 -1.61 1.91 .81 -3.24 -2.23 2 -3.24 -2.23 1.85 .25 -3.03 -1.85 Page 8 PT SLAB ( ) ADAPT -PT V- 5.30 593 3 -3.03 -1.85 1.93 .16 -3.47 -2.14 4 -3.47 -2.14 2.34 .42 -3.77 -2.44 -3.77 -2.44 2.31 .27 -3.80 -2.35 fir-2.35 2.40 .25 -3.85 -2.12 TT 3.85 -2.12 2.54 .00 -3.43 -2.03 CR -3.43 - - Note: • =face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1/L X2/L X3/L A/L 1 2 3 4 5- 1 2 .000 .500 .00 .00 2 2 .000 .500 .000 .000 3 2 .000 .500 .000 .000 4 2 .000 .500 .000 .000 5 2 .000 .500 .000 .000 6 2 .000 .500 .000 .000 7 2 .000 .500 .000 .000 CANT 1 .000 9.. iLECTED POST -TENSIONING FORCES AND TENDON DRAPE Tendon editing mode selected: FORCE SELECTION <- SELECTED VALUES -> <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> P/A Wbal Page 9 PT SLAB ( ) ADAPT -PT V- 5.30 SPAN (k/-) Left Center Right 1 2 3 4 5 20.000 2.50 1.75 000 3.75 1.75 3 '.000 3.75 1.75 4 2.000 3.75 1.25 5 12.000 3.75 1.25 6 12.000 3.75 1.25 7 12.000 3.75 1.25 CANT 16.000 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 2.50 (psi) (k/-) 6 7- 333.33 200.00 200.00 200.00 200.00 200.00 200.00 266.67 .057 .059 .059 .062 .062 .062 .062 .059 Approximate weight of strand 67.9 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM PIA -> SPAN LEFT' CENTER RIGHT" LEFT CENTER RIGHT -1 2 3--4 5-6-7- 1 16.97 3.10 10.34 7.50 7.50 7.50 2 10.34 1.94 7.90 7.50 7.50 7.50 3 7.90 2.96 9.80 7.50 7.50 7.50 4 9.80 5.27 10.28 7.50 7.50 7.50 5 10.28 5.24 10.82 7.50 7.50 7.50 6 10.82 6.04 10.42 7.50 7.50 7.50 7 10.42 6.30 10.66 7.50 7.50 7.50 CANT 10.66 - - 7.50 - - Note: • = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT• RIGHT TOP BOTTOM TOP max-T max-C max-T max-C max-T 1 2 3 4 5 6 7 1 283.51 -247.21 --950.18 7.83 - 2 7.83 - - -674.49 199.01 - 2 1.01 - - -599.01 277.75 - 4 775 - - -677.75 291.82 - 5 12 - - 891.82 321.68 - 6 .38 - - -721.68 297.15 - 7 297.15 - - -697.15 156.93 - CR 156.93 -180.67 - -690.27 - - Note: • = face -of -support BOTTOM max-C max-T max-C 8 9- - -674.49 --599.01 - -677.75 - -691.82 - -721.68 - -697.15 - -690.27 Page 10 PT SLAB ( ) ADAPT -PT V- 5.30 slS 2 3 4 5 6 7 CR CENTER TOP BOTTOM max-T max-C max-T max-C 2-3-4---5 - -610.97 --321.37 • - -445.96 45.96 -338.02 - -524.98 124.98 -300.23 - -546.50 146.50 -315.09 - -554.99 154.99 -332.70 - -584.84 184.84 -332.31 37.07 -571.82 171.82 -437.07 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <-SPAN MOM ENTS(k-fI)-> <-SPANSHEARS(k)-> SPAN left' midspan right* SH(I) SH(r) 1 2 3 ' 5 6 1 1.25 -.76 1.82 .08 2 1.82 -.82 1.37 -.02 3 1.37 -.57 1.48 -.01 4 1.48 -.90 1.72 -.01 5 1.72 -.83 1.63 .01 6 1.63 -.80 1.77 -.01 7 1.77 -.99 1.67 .03 CANT 1.67 - - .00 Note: ' = face -of -support -joint 1 2 <-REACTIONS 2 -.084 .108 3 -.017 4 .006 5 -.019 .014 .029 -.02 -.01 -.01 .01 -.01 .03 (k )-> <- COLUMN MOMENTS (k-ft) -> Lower columns -Upper columns- .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 Page 11 PT SLAB ( ) ADAPT -PT V- 5.30 Sib JOINT max -1 2 1 -1.73 2( 1.44 3 3.22 4 3.47 5 3.59 6 3.65 7 3.62 8 3.18 10-FACTORED MOMENTS & REACTIONS Cited as ( 1.40D + 1.70L + 1.00 secondary moment effects) 10(�' ^‘CTORED DESIGN MOMENTS (k-ft) <- left* -> <- midspan SPAN max min max 1 2 3 1 1 -4.64 -.88 3.44 1 2 -5.23 -3.52 2.84 3 -4.57 -2.56 3.22 4 -5.13 -2.87 4.03 5 -5.34 -3.08 4.06 6 -5.50 -3.03 4.24 7 -5.44 -2.50 4.29 CR -5.23 Note: • = face -of -support .76 -5.34 .60 -5.50 .58 -5.44 -.02 -5.23 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left' -> <- midspan -> <- right -> 1 2 3 1 1 1.25 .49 -.27 2 -.27 -.07 .12 3 .12 .18 .23 4 .23 .35 .47 5 .47 .42 .37 6 .37 .45 .52 7 .52 .26 .00 Note: • = face -of -support -> <-right'-> min max min 56 7 .56 -5.23 -3.52 .12 -4.57 -2.56 .21 -5.13 -2.87 -3.08 -3.03 -2.50 -2.84 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) <- LOWER column -> <- UPPER column -> min max min max min .73 .00 .00 .00 .00 2.47 .00 .00 .00 .00 2.14 .00 .00 .00 .00 2.33 .00 .00 .00 .00 2.46 .00 .00 .00 2.44 .00 .00 .00 2.26 .00 .00 .00 2.28 .00 .00 .00 Page 12 PT SLAB ( ) ADAPT -PT V- 5.30 LD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM' SYSTEM - Dead + 25% of unreduced Live bad capacity requirement Ratio of reduced to total Live loading .... 1.00 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 125.2 lb AVERAGE = 1.0 psf 11.2.1 STEEL AT MID -SPAN As DIFFERENT REBAR CRITERIA TT As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D .25L-> 1 2 3---4 5 6 7 8 9- 1 .00 ( .00 .00 .00 .12 ( .00 .12 .07) 2 .00 ( .00 .00 .00 .12 ( 3 .00 ( .00 .00 .00 .12 ( .01 .12 .06 4 .00 ( .00 .00 .00) .12 ( .03 .12 .07) 5 .00 ( .00 .00 00 .12 .03 .12 .07) 6 .00 ( .00 .00 .00 .12 .04 .12 07) 7 .00 ( .00 .00 .00 .12 ( .05 .12 .07) 11.2.2 SELECTION OF REBAR A <- TOP STEEL -> SPAN (inA2) <- SELECTION -> 1 2 3-4 5 .00 .12 00 .12 3� 00 .12 4 .00 .12 5 .00 .12 6 .00 .12 7 .00 .12 T MID -SPAN <- BOTTOM STEEL -> (inA2) <- SELECTION -> 6 7--6-9-- 1#4x 14'-0" 114 x 13-0" 1 it 4 x 13'-0" 1*4x 15'-0" 1A4x 15'-0" 1 N4x 15'-0" 1N4x 15'-0" Page 13 PT SLAB ( ) ADAPT -PT V- 5.30 CIO 11.3.1 STEEL AT SUPPORTS TOP BOTTOM \s DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA J /vmA2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> -1/ 3---4 5 6 7--8 9- 1 4 ( .07 .12 .14) .00 ( .00 .00 .00) 2 .12 ( .00 .12 .12) .00 ( .00 .00 00)) 3 .12 ( .07 .12 .10) .00 ( .00 .00 .00) 4 .12 ( .10 .12 12)) .00 ( .00 .00 .00) 5 .13 ( .12 .12 .133 .00 ( .00 .00 .00) 6 .13 ( .13 .12 .13 .00 .00 .00 .00) 7 .13 ( .12 .12 .13) .00 ( .00 .00 .00) 8 .13 ( .04 .12 .13) .00 ( .00 .00 .00) 11.3.2 SELECTION OF REBAR AT SUPPORTS <- TOP STEEL -> <- BOTTOM STEEL -> JOINT (inA2) <- SELECTION -> (inA2) <- SELECTION -> 1 2 3-4 5 6 7-8 9- 1 .14 1*4x 61-6" .00 2 .12 1* 4 x 11'-0" .00 3 .12 1* 4 x 10'-6" .00 4 .12 1 M 4 x 11'-6" .00 5 .13 1 M 4 x 11'-0" .00 6 .13 1 t 4 x 11'-0" .00 7 .13 1* 4 x 11'-0" .00 8 .13 1 .4 x 15'-0" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (fi ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 5--- 1 2 3 1 .00(1) 4.50(1) .00(1) 3.60(1) 2 4.50 1) 4.13(12.70 1) 3.30(1) 3 4.131 4.13(1 2.481 2.48(1) 4 4.95 1)))) 4.50(1 3.30 1 2.700((13 6 5 4. 14.50 ))) 4.4.5500(((113) 2.72.701 2.70((1)) 5.40 1) 7.50(1) 2.70(1) 7.50(1) L ommon Case of rebar .ebar is needed continuosy aver the entire span 3 = Range of rebar requirement is not fully explidt in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file " EL A Page 14 PT SLAB ( ) ADAPT -PT V- 5.30 S�9 11-MILD STEEL S r lC CRITERIA for ONE-WAY or BEAM SYSTEM + 25% of unreduced IJve bad capacity requirement . of reduced to total Live loading .... 1.00 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(IengBJspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 127.6 lb AVERAGE = 1.0 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- left -> <- midspan -> <- right*-> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3 4 5--6-7 8 9- 1 -4.64 -.88 3.66 1.88 -4.60 -3.10 .00 12.10 2 -4.60 -3.10 3.22 .75 -3.94 -2.21 12.10 13.75 3 -3.94 -2.21 3.58 .86 4.47 -2.50 13.75 12.93 4 -4.47 -2.50 4.41 1.42 -4.67 -2.70 12.93 12.61 5 4.67 -2.70 4.44 1.28 4.82 -2.66 12.61 12.38 6 4.82 -2.66 4.58 1.26 -4.76 -2.19 12.38 12.47 7 -4.76 -2.19 4.45 .32 -5.23 -2.84 12.47 .00 CR -5.23 -2.84 Note: • = face -of -support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION )er-> <- midspan -> <- rght-> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3 4 5-6 7-8 9- 1 2.47 -1.92 1.41 1.16 -1.76 -1.56 .00 18.17 rt 76 -1.56 1.37 1.02 -1.57 -1.33 18.17 18.37 3/ �57 -1.33 1.38 1.00 -1.82 -1.55 18.37 18.11 4 .82 -1.55 1.71 1.29 -1.99 -1.72 18.11 17.93 5 -1.99 -1.72 1.67 1.22 -1.97 -1.67 17.93 17.95 6 -1.97 -1.67 1.70 1.23 -1.97 -1.62 17.95 17.95 7 -1.97 -1.62 1.52 .92 -2.38 -2.03 17.95 .00 CR -2.38 -2.03 Page 15 PT SLAB ( ) ADAPT -PT V- 5.30 S ( co Note: '= face -of -support 11� REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (iM2) <-ULT-MIN-D+.25L-> (iM2) <-ULT-MIN-D+.25L-> 1 2 3 -4 5--6 7-8 9 1 .00 ( .00 .00 .00 .12 ( .00 .12 .08) 2 .00 ( .00 .00 .00 .12 ( .01 .12 .07) 3 .00 ( .00 .00 .00 .12 ( .03 .12 .07) 4 .00 .00 .00 .00) .12 ( .05 .12 .09) 5 .00 .00 .00 .00) .12 ( .06 .12 09) 6 .00 ( .00 .00 .00) .12 ( .07 .12 .09) 7 .00 ( .00 .00 .00) .12 ( .06 .12 .08) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT M I D- S P A N <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (iM2) <3 SELECTION -> 0 (iM7) B - --9 ---- -> 11 .00 .12 1#4x 15'-0" 2 .00 .12 1 # 4 x 141-6" 3 .00 .12 1#4x 14'-6" 4 .00 .12 1 # 4 x 15'-6" 5 .00 .12 1#4x 15'-0" 6 .00 .12 1 # 4 x 15'-6" 7 .00 .12 1 # 4 x 15'-0" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+.25L-> 1 2 3 4 5 -6 7 8 9 1 .14 ( .07 .12 .14) .00 ( .00 .00 .00) 2 .12 i .00 .12 .10 .00 ( .00 .00 .00) 3 .12 .02 .12 .08 .00 .00 .00 .00) 4 .12 .06 .12 .10 .00 .00 .00 00) 5 .12 ( .07 .12 .11 .00 .00 .00 .00) f 12 .08 .12 .11 .00 ( .00 .00 .00) �y .08 .12 .1 .00 ( .00 .00 .00) 8( .04 .12 .13) .00 ( .00 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <- TOP STEEL -> <- BOTTOM STEEL -> JOINT (inA2) <- SELECTION -> (in"2) <- SELECTION -> 1 2 3-4---5 6 7-8 9 Page 16 PT SLAB ( ) ADAPT -PT V- 5.30 I61 1 .14 1.4x 6'-6" .00 2 .12 1 # 4 x 111-0" .00 .12 1S4x 10'-6" .00 (r 11,4 x 111-0" .00 5 ^. 1 S 4 x 11'-0" .00 6 d 1 •4 x 11'-0" .00 7 .12 1 # 4 x 11'-0" .00 8 .13 1#4x 14'-0" .00 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <_TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 4 5- 00(1) 3.60(1) 1.800 1) 2.48 1) 1.651) 1.651 2.481) 1.801' 2.7 1) 2.70 1 2.70 1 2.70 1 1.80 1 2.70 1 2.70 1) 7.501 1 2 1 .00(1) 3 (1) 2 4.50(1) 4.13(1) 3 4.13 1) 4.13(1) 4 4.13 1) 4.50(1) 5 4. 1) 4.50 1) 6 4. 1) 4.50 1) 7 4.50 1) 4.5 1) 8 4.50 1) 7.50(1) Legend: 1= Common Case of rebar 2 = Reber is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT1 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI 318-89) No shear reinforcement required lESTAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASADENA, CALIFORNIA 91 1 07 (6261 351-86131 FAX (6213] 351 -5319 H�,e� $.IH4 41suc itse aheet5 I D' of by job no. 1315 date 5 /11 Sl,tl> Gwn P 10 6rs41:7 CD frWAinap 40M l te' I �`I `1 ori 6=6 Li Dsst4t4 bL —chi "Ti rtoass fv —rtr4oart S <a Itve- I i t- '> 16L6 II s40 hint, -1311 lb rS-F- CS x 190 + I b rsf 1--psF -0, ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, California 94061 I ?T-PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95IUBC-1994 (V-5.30)Kr 1 ADAPT Structural Concrete Software System I i3 Woodside Road, Suite 220, Redwood CI LHI, California 94061 e: (650)306-2400 Fax: (650)364-4678 Ema : Support©AdaptSoft.com Web site: Mtp://www.AdaptSoft.com II DATE AND TIME OF PROGRAM EXECUTION: May 16,1999 At Time: 18:52 PROJECT TITLE: HOAG PARKING STRUCTURE (PTSLAB81) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksl CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (Pc)1/2) At Top 6.000 Al Bottom 6.000 COMPRESSION STRESS limits (multiple of (Pc)) At all locations .450 REINFORCEMENT: YIELD Strength 60.00 ksi Minimum Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: S' -91 UNBONDED qLv� q strength of strand 270.00 ksi SU effective stress in strand (final) 175.00 ksi SU rea .153 in^2 Min a..4S of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. Min average precompression 125.00 psi Max spadrg between strands (factor of slab depth) 8.00 1.00 in 1.75 in Page 2 PT SLAB (PTSLAB81) ADAPT -PT V- 5.30 Tendon profile type and support widths (see section 9) P' ' PSIS OPTIONS USED: I system ONE-WAY of Inertia over support is NOT INCREASED .s REDUCED to face of support YES Umited plastification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY m==---_r-r-_---_----_-=__===__=_______=_===__==___=__=_ 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOMIMIDDLE P O1 f FLANGE I FLANGE REF MULTIPLIER A RI LENGTHI WIDTH DEPTHII width thick.' width thick.IHEIGHTI left right N MI fi I in in I in in i In in I in I -1 3-4--5 6 7---8--9 10-11 12-13- 1 1 18.00 12.00 5.00 5.00 .50 .50 2 1 18.00 12.00 5.00 5.00 .50 .50 3 1 16.50 12.00 5.00 5.00 .50 .50 4 1 16.50 12.00 5.00 5.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3 - FORM 1 = Rectangular section 2 =Tor Inverted L section 3 = 1 section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line .SUPPORT WIDTH AND COLUMN DATA 'PORT <- LOWER COLUMN -> <- UPPER COLUMN -> •vIDTH LENGTH B(DIA) 0 CBC' LENGTH B(DIA) D CBC' JOINT In ft in in ft in in 1-2-3 5 6 7 B 9-10- 2 .00 .00 .00 .00 (1) .00 .00 .00 (1) Page 3 PT SLAB (PTSLAB81) ADAPT -PT V- 5.30 3 .00 .00 .00 .00 (1) .00 .00 00 (1) 41 /.�0�0 .00 .00 .00 ((11) .00 .00 .00 (00(1)) 'TY )LUMN BOUNDARY CONDITION CODES (CBC) Foie . both ends ...(STANDARD) =1 Hinged at near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING c-. C ASS-> < TYPE D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE kMA2 (ft R) (k-fit or k ...ft) k/ft 1 2-3-4 5 6 7 8 9- 1 D Li .00 18.00 .072 1 L Li .00 18.00 .050 2 D U .00 18.00 .072 2 L Li .00 18.00 .050 3 D Li .00 16.50 .072 3 L Li .00 16.50 .050 4 D U .00 16.50 .072 4 L Li .00 16.50 .050 LIVE LOADING is SKIPPED with a skip factor of 1.00 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING m=-=n=====____________==_=============a============ _____ UNIFORM (k/ftA2), (CON. or PART.) (MOMENT) Page 4 PT SLAB (PTStAB81) ADAPT -PT V- 5.30 S1a'j SPAN CLASS TYPE LINE(k/ft) (keft or ft-ft) (k-ft @ ft ) 1 8 1 -1 L .072 .00 18.00 • L .050 .00 18.00 2 L .072 .00 18.00 2 L L .050 .00 18.00 3 D L .072 .00 16.50 3 L L .050 .00 16.50 4 D L .072 .00 16.50 4 L L .050 .00 16.50 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES ex= =s=r==s = ==ss=s=====__ =====s======ass==s========= 4.2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroldal distance to top fiber I= gross moment of inertia Yb= centroldal distance to bottom fiber SPAN AREA I Yb Yt (SEGMENT)2 ina2 3 in"4 " in in SPAN 1 1 60.00 .1250E+03 2.50 2.50 SPAN 2 1 60.00 .1250E+03 2.50 2.50 SPAN 3 1 60.00 .1250E+03 2.50 2.50 SPAN 4 1 60.00 .1250E+03 2.50 2.50 fr- 5 AD LOAD MOMENTS, SHEARS 8 REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN 2 M(I)* Mi span 1M(r)* SH(I) SH(r) Page 5 PT SLAB (PTSLAB81) ADAPT -PT V- 5.30 <- 6.2 REACTIONS (k) <- JOINT max min -1 2 3 1 .53 -.08 2 .97 .37 �..97 .35 r 90 .31 5 .49 -.08 1 -1.92 .96 2 -1.99 1.03 -1.79 .76 (-M.59 .83 Note. ' = Centerline moments -1.99 -.64 -1.79 -.66 -1.59 -.61 -1.66 -.59 .65 .64 .58 .60 JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1 2 Lower columns -Upper columns- 1 64 .00 .00 2 1.31 .00 .00 3 1.24 .00 .00 4 1.17 .00 .00 5 .60 .00 .00 8- LIVE LOAD MOMENTS, SHEARS & REACTIONS xxxxx- x = ____-____====== = <- 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> <- left' -> <- midspan -> <- right* -> <-SHEAR FORCE-> SPAN max min max min max min left right 1 2 3 4 5 6 7 9 1 -1.81 .47 .90 -.24 -1.57 -.43 -.53 .47 2 -1.57 -.43 1.18 -.47 -1.56 -.37 -.51 .50 3 -1.56 -.37 1.04 -.51 -1.35 -.27 -.47 .47 4 -1.35 -.27 .78 -.21 -1.56 .41 -.43 .49 Note: = Centerline moments Ms/ER -> <- 6.3 COLUMN MOMENTS (k-ft) -> L R COLUMN -> <- UPPER COLUMN -> max min max min 4 5 6 7 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases Page 6 PT SLAB (PTSLA881) ADAPT -PT V- 5.30 5\9 7- MOMENTS REDUCED TO FACE -OF -SUPPORT =r =s=as s===-ss=====_=====u=============s======s====s========s=====___ ...."'-‘,1 REDUCED DEAD LOAD MOMENTS (k-ft) SP. <- left* -> <- midspan -> <- right* -> 1 2 3 -1 1 -1.92 .96 -1.99 2 -1.99 1.03 -1.79 3 -1.79 .76 -1.59 4 -1.59 .83 -1.66 Note: • = face -of -support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <- left* -> <-midspan -> <-right-> SPAN max min max min max min 1 2 3 4 5 6 7- 1 -1.81 .47 .90 -.24 -1.57 -.43 2 -1.57 -.43 1.18 -.47 -1.56 -.37 3 -1.56 -.37 1.04 -.51 -1.35 -.27 4 -1.35 -.27 .78 -.21 -1.56 .41 Note: • = face -of -support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) -___-______________-_________________________________-_____-___________ Maxima of dead load and live load span moments combined for serviceability checks (1.00DL + 1.00LL ) <- lefts -> <- midspan - SPAN max min max 1 2 3- 4 5 1 -3.73 -1.45 1.87 .73 2 -3.56 -2.42 2.21 .56 5 35 -2.16 1.80 .25 4 i'.94 -1.86 1.61 .62 Note: = face -of -support > <- -> min max min 6 7 -3.56 -2.42 -3.35 -2.16 -2.94 -1.86 -3.22 -1.24 Page 7 PT SLAB (PTSLAB81) ADAPT -PT V- 5.30 Sticz2. 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1C )FILE TYPES AND PARAMETERS LEC J: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever. 1 = simple parabola 2 = par0al parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE Xt/L X2IL X3/L AIL 1 2 3 4 5- 1 2 .000 .500 .000 .000 2 2 .000 .500 .000 .000 3 2 .000 .500 .000 .000 4 2 .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE Tendon editing mode selected: FORCE SELECTION SELECTED VALUES —> <- FORCE <- DISTANCE OF CGS (in) -> SPAN (W-) Left Center Right (oai) 1 2 3 4 5 5 1 20.000 2.50 1.75 3.75 333.33 2 12.000 3.75 1.25 3.75 200.00 3 12.000 3.75 1.75 3.75 200.00 4 18.000 3.75 1.75 2.50 300.00 CALCULATED VALUES -> P/A Wbal (k -) .057 .062 .059 .061 Ar mate weight of strand 35.9 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT* CENTER RIGHT* LEFT CENTER RIGHT —1 2 3 - 1 5 fi-7— Page 8 PT SLAB (PTSLAB81) ADAPT -PT V- 5.30 1 16.86 2.72 11.64 7.50 7.50 7.50 2 11.64 3.97 8.37 7.50 7.50 7.50 3 8.37 1.71 8.67 7.50 7.50 7.50 r"•--8.67 .29 12.24 7.50 7.50 7.50 No. • = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT* RIGHT• TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3 4 5--6 7 8 9- 1 283.59 -263.05 --950.26 38.86 - - -705.53 2 38.86 - - -705.53 195.04 - - -595.04 3 195.03 - - -595.03 28.73 - --628.73 4 28.73 - - -628.73 194.51 -280.29 --794.51 Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C 1 2 3 4-5 1 - -611.07 --329.28 2 - -475.21 75.21 -320.63 3 - -469.16 69.16 -301.72 4 - -519.46 --318.18 9.7 POST -TENSIONING B A LAN C E D M 0 M E N T S, SHEARS 8 REACTIONS <-SPAN MOMENTS(k-ft)-> <-SPAN SHEARS(k)-> SPAN let midspan right' SH(I) SH(r) 1 2 3 4 5 6 1 1.16 -.71 2.01 .07 .07 2 2.01 -1.06 1.71 -.03 -.03 3 1.71 -.67 1.57 .05 .05 i"..••••. 1.57 -.70 1.16 -.09 -.09 No • = Lace -of -support <-REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) -> -joint 2 Lower columns -Upper columns- 51(1 Page 9 PT SLAB (PTSLAB81) ADAPT -PT V- 5.30 S 111- 1 2 -.069 .098 -.076 .135 -.089 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <- left• - SPAN max 1 2 1 -4.60 2 -5.53 3 -4.70 4 -4.83 > <- midspan -> <-right'-> min max min max min 3 5 6 7 -.73 3.43 1.49 -5.53 -3.60 -3.60 3.63 .83 -4.70 -2.68 -2.68 2.90 .27 -4.83 -2.99 -2.99 2.92 1.24 -3.82 -.45 Note: • = face -of -support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- Ieft• -> <- midspan -> <- right* -> 2 3 4 1 1.16 2 -.08 3 .46 4 -.31 Note: • = face -of -support .54 -.08 .19 .46 .07 -.31 .43 1.16 FACTORED REACTIONS 10.4 (k) <- LOWER column -> JOi. max min max min 1 2 3 4 5 1 1.73 .70 .00 .00 2 3.59 2.56 .00 .00 3 3.32 2.26 .00 .00 4 3.31 2.29 .00 .00 FACTORED COLUMN MOMENTS (k-ft) <- UPPER column -> max min 6 7 .00 .00 .00 .00 .00 .00 .00 .00 Page 10 PT SLAB (PTSLAB81) ADAPT -PT V- 5.30 5 1.58 .62 .00 .00 .00 .00 1 I�.D STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Uve bad capacity requirement Ratio of reduced to total Live loading 1.00 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(bngthlspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 67.5 lb AVERAGE = 1.0 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (in"2) <-ULT--MIN-D`.25L-> (inA2) <-ULT-FAIN-D+.25L-> 1 2 3- 4 6 7 8 9- 1 .00 .00 .00 .00) .12 ( .00 .12 06) 2 .00 ((3 00( .00 .00 .00.00 .00)) .12 ( .00 .12 .07) 4 .00 ( .00 .00 .00) .12 12(( .00 .12 .06.00 .12 ) 11.2.2 SELECTION OF REBAR AT MI0-SPAN <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (in"2) <- SELECTION -> (inA2) <- SELECTION -> -1 2 3-45 6 7-8-9- 1 .00 .12 1#4x 14'-0" 2 .00 .12 104 x 15'-0" 3 .00 .12 1.4x 13'-0" ' �1.00 .12 1 *4 x 13'-0" 11.3., STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <-ULT-MIN-D+.25L-> (in"2) <-ULT--_MIN-D+.25L-> 1 2 3 4 5 C 7 8 9 Page 11 PT SLAB (PTSLAB61) ADAPT -PT V- 5.30 1 .13 ( .07 .12 .13) .00 .00 .00 .00 2 .13 (( .00 .12 .13) .00 .00 .00 .00 ,.+12 .07 .12 .12 .00 .00 .00 .00.00 .12 .10 .00 .00 .00 .00 5 t ( .04 .12 .11) .00 .00 .00 .00 11.3.2 SELECTION OF REBAR AT SUPPORTS <- TOP STEEL -> <- BOTTOM STEEL -> JOINT nA2) <- SELECTION -> (in"2) <- SELECTION -> -1 26-9- 1 .13 1 # 4 x 6-6 .00 .00 2 .13 1#4x 111-0" .00 3 .12 1#4x 111E" .00 4 .12 1 # 4 x 101-6" .00 5 .12 1#4x 61-6" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 2 ------4-------4 5 1 .00(1) 4.50(1) .00(1) 3.60(1) 2 4.50 1 4.50 1) 2.7 1 2.70 1) 3 4.50 1 4.95 1) 2.7 1 3.30 1) 4 4.1 1 4.13 1) 2.48 1 2.48 1) 5 4.13 1 .00(1) 3.30(1) .00(1) Legend: = Common Case of rebar 2 = Reber is needed contnuosly over the entire span 3 = Range of rebar requirement is not fully explicit In this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 11-MILD STEEL sac==m===== =s========c============ss=aaaa =z===aaa=== SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement "o of reduced to total Live bads .. 1.00 return - „/ f capacity> factored (design) moment Support cut-off length for minimum steel(Iength/span) ... .17 Span cutoff length for minimum steel(Iengthispan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero point 12.00 in Page 12 PT SLAB (PTSLAB81) ADAPT -PT V- 5.30 51IS REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 1 .TOTAL WEIGHT OF REBAR = 69.5 lb AVERAGE = 1.0 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- left -> <- midspan -> <- right" -> COEFFICIENT(%) SPAN max min max min max min left right 1-2 3 1 5-6-7 8 9- 1 -4.60 -.73 3.64 1.82 -4.86 -3.16 .00 12.10 2 -4.86 -3.16 4.03 1.48 -4.07 -2.32 12.10 13.55 3 -4.07 -2.32 3.27 .90 -4.21 -2.61 13.55 12.87 4 -4.21 -2.61 3.11 1.55 -3.82 -.45 12.87 .00 Note: • = face -of -support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft)REDISTRIBUTION <-left•-> <- midspan -> <-right'-> OEFFICIENT(%) SPAN max min max min max min left right 1 2-3---4 5--6-7 8 9- 1 -2.37 -1.80 1.38 1.12 -1.95 -1.72 .00 17.97 2 -1.95 -1.72 1.68 1.32 -1.79 -1.54 17.97 18.14 3 -1.79 -1.54 1.34 1.01 -1.57 -1.35 18.14 18.37 4 -1.57 -1.35 1.18 .95 -2.05 -1.55 18.37 .00 Note: = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (in"2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+.25L-> 1 2 3 1 5 6 7-8 9- 1 .00 ( .00 .00 00 .12 .00 .12 07 2 .00 ( .00 .00 .00 .12 .03 .12 .09 3 .00 .00 .00 .00 .12 .01 .12 .07 4 .00 ( .00 .00 .00 .12 ( .00 .12 .06) 1 y SELECTION OF REDISTRIBUTED REBAR AT M I D- S P A N - TOP STEEL -> <- BOTTOM STEEL -> SPAN (m"2) <- SELECTION -> (in"2) <- SELECTION -> -1 2 3-4 5 0-7-8-9- 1 .00 .12 104x 15'-0" 2 .00 .12 104x 15'-0" 3 .00 .12 1 N 4 x 14'-0" Page 13 PT SLAB (PTSLAB81) ADAPT -PT V- 5.30 4 .00 .12 1t4x 14'-0" 1 .....REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOIN 1 (inA2) <-ULT-MIN-D+.25L-> (irtA2) <-ULT-MIN-D+.25L-> 1-2-3 1 $ 6 7 8 9- 1 .13 ( .07 .12 .13) .00 ( .00 .00 00 2 .12 ( .00 .12 .11) .00 ( .00 .00 .00 3 .12 ( .03 .12 .10) .00 ( .00 .00 00) 4 .12 ( .00 .12 .09) .00 ( .00 .00 .00) 5 .12 ( .04 .12 .11) .00 ( .00 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT S U P P O R T S <- TOP STEEL -> <- BOTTOM STEEL -> JOINT (mA2) <- SELECTION -> (inA2) <- SELECTION -> 1 2 3-4--5 6 7-8--9- 1 .13 1t4x 6'-6" .00 2 .12 1 t 4 x 11-0" .00 3 .12 1 *4 x 11'-0" .00 4 .12 1.4 x 10'-6" .00 5 .12 1 t 4 x 61-6" .00 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 2 3 4 1 2 4.90(ii 4.50(1 1) 2.701) 1 )) 2.7 1 2.7 1 4.50(i) () ) 3 4.50(1 4.13(1) 1.80(1) 2.48 1) 4 4.13(1 4.13(1) 2.48 1 2.48 1 5 4.13(1 .00(1) 2.48(1) .00(1) Legend: 1 = Common Case of rebar 2 = Reber is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file " EL A 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI 318-89) ser_=n====n ===a =a=e=va == No shear reinforcement required Page 15 PT SLAB (PTSLAB81) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS as========m======-_ =====a=====__=====a=====__ rte's modulus of elasticity Ec = 3600.00 ksi C actor K = 2.00. le,. ,vellgross...(due to cracking) K = 1.00 Where stresses exceed 6(fc1`1l2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, SPAN DL DL+PT DL+PT+CREEP 1-2-3 4 5 1 .07 .03 .09( 2461) .05( 4239) 2 .08 -.01 -.02( 9554) .06( 3734) 3 .05 .01 .03( 7487) .03( 6280) 4 .05 .01 .03( 7605) .04( 5234) DOWNWARD POSITIVE > LL DL+PT+LL+CREEP 6 .14( 1557) .04( 6131) .06( 3415) .06( 3100) StIl T�TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 PASAOENA. CALIFORNIA 91 1 07 (829] 351 -9991 FAX (525] 351-5319 Hotel' 38NCIH4I 6'feuc1UIZE sheet S t P a of by lob no. 1315 date 5 /19 tr- lz Sl ef> Gwe NI L.\ rooN. 1 *stata St -TANA aa'1Sj e frfl'tc—rSpUooKS 2 �8ZIPIP 'P <a LPL to 1 f > r4 161-6"�� Mgt. I 4" 1 1340 t' } iv 4,ori zeovi c izertyrL Lot 5 resi- t -at to r �c�: x l 5b) k t, o rrs b 'C k or- ADAPT STRUCTURAL CONCRETE SOFTWAI2E SYSTEM 1733 Woodside Road, Sufte 220, Redwood City, California 94061 'T-PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V5.30) I ADAPT Structural Concrete Software System .3 Woodside Road, Suite 220, Redwood City, California 94J61 I F. .e: (650)306-2400 Fax: (650)364-4678 Email: Supportti�AdaptSoft.com I Web site: http://www.AdaptSoft.com II DATE AND TIME OF PROGRAM EXECUTION: May 16,1999 At Time: 18:46 PROJECT TITLE: HOAG PARKING STRUCTURE ( ) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS =====S =C E == = C ALL= =========================== CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At all locations .450 REINFORCEMENT: YIELD Strength 60.00 ksi Minimum Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: S' -M UNBONDED U /tee strength of strand 270.00 ksi A effective stress in strand (final) 175.00 ksi ea .153in^2 Mn CGS of tendon from TOP 1.00 In Min CGS of tendon from BOTTOM for INTERIOR spans.. 1.00 in Mn CGS of tendon from BOTTOM for EXTERIOR spans.. 1.75 in Min average precompression 125.00 psi Max spacing between strands (factor of slab depth) 8.00 Page 2 PT SLAB ( ) ADAPT -PT V- 5.30 Tendon profile type and support widths (see section 9) P vSIS OPTIONS USED: 5 I system ONE-WAY �f Inertia over support is NOT INCREASED Moh. s REDUCED to face of support YES Limited plasfification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP BOTTOMIMIDDLE P O� I FLANGE I FLANGE I REF MULTIPLIER A RI LENGTH! WIDTH DEPTH) width thidc.l width thick.IHEIGHTI left right N MI ft I in in I in in I In in I in 1 3--4---5---6---7-8 9-10-11 12 13- 1 1 18.00 12.00 5.00 5.00 .50 .50 2 1 18.00 12.00 5.00 5.00 .50 .50 3 1 16.50 12.00 5.00 5.00 .50 .50 4 1 16.50 12.00 5.00 5.00 .50 .50 5 1 18.00 12.00 5.00 5.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3 - FORM 1 = Rectangular section 2 =Tor Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line UPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN -> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CBC' LENGTH B(DIA) D CBC' JOINT in ft in in ft in in 1 2 3-4--5 6 7---8---9 10- 1 .00 .00 .00 .00 (1) .00 .00 .00 (1) Page 3 PT SLAB ( ) ADAPT -PT V- 5.30 2 .00 .00 .00 .00 1) .00 .00 .00 (1) 3 .00p0.00 .00 .M 11)) .00 .00 .00 1 MO .00& 0 .00 .00 .00 (1) .00 .00 .00 (1) `THE COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends ...(STANDARD) = 1 Hinged at near end, foced at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roger with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING `le=t`-_'__ _-"'-==--= __- _______ <-0 AS.S-> TYPE > D - DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT U= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ..At) Total on Tdb SPAN CLASS I YPE k/ft"2 ( ft ft) (k-ft or k ...ft) klft 1 2-3- 1 5 6- 7 8 9- 1 D Li .00 18.00 .072 1 L Li .00 18.00 .050 2 D U .00 18.00 .072 2 L Li .00 18.00 .050 3 D U .00 16.50 .072 3 L Li .00 16.50 .050 4 D Li .00 16.50 .072 4 L Li .00 16.50 .050 /-� UI .00 18.00 .072 5 / U .00 18.00 .050 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 Page 4 PT SLAB ( ) ADAPT -PT V- 5.30 11.1)..- 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (kMM2), ( CON. or PART.) (MOMENT ) SPn. .:LASS TYPE LINE(k/ft) OCR or ft-ft) (k-ft ft) 1-2-3---4 5 6 7-8 1 D L .072 .00 18.00 1 L L .050 .00 18.00 2 D L .072 .00 18.00 2 L L .050 .00 18.00 3 D L 072 .00 16.50 3 L L .050 .00 16.50 4 D L .072 .00 16.50 4 L L .050 .00 16.50 5 D L .072 .00 18.00 5 L L .050 .00 18.00 NOTE: LIVE LOADING Is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 4.2 - Computed Sedan Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber 1= gross moment of 'inertia Yb= centroidal distance to bottom fiber SPAN AREA I Yb Yt (SEGMENT)2 inA2 3 in"4 _a_in i SPAN 1 i 60.00 .1250E+03 2.50 2.50 Sir-1 SP60.00 .1250E+03 2.50 2.50 1 60 00 1250E+03 2.50 2.50 SPAN 4 1 60.00 .1250E+03 2.50 2.50 SPAN 5 1 60.00 .1250E+03 2.50 2.50 Page 5 PT SLAB ( ) ADAPT -PT V- 5.30 5- kD LOAD MOMENTS, SHEARS & REACTIONS zsa - _ =__-=sa= __________= z <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(I)• Midspan M(r)* SH(I) SH(r) 1 2 3 4 5 6 1 -1.92 .96 -1.98 -.64 .65 2 -1.98 1.02 -1.80 -.66 .64 3 -1.80 .77 -1.55 -.61 .58 4 -1.55 .78 -1.79 -.58 .61 5 -1.79 1.01 -2.02 -.64 .66 Note: • = Centerline moments JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> 1 2 ower columns -Upper columns- 1 .64 00 00 2 1.31 .00 .00 3 1.25 .00 .00 4 1.16 .00 .00 5 1.24 .00 .00 6 .66 .00 .00 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS ss=--= =-zz=ss--____x___x zzzzzr_zzzzzzzzzz=zz=zz= z=====ma. <- 6.1 L IV E LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> <- left• -> <- midspan -> <- right -> <-SHEAR FORCE-> SPAN max min max min max min left right 1 2 3 -4 6 6 7 8 9 1 -1.81 .48 .91 -.24 -1.57 -.42 -.53 .47 2 -1.57 -.42 1.20 -.49 -1.61 -.33 -.51 .50 3 4.61 -.33 1.12 -.58 -1.49 -.32 -.49 .48 4 9 -.32 1.06 -.52 -1.45 -.44 -.47 .48 5 ( 'S -.44 .90 -.20 -1.80 .40 -.46 .53 Note: • = Centerline moments <- 6.2 REACTIONS (k) -> <- 6.3 COLUMN MOMENTS (k-ft) -> Page 6 PT SLAB ( ) ADAPT -PT V- 5.30 Sim <- LOWER COLUMN -> <- UPPER COLUMN -> JOINT max min max min max min 2 3 5 6 7 53 -.08 .00 .00 .00 .00 2 .97 .36 .00 .00 .00 .00 3 .99 .33 .00 .00 .00 .00 4 .95 .32 .00 .00 .00 .00 5 .94 .36 .00 .00 .00 .00 6 .53 -.07 .00 .00 .00 .00 Note: Bbdc 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT ESL 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <-kR'-> <- midspan -> <-right•-> 1 2 3 4 1 -1.92 .96 -1.98 2 -1.98 1.02 -1.80 3 -1.80 .77 -1.55 4 -1.55 .78 -1.80 5 -1.80 1.01 -2.02 Note: = face -of -support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <-left'-> <- midspan -> <-right'-> SPAN max min max min max min -1 2 3-- 4 5 6 7 1 -1.82 .48 .91 -.24 -1.57 -.42 2 -1.57 -.42 1.20 -.49 -1.61 -.33 3 -1.61 -.33 1.12 -.58 -1.49 -.32 4 -1.49 -.32 1.06 -.52 -1.45 -.44 5 -1.45 -.44 .90 -.20 -1.80 .40 Nor-' • e-of-support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) Page 7 PT SLAB ( ) ADAPT -PT V- 5.30 Maxima of dead load and live bad span moments combined fir ,rvIceabiity checks ( 1.00DL + 1.00LL ) left* -> <- midspan -> <- right* -> max min max min max min -1- 2 3 1 C 6 7 1 -3.74 -1.44 1.87 .72 -3.56 -2.40 2 -3.56 -2.40 2.22 .53 -3.42 -2.14 3 -3.42 -2.14 1.90 .19 -3.04 -1.87 4 -3.04 -1.87 1.84 .26 -3.24 -2.24 5 -3.24 -2.24 1.91 .81 -3.82 -1.61 Note: • = face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever. 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1/L X21L X3/L AIL 1-2 3 4 5- 1 2 .000 .500 .000 .000 2 2 .000 .500 .000 .000 3 2 .000 .500 .000 .000 4 2 .000 .500 .000 .000 2 .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE ===-rsz= ____________ Tendon editing mode selected: FORCE SELECTION Page 8 PT SLAB ( ) ADAPT -PT V- 5.30 <- SELECTED VALUES -> FORCE <- DISTANCE OF CGS (in) F /I�- (k/-) Left Center Right ( 1 ( 300 2.50 1.75 3.75 333 2 .000 3.75 1.25 3.75 200 3 12.000 3.75 1.75 3.75 200 4 12.000 3.75 1.75 3.75 200 5 20.000 3.75 1.75 2.50 333 <- CALCULATED VALUES -> > P/A cabal (Psi) (k/-) 7 .33 .057 .00 .062 .00 .059 .00 .059 .33 .057 Approximate weight of strand 45.2 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS SPAN LEFT' CENTER RIGHT' -1 2 3 1 5 1 17.03 2.78 11.55 7.50 2 11.55 3.99 8.99 7.50 3 8.99 2.77 8.05 7.50 4 8.05 1.86 10.33 7.50 5 10.33 3.09 16.98 7.50 Note: • = face -of -support -> <- BASED ON MINIMUM P/A -> LEFT CENTER RIGHT 6 7 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT* RIGHT* TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T maxC 1 2-3 -4 5 6 7 -6 9- 1 289.12 -261.52 --955.79 32.41 - - -699.08 2 32.41 - - -699.08 232.32 - - -632.32 3 232.32 - - -632.32 208.09 - - -608.09 4 208.09 - - -608.09 6.53 - - -673.20 5 6.53 - - -673.20 283.84 -245.28 --950.50 Nr rot -support CENTER TOP BOTTOM max-T max-C max-T max-C 2 3 4 --613.81 --328.46 Page 9 PT SLAB ( ) ADAPT -PT V- 5.30 2 - -471.04 71.04 -334.35 3 --528.73 128.73 -280.59 e - -440.72 40.72 -339.00 t - -611.15 --320.38 9.7 POST -TENSIONING BALANCED M OM E N T S, SHEARS & REACTIONS <- SPAN MOMENTS (k-ft)-> <- SPAN SHEARS (k ) -> SPAN left• midspan right* SH(I) SH(r) 1 1.14 -.70 2.03 .07 .07 2 2.03 -1.09 1.61 -.02 -.02 3 1.61 -.53 1.34 .02 .02 4 1.34 -.84 1.83 .02 .02 5 1.83 -.76 1.25 -.08 -.08 Note: • = face -of -support <-REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) -> -joint 2 Lower columns -Upper columns- 1 -.066 .000 .000 2 .089 .000 .000 3 -.040 .000 .000 4 -.004 .000 .000 5 .104 .000 .000 6 -.084 .000 .000 10-FACTORED MOMENTS & REACTIONS i=====a===---==ac==========_________======== Catsated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) -left'-> <- midspan -> E max min max min -1/ 2 3 1 5 1 1.63 -,73 3.44 1.49 2 -5.50 -3.54 3.63 .76 3 4.90 -2.73 3.21 .32 4 -4.61 -2.62 2.81 .12 5 -5.23 -3.52 3.44 1.57 <- right* -> max min 6 7 -5.50 -3.54 -4.90 -2.73 4.61 -2.62 -5.23 -3.52 -4.64 -.89 s z� Page 10 PT SLAB ( ) ADAPT -PT V- 5.30 Note: • - f'aa�ce-of-support 10i CONDARY MOMENTS (k-ft) SP). <-left•-> <-midspan -> <-right'-> -1 2 3 1 1.14 .55 -.05 2 -.05 .16 .36 3 .36 .22 .09 4 .09 -.09 -.26 5 -.26 .49 1.25 Note: • = face -of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min -1 2 3_4 5 6 7 1 1.73 .70 .00 .00 .00 .00 2 3.58 2.54 .00 .00 .00 .00 3 3.39 2.28 .00 .00 .00 .00 4 3.24 2.16 .00 .00 .00 .00 5 3.44 2.47 .00 .00 .00 00 6 1.73 .73 .00 .00 .00 .00 11-MILD STEEL s==vs = _ SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live bad capacity requirement Ratio of reduced to total Live loading .... 1.00 - Minimum steel 0.004A - Moment capacity > factored (design) moment &retort cutoff length for minimum steel(bngth/span) ... .17 S culoft bnplh for minimum steel(bngthlspan) ... .33 T• r extension beyond zero -point 12.00 in gar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 84.2 lb AVERAGE = 1.0 psf Sly Page 11 PT SLAB ( ) ADAPT -PT V- 5.30 5 11 11'^1 STEEL AT MID -SPAN TOP BOTTOM /^v DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA <-ULT-MIN-D+.25L-> (in"2) <_ULT-MIN-D+.25L-> -1- 2 3-4-5-6 7 8- 9- 1 .00 ( .00 .00 .00) .12 ( .00' .12 06) 2 .00 ( .00 .00 .00) .12 ( .00 .12 .07) 3 .00 ( .00 .00 .00) .12 ( .01 .12 .06) 4 .00 ( .00 .00 .00) .12 ( .00 .12 .06) 5 .00 ( .00 .00 .00) .12 ( .00 .12 .07) 11.2.2 SELECTION OF REBAR A <- TOP STEEL > SPAN (in"2) <- SELECTION -> 1 2 3-4 5 1 2 3 4 5 .00 .00 .00 .00 .00 .12 .12 .12 .12 .12 T MID -SPAN <- BOTTOM STEEL -> (in"2) <- SELECTION -> 6 7-8-9- 1#4x 14'-0" 1 # 4 x 15'-0" 1#4x 13'-0" 1#4x 13.-0" 1#4x 14'-0" 11.3.1 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (Intl) <-ULT-MIN- D+.25L-> (in"2) <-ULT-MIN-D+.25L-> 1-2-3 4- 5.07 .12 ) 6 7 B 9- 2 .13 1 .13, .00 .12 .13) .00 ( .00 .00 .00) 3 .12 .09 .12 .12) 00 ( :00 .00 00) 4 .12 .07 .12 .10) .00 ( .00 .00 00) 5 .12 .00 .12 .12) .00 ( .00 .00 .00) 8 .14 .07 .12 .14) .00 ( .00 .00 .00 11.3.2 SELECTION OF REBAR AT SUPPORTS <- TOP STEEL -> <- BOTTOM STEEL -> JOINT (kt2) <- SELECTION -> (inA2) <- SELECTION -> 1 2 3--� 5 6 7 8 9- e- 13 1#4x 111-0" .00 3 .12 1 # 4 x 111.6" .00 4 .12 1 # 4 x 10'-6" .00 5 .12 1.4 x 11'-0" .00 6 .14 1#4x 6'-6" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) Page 12 PT SLAB ( ) ADAPT -PT V- 5.30 <-TOP BARS-> <-BOTTOM BARS -> T TO LEFT TO RIGHT TO LEFT TO RIGHT ,t(�\ 00(1) 4.50(1) .00(1) 3.60(1) 2 .00(1) 4.50(1) 4.50(1 .70 1 2.7011) 3 4.50 1) 4.95(1 2.70 1 3.30 1))) 4 4.13 13 4.13(1 2.48 1 2.4811) 5 4.131i 4.50(1) 3.30(1) 2.70 /1 6 4.1) .00(1) 3.60(1) .00(1) Legend: 1 = Common Case of rebar 2 = Reber is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live bad capacity requirement Ratio of reduced to total Live loading 1.00 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cutoff length for minimum stcel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 87.5 lb AVERAGE = 1.0 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- lefts -> <- midspan -> <-right•-> COEFFICIENT(%) SPAN max min max min max min left right -� 2 3 4 5 6 7 8 9- ,--4.63 -.73 3.65 1.82 -4.84 -3.11 .00 12.10 2 / 14 -3.11 4.02 1.41 -4.25 -2.36 12.10 13.26 3 25 -2.36 3.57 .96 -3.98 -2.26 13.26 13.69 4 -3.98 -2.26 3.20 .75 -4.60 -3.10 13.69 12.10 5 -4.60 -3.10 3.66 1.88 -4.64 -.89 12.10 .00 Note: • = face -of -support Page 13 PT SLAB ( ) ADAPT -PT V- 5.30 D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION ft•-> <-midspan -> <- right* -> COEFFICIENT(%) SH max min max min max min left right 1. 2 3 4 5 6 7 8 9- 1 -2.38 -1.80 1.38 1.12 -1.95 -1.71 .00 17.97 2 -1.95 -1.71 1.68 1.31 -1.81 -1.55 17.97 18.12 3 -1.81 -1.55 1.37 1.00 -1.57 -1.33 18.12 18.37 4 -1.57 -1.33 1.37 1.02 -1.76 -1.56 18.37 18.16 5 -1.76 -1.56 1.41 1.16 -2.47 -1.92 18.16 .00 Note: = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (Intl) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3-4 5 6 7--8 9- 1 .00 .00 .00 .00) .12 ( .00 .12 .07) 2 .00 .00 .00 00 .12 ( .03 .12 .09) 3 .00 .00 .00 .00 .12 ( .03 .12 .07) 4 .00 .00 .00 .00 .12 ( .01 .12 07) 5 .00 .00 .00 .00) .12 ( .00 .12 .08) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT M I D- S P A N <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (inA2) <- SELECTION -> (inA2) <- SELECTION -> 1 2 3-4 6 6-7-8-9- 1 .00 .12 1 # 4 x 15'-0" 2 .00 .12 1#4x 151-6" 3 .00 .12 1 # 4 x 14'-6" 4 .00 .12 1 *4 x 141-0" 5 .00 .12 1 # 4 x 15'-0" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM \s DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA J. inA2) <-ULT-FAIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> -1( 7 4 5 6 7-8 9- 1 J ( .07 .12 .13) .00 ( .00 .00 .00) 2 .12 ( .00 .12 .11) .00 ( .00 .00 .00 3 .12 ((( .04 .12 .10) .00 ( .00 .00 .00 4 .12 .03 .12 .09) .00 ( .00 .00 .00 5 .12 .00 .12 .10) .00 ( .00 .00 .00 6 .14 ( .07 .12 .14) .00 ( .00 .00 .00 Page 14 PT SLAB ( ) ADAPT -PT V- 5.30 SlIt- 1' SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS TOP STEEL -> <- BOTTOM STEEL -> JO inA2) <- SELECTION -> (inA2) <_ SELECTION -> 1 3-4--5 G 7-8-9- 1 .13 1 N 4 x 6'-6" .00 2 .12 1#4x 11'-0" .00 3 .12 1*4x 111-0" .00 4 .12 1#4x 10'-0" .00 5 .12 1#4x 11'-0" .00 6 .14 1N4x 61-6" .00 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT .00(1)1 2 1 4.50(1) .00(1) 2.70(1) 2 4.501) 4.50(1) 2.70 1) 2.7011 3 4.501) 4.13(1) 1.801) 2.481 4 4.13 1) 4.13(1) 1.65 1) 1.65)1 5 4.13(13 4.50(1) 2.481) 1.80'1 6 4.50(1 .00(1) 3.60(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar Is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 120th points (file " EL .DAT") 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI 318-89) No shear reinforcement required Page 15 PT SLAB ( ) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS t / —41e's modulus of elasticity Ec = 3600.00 ksi Cf ictor K = 2.00, let. .e/Igross...(due to cracking) K = 1.00 Where stresses exceed 6(fc )M/2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1-2-3----4 1 5 1 .07 .03 .09( 2373) .05( 4232) 2 .08 -.01 - 04( 5018) 06 3759) 3 .05 .03 .08( 2575) .03 6037 4 .05 -.01 -.04( 5287) .03( 5966) 5 .08 .03 .08( 2552) .06( 3852) 6 .14(1520) .01(14993) .11( 1805) .00(46433) .14( 1535) 5133 -ES TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOENA. CALI FORNIA S 1 1 O7 (5251 351-51E1 FAX (5251 351-5319 tt /*CI shoot . Mkt of fASIA4 STRAY -WC- bY Job no. dote -r6pir. it:sows I) 'ryP• Ig'-s' akj' 1271 hIskz.ezzzaili �I� �¢.' I° 44,4. --(Px 59t j" y tom„ y) ti'P. t l 1l( MT 3) -rip. I-k'-6'I eon' I JLI/ 4,44 r/A- 156 rs1 51-msxde) xi29= 60D z r z 15D (6W)-� 1K oo,or-(tNta014S. 1%,4„.s/-reN4eN 4 _)4Y415» ' S r A_ 50 }si Pt= 5'x C61xI'22)= 3baIw1 r T. 150 c�15-17) > 51-t` t -rtht i se 51-/ti0,19-/t,iw z —Aar+ 11314Istas r/&= I5-0 rs Iir' S'x(b'k►2J i �ti' sit t I = 156 (51b»y 16(5K s• sr- itrassa 10724.44/0.44 �, 3 --$114+-Tess fi Asti li o j to v4 ' 1 i i 4 1 ' 9 I `A ..........,_ ,..4 ' 11'VG711 / � el ti 4 ----.0- �.�.I11! GI 1 4 yid '�i'A ti . L� rur f l /1 el /J} 1 Nd i 1461 k 1 I 4, 0d t� _ — , } to tad . _. �. - r 0 0 i 1 ��D -TEETAYLOR & GAINES STRUCTURAL ENGINEERS �32O NORTH HALSTEASPEET • SUITE 200 ( A S A O E N A, C A L IO F O P N I A 5 1 1 0 7 (6281 351-9801 FAX (5261 351 -5319 aheet'Yrle o1 by pkl241,1144 c9FRUCIU Re job no. 139 5 date 9/11 Lt, ( x"A" rcic1/4 1261, 1AN IVIA 14en l4'tvV PS414t1 b'F-t' I.oArr ((*-aI5)xI4-'-FPl,fq-xe1I5)+A*I I#).J4 taf bSskN uvt t.04'17P o,05 lt' 4tv'` < 1 a - 1/ + > 19 z�q ,shot . I ° d 1p:."5(3b' t -n'r p,T, KiOrl e GRln cei5 1z„ /ti1 /3' '/to /,,-„ ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, Califomia 94061 7 1,..-rcPT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) ADAPT Structural Concrete Software. System ,3 Woodside Road, Suite 220, Redwood City, California 94061 I Phone: (650)306-2400 Fax: (650)364-4678 'Email: SupporeAdaptSoft.com I Web site: http:/Nimw.AdaptSoft.com DATE AND TIME OF PROGRAM EXECUTION: Jun 20,1999 At Time: 9:11 PROJECT TITLE: Fs3 HOAG PARKING STRUCTURE (PTBEAM2.) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS ( V $�rI e CONCRETE STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At all locations .450 REINFORCEMENT: YI Strength 60.00 ksi MI. Cover at TOP 1.00 in Mini Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 in^2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. Min average precompresslon- 150.00 psi Max spacing between strands (factor of slab depth) 8.00 1.00 In 1.75 in Page 2 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 Ten^nm profile type and support widths (see section 9) AN /'`4S OPTIONS USED: Sfru{ System BEAM Mom. .f Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOMIMIDDLEI I P 01 I I FLANGE I FLANGE I REF I MULTIPLIER A RI LENGTH! WIDTH DEPTH' width thick.' width thick.IHEIGHTI left right N MI ft I in in I in in I in in I in I 1 3--4 5 6 7 8 9 10-11 12 13- 1 2 64.00 18.00 36.00 98.00 5.00 36.00 .50 .50 2 2 64.00 18.00 36.00 98.00 5.00 36.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3-FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN -> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CBC' LENGTH B(DIA) D CDC* JOINT in ft in in ft in in 1 2 3--4 5--6- 7-8-9 10 1 .00 .00 .00 .00 (1) .00 .00 .00 (1) 2 .00 .00 .00 .00 (1) .00 .00 .00 (1) 3 .00 .00 .00 .00 (1) .00 .00 .00 (1) Page 3 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 'fHF COLUMN BOUNDARY CONDITION CODES (CBC) F : both ends ...(STANDARD) = 1 FA, t near end, fixed at far end = 2 Fo( tear end, hinged at far end = 3 Flea. . near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <—CLASS—> < TYPE D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE kMtA2 ( ft ft) (k-ft or k ...ft) klft 1 2 3 4 5--6 7 8 9- 1 D Li .00 64.00 1.600 1 L Li .00 64.00 .420 2 D Li .00 64.00 1.600 2 L Li .00 64.00 .420 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3.1 ' OARING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING =======_ UNIFORM (kMM2), ( CON. or PART.) (MOMENT) SPAN CLASS TYPE LINE(kM) (k@ft or ft-ft) (k-ft © ft ) 1 2 3 4 i 6 7 8 1 D L 1.600 .00 64.00 1 L L .420 .00 64.00 2 D L 1.600 .00 64.00 2 L L .420 .00 64.00 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 Page 4 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 4b c 4-C .CULATED SECTION PROPERTIES SaII= _ =====II 4.2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span As cross -sectional geometry Yt= centroidal distance to top fiber I= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA I Yb Yt (SEGMENT) in"2 inM in in 2 3 1 5- SPAN 1 1 1048.00 .1302E+06 23.92 12.08 SPAN 2 1 1048.00 .1302E+06 23.92 12.08 5- DEAD LOAD MOMENTS, SHEARS & REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(Q• Midspan M(r)• SH(I) SH(r) 1 2 3 4 5 6 1-545.78 273.41 -545.79 -51.20 51.20 2-545.79 273.40 -545.80 -51.20 51.20 Note: • = Centerline moments JG..".--= 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1-f 2 Lower columns -Upper columns- 1 51.20 .00 .00 2 102.40 .00 .00 3 51.20 .00 .00 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS <- 6.1 L I V E LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> Page 5 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 <-- left' -> <- midspan -> <- right' -> <-SHEAR FORCE-> S' max min max min max min left right / 3--4-5 6 7 8 9- 1( 08 35.82 89 68 -17.91 -143.27 -71.63 -15.12 13.44 2 ,.27 -71.63 89 68 -17.91 -179.09 35.82 -13.44 15.12 Note: = Centerline moments <- 6.2 REACTIONS (k) -> < 6.3 COLUMN MOMENTS (k-ft) -> <- LOWER COLUMN -> <- UPPER COLUMN -> JOINT max min max min max min -1 2 3 1 5 6 7 1 15.12 -1.68 .00 .00 .00 .00 2 26.88 13,44 .00 .00 .00 .00 3 15.12 -1.68 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT sumsees=----==x=====___===========________ 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left* -> <- midspan-> <- right* -> 1 2 3 1 1-545.75 273.42 -545.75 2-545.75 273.42 -545.83 Note: • = face -of -support /^4.2 REDUCED LIVE LOAD MOMENTS (k-ft) - lefts -> <- midspan -> right* -> SPAN max min max min max min -1 2 3 4 5- 6 7- 1-179.08 35.82 89.67 -17.91 -143.25 -71.63 2-143.25 -71.63 89.67 -17.91 -179.08 35.82 Note: • = face -of -support ___=============_____ 157 Page 6 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) M ref dead load and live load span moments combined for. eability checks ( 1.00DL + 1.00LL ) <— left' —> <— midspan —> <--- right` —> SPAN max min max min max min -1 - 2 3 5 7 1-724.83 -509.93 363.08 255.51 -689.00 -617.38 2-689.00 -617.38 363.08 255.51 -724.92 -510.02 Note: face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1IL X2IL X3/L AIL 1 2 3-4 5- 1 2 .000 .500 .000 .000 2 - .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE Tendon editing mode selected: FORCE SELECTION <— SELECTED VALUES —> <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> PIA Wbal SPAN (Id-) Left Center Right (psi) (k/-) 1 2 3-4 56 7 Page 7 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 1 480.000 12.00 4.00 32.00 458.02 1.406 80.000 32.00 4.00 12.00 458.02 1.406 App. _ ate weight of strand 1226.1 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM PIA -> SPAN LEFT* CENTER RIGHT' LEFT CENTER RIGHT 1 2 3 4 5 -6 7 1 226.21 207.20 170.67 157.20 157.20 157.20 2 170.67 207.19 226.25 157.20 157.20 157.20 Note: = face -at -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT' RIGHT• TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3 56 7 8-9 1 - -339.48 --1166.16 --323.11 --725.01 2 - -323.11 --725.01 --339.42 ---1166.28 Note: = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C 2 3-4 5 - -601.35 - -411.40 2 - -601.36 -- -411.40 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <-SPAN MOMENTS(k-ft)-> SPAN left' mdspan right" -1 2 3 --4 1 403.50 -234.33 567.83 2 567.83 -234.33 403.50 Note: • = face -of -support r <- SPAN SHEARS (k ) -> SH(I) SH(r) 5--6 9.93 9.93 -9.93 -9.93 Page 8 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 FACTIONS (k )-> <- COLUMN MOMENTS (k-ft) -> -join' -2- Lower columns -Upper columns- 1 -9.932 .000 .000 2 19.860 .000 .000 3 -9 932 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.400 + 1.701 + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <- left* -> <-midspan -> <- right* -> SPAN max min max min max min 1 2 3 5 6 7 1-188.42 176.91 1097.52 914.62 -763.20 -641.42 2-763.17 -641.39 1097.52 914.62 -188.43 176.91 Note: • = face -of -support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left* -> <- midspan -> <- tight' -> 1 2 1 880.00 562.25 244.50 2 244.50 562.33 880.00 Nr'• - ceofsupport r 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min 1 2 3_4 5 6 7- 1 87.45 58.89 .00 .00 .00 .00 2 208.92 186.07 .00 .00 .00 .00 3 87.45 58.89 .00 .00 .00 .00 .r ��u Page 9 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 11-MILD STEEL SP' CRITERIA for ONE-WAY or BEAM SYSTEM - L.. . + 25% of unreduoed Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity> factored (design) moment Support cutoff length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 1662.1 lb AVERAGE = 1.6 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (in"2) <-ULT-MIN-D+.25L-> (in^2) <-ULT--MIN-D+.25L-> 1 2 2 4 5 6 7 8 9 1 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 2 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 11.2.2 SELECTION OF REBAR AT MID -SPA N <- TOP STEEL > <- BOTTOM STEEL -> SPAN (inA2) <- SELECTION -> (in"2) <- SELECTION -> -1 2 3-4-5 6 7-8 9- 1 .00 .00 2 .00 .00 1.t- STEEL AT SUPPORTS TOP BOTTOM . s DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3-4 6 7- 8 9 1 3.80 ( .00 2.47 3.80) 1.81 ( .00 1.72 1.81) 2 3.71 ( .00 2.47 3.71) .00 ( .00 .00 .00) 3 3.80 ( .00 2.47 3.80) 1.81 ( .00 1.72 1.81) 11.3.2 SELECTION OF REBAR AT SUPPORTS <- TOP STEEL > <- BOTTOM STEEL -> JOINT (InA2) <- SELECTION -> (inA2) <- SELECTION -> 1 1t Page 10 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 1 2 3-4 5 6 7 -8 9- 3.80 5# 8 x 18'-0" 1.81 2# 9 x 53'-6" ,-4.71 5 # 8 x 34'-0" .00 3 B0 5#8x 18'-0" 1.81 2#9x 53'-0" 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT -1 2 3 4 5- 1 .00(1) 16.00(1) .00(1) 51.20(1) 2 16.00(1) 16.00(1) .00(1) .00(1) 3 16.00(1) .00(1) 51.20(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed contlnuosty over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1t20th points (file "SELBAR.DAT") 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live bad capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity> factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in / "IFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 •OTAL WEIGHT OF REBAR = 1932.2 lb AVERAGE = 1.8 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- left* -> <- midspan -> <- tight* -> COEFFICIENT(%) SPAN max min max min max min left right 1 2 3 4 5-6 7 8-9 1-188.42 176.91 1097.52 914.62 -763.20 -641.42 .00 .00 2-763.17 -641.39 1097.52 914.62 -188.43 176.91 .00 .00 Note: Page 11 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 • = face -of -support 11' )+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION .eft• -> <- midspan -> <- right' -> COEFFICIENT(%) SPAN max min max min max, min left right 1 2 3 4 5 6 7 8-9 t-620.40 -530.86 356.29 313.82 -509.73 -484.61 .00 15.81 2-509.73 -484.61 356.28 313.81 -620.42 -530.88 15.81 .00 Note: = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (Mil) <-ULT--MIN-D+.251-> (in"2) <-ULT-MIN-D+.25L-> 1 2 3-4 5 6 7-- 8 9 1 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 2 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (in"2) <- SELECTION -> (in"2) <_ SELECTION -> -1 2 3-4--5 0 7-8--9 1 .00 .00 2 .00 .00 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT--MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3-4 5-6 7-8 9 .80 ( .00 2.47 3.80) 2.08 ( .00 1.72 2.08) �09 ( .00 2.47 3.09) .00 ( .00 .00 .00) Y 0 ( .00 2.47 3.80) 2.08 ( .00 1.72 2.08) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <- TOP STEEL -> <- BOTTOM STEEL -> JOINT (in"2) <- SELECTION -> (in"2) <- SELECTION -> 1 2 3-4 5 0 7-8--9 1 3.80 5# 8 x 18'-0" 2.08 3# 9 x 56-6" 2 3.09 4 # 8 x 28'-0" .00 3 3.80 5#8x 18'-0" 2.08 3#9x 56'-6" �I3 Page 12 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 11.0 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <-TOP BARS-> <-BOTTOM BARS-> ice, -... TO LEFT TO RIGHT TO LEFT TO RIGHT -1 2 3---4 5 1 .00(1) 16.00(1) .00(1) 54.40(1) 2 12.80(1) 12.80(1) .00(1) .00(1) 3 16.00(1) .00(1) 54.40(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file 'SELBAR.DAT") 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI-318-92) LEGEND: Concrete = NORMAL weight (full shear allowed for) d = value of d used in equation 11-10 160 = spacings of two4egged 96 stirrups, (fy= 60000. psi) ""' means no stirrups are required Mu , Vu = factored moments and shears (secondary moment effects included) CASES .. Vc = 1 ACI eqn 11-10 govems 2 min permissible value of 2(fc)"12 govems 3 max permissible value of 5(fc)"12 govems Av = 1 no reinforcement required 2 min reinforcement required (ACI eqn 11-15), for beams only 3 stirrup required by analysis (ACI eqn 11-17) Nor LEFT CANTILEVER (if any) X/L= 0.00 is at tip of cantilever, (/L= 1.00 is at first support SPAN = 1 LENGTH = 64.00 ft (Net span from .00 to 64.00 ft ) X d Vu Mu RATIO Av M 40 CASES XIL ft in k k-ft VuNc in"21fl in Vc Av REMARKS 1 2 3--4 5-- 6 7 8-9 10 11 .00 .00 24.00 -97.38 176.91 .70 .08 24.0 (3 2) BEAMS ONLY .05 3.20 25.52 -87.93 353.90 .63 .08 24.0 (3 2) BEAMS ONLY .10 6.40 26.88 -78.48 507.94 .64 .08 24.0 (1 2) BEAMS ONLY ?1t Page 13 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 .15 9.60 28.08 -69.02 639.06 .73 .08 24.0 (1 2) BEAMS ONLY 1.80 29.12 -59.57 747.24 .77 .08 24.0 (1 2) BEAMS ONLY tr0 30.00 -50.12 847.88 .77 .08 24.0 (1 2) BEAMS ONLY ) 30.72 -40.67 952.21 .68 .08 . 24.0 (2 2) BEAMS ONLY .35 _ -,0 31.28 -31.21 1029.35 .52 .08 24.0 (2 2) BEAMS ONLY .40 25.60 31.68 -21.76 1082.33 .35 .00 A"" (2 1) .45 28.80 31.92 -12.31 1105.04 .20 .00 ""' (2 1) .50 32.00 32.00 2.85 1097.52 .05 .00 '"" (2 1) .55 35.20 31.72 10.02 1059.74 .16 .00 ' (2 1) .60 38.40 30.88 18.91 991.71 .32 .00 ***" (2 1) .65 41.60 29.48 28.36 893.44 .50 .00 ""' (2 1) .70 44.80 27.52 37.81 764.93 .68 .08 24.0 (2 2) BEAMS ONLY .75 48.00 25.00 47.26 606.15 .71 .08 24.0 (1 2) BEAMS ONLY .80 51.20 21.92 56,72 417.13 .61 .08 24.0 (1 2) BEAMS ONLY .85 54.40 18.28 66.17 197.86 .47 .00 ""' (3 1) .90 57.60 21.92 75.62 -155.16 .54 .08 24.0 (3 2) BEAMS ONLY .95 60.80 26.68 85.08 -444.05 .61 .08 24.0 (3 2) BEAMS ONLY 1.00 64.00 32.00 94.53 -763.20 .72 .08 24.0 (1 2) BEAMS ONLY SPAN = 2 LENGTH = 64.00 ft (Net span from .00 to 64.00 ft ) X d Vu Mu RATIO Av #4@ CASES X/L ft in k k-ft VuNc inA2/ft in Vc Av REMARKS 1 2 3-4 5 6 7-8-9-10-11- .00 .00 32.00 -94.53 -763.17 .72 .08 24.0 (1 2) BEAMS ONLY .05 3.20 26.68 -85.08 -444.02 .61 .08 24.0 (3 2) BEAMS ONLY .10 6.40 21.92 -75.62 -155.14 .54 .08 24.0 (3 2) BEAMS ONLY .15 9.60 .47 .00 '""" (3 1) .20 12.80 2118.28 .92 -56-66.17 .72 19790 417.16 .61 .08 24.0 (1 2) BEAMS ONLY .25 16.00 25.00 -47.26 606.18 .71 .08 24.0 (1 2) BEAMS ONLY .30 19.20 27.52 -37.81 764.94 .68 .08 24.0 (2 2) BEAMS ONLY .35 22.40 29.48 -28.36 893.47 .50 .00 ""' (2 1) .40 25.60 30.88 -18.91 991.73 .32 .00 ""' (2 1) .45 28.80 31.72 -10.02 1059.75 .16 .00 ""' (2 1) .50 12.00 32.00 2.85 1097.52 .05 .00 ""' (2 1) '1.20 31.92 12.31 1105.06 .20 .00 ""' (2 1) .t.-c--10 31.68 21.76 1082.32 .35 .00 '""" (2 1) .6E 0 31.28 31.21 1029.35 .52 .08 24.0 (2 2) BEAMS ONLY .70 -...d0 30.72 40.67 952.22 .68 .08 24.0 (2 2) BEAMS ONLY .75 48.00 3000 50.12 847.87 .77 .08 24.0 (1 2) BEAMS ONLY .80 51.20 29.12 59.57 747.25 .77 .08 24.0 (1 2) BEAMS ONLY .85 54.40 28.08 69.02 639.07 .73 .08 24.0 (1 2) BEAMS ONLY .90 57.60 26.88 78.48 507.95 .64 .08 24.0 (1 2) BEAMS ONLY .95 60.80 25.52 87.93 353.90 .63 .08 24.0 (3 2) BEAMS ONLY 1.00 64.00 24.00 97.38 176.91 .70 .08 24.0 (3 2) BEAMS ONLY Page 14 PT BEAMS (PTBEAM2.) ADAPT -PT V- 5.30 alb 13-MAXIMUM SPAN DEFLECTIONS ___ Car' 's modulus of elasticity Ec = 3600.00 ksi Cie.., for K = 2.00 IeffectiveIIgross...(due to cracking) K = 1.00 Where stresses exceed 6(fc)9l2 cracking of section is allowed for. Values in parentheses are (span/max defection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1 2 3- —4 5 6 1 .26 .04 .11(7172) .07(11445) .17( 4409) 2 .26 .04 .11(7217) .07(11446) .17( 4426) -EsTAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 r PASAO EN A, CALIF ORN IA 91 1 07 (6261 351 -6661 FAX (626] 351 -5319 evM sheet of by pazwM4 6ejRiAceiGIZ7` Job no. 13155 date 9/11 gyp.U5Vei. 1 G�rlc Sta>3+ 06411 4t pNI N RM&t 15- 1z.EANF. 6o Imo, Kamm Sat 11 x 36' eta "Mr 4, r,?I rj5Tl i -'1t R&d•A, UN6014PEP Avorti +4L t%Ae> . [,oAtt l 01 sr. (Ave iUc..Lro 30 r - < roc ict,q u -i '(h1 I _&I P64en-1 Puri-Ssoi 15)/(1 e: 111 F'x 3X4.)xo,15 + o(0I x 150711 IGc• jS1604 Met- 3.0 repex I Si m O, 9+ Ki^. 1 ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, California 94061 I / ,T-PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System J3 Woodside Road, Suite 220, Redwood City, Califomia 94061 l Phone: (650)306-2400 Fax: (650)364-4678 Email: Support@AdaptSoft.com I Web site: http://www.AdaptSoft.com DATE AND TIME OF PROGRAM EXECUTION: May 23,1999 At Time: 9:46 PROJECT TITLE: HOAG PARKING STRUCTURE (PTBM4.Pt) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS �"�CI' Ley . e sio CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi for COLUMNS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi for COLUMNS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (Pc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (Pc)) At all locations .450 RF,RCEMENT: YI rength 60.00 ksi Mitn.. ..i Cover at TOP 2.00 in Minimum Cover at BOTTOM 2.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 inA2 Min CGS of tendon from TOP 12.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. 4.00 in 4.00 in Page 2 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 Min average precompression 250.00 psi Max spacing between strands (factor of slab depth) 8.00 Tr (—ornate type and support widths (see section 9) ANh. ,1S OPTIONS USED: Structural system BEAM Moment of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Limited plastfication allowed(moments redistributed) YES Effective flange width consideration YES Effective flange width implementation method ACI-318 2-INPUT GEOMETRY LS 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOMIMIDDLEI I P 01 1 I FLANGE I FLANGE I REF I MULTIPLIER A RI LENGTH' WIDTH DEPTH' width thick.' width thick.IHEIGHTI left right N MI f I In in I in in I in in I in I 1 345 6 7--8 9 10-11 12 13- 1 2 64.00 18.00 36.00 98.00 5.00 36.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3 - FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.1.3 EFFECTIVE WIDTH DATA OF UNIFORM SPANS SPAN EFFECTIVE WIDTH in 1 2 1 98.00 Page 3 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 2.2-SUPPORT WIDTH AND COLUMN DATA %4PORT <— LOWER COLUMN —> <— UPPER COLUMN —> H LENGTH B(DIA) D CBC' LENGTH B(DIA) D CBC' JOu. ,n ft in in ft in in 1 2 3-4 5 —6— 7 8 9 10 1 24.00 12.00 24.00 24.00 (1) 12.00 24.00 24.00 (1) 2 18.00 12.00 24.00 18.00 (1) 12.00 24.00 18.00 (1) 'THE COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends ...(STANDARD) = 1 Hinged at near end, fixed at far end = 2 Foxed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <—CLASS—> < TYPE— D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L. LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To ) ( M or C ...At) Total on Trib SPAN CLASS TYPE klft"2 ( ft ft) (k-ft or k ...ft) ktft 1 2 3 4 5--6 7-8 9 1 D Li .00 46.00 1.900 1 L Li .00 46.00 .540 N' es -LIVE LOADING is SKIPPED with a skip factor of 1.00 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING == UNIFORM (klft"2), ( CON. or PART.) (MOMENT) SPAN CLASS TYPE LINE(kflt) (k@ft or ft-ft) (k-ft @ ft ) 1 2 J 5 -C 7 8 1 D L1.900 .00 46.00 1 L L .540 .00 46.00 Page 4 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 frtal f' r1VE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 4.2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber 1= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA I Yb Yt (SEGMENT) in^2 inM in in 2 3 --4 5— SPAN 1 1 1048.00 .1302E+06 23.92 12.08 5- DEAD LOAD MOMENTS, SHEARS 8 REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(I)* Midspan M(r)• SH(I) SH(r) —1 2 3 4 5 --6- 1-602.44 295.70 -443.96 -58.47 28.93 Note: • = Centerline moments Jr /--• 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> — —2---Lower columns --Upper columns-- 1 58.47 .00 .00 2 28.93 .00 .00 6- LIVE LOAD MOMENTS, SHEARS 8 REACTIONS <— 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) —> left` —> <— midspan —> <— right' --> <—SHEAR FORCE—> Page 5 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 SPAN max min max min max min left right -1-2 3 --4----5----6----7---8---9- 1 j4-22 .00 84.04 .00-126.18 .00 -16.62 8.22 Note: • = Centerline moments <- 6.2 REACTIONS (k) -> <--- 6.3 COLUMN MOMENTS (k-ft)------> <- LOWER COLUMN -> <-- UPPER COLUMN -> JOINT max min max min max min -1 -2- 1 16.62 .00 .00 .00 .00 .00 2 8.22 .00 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left* -> <- midspan-> <-right*-> -1 2 3 4 1-544.92 295.67 -422.25 Note: • = face -of -support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <- left* -> <-- midspan ---> <- right* ---> SPAN max min max min max min -1 r2 34 5- -6 7 1 .83 .00 84.08 .00-120.00 .00 Note: • = face -of -support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) Maxima of dead load and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL ) Page 6 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 <— left* —> <— midspan —> <— right* —> SPAN max min max min max min -1 5 -6 7 1.75 -544.92 379.75 295.67 -542.25 -422.25 Note: • = face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1/L X2IL X3/L AIL 1 2 3--4 5 1 1 .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE Tr rediting mode selected: FORCE SELECTION — SELECTED VALUES --> <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> PIA Wbal SPAN (kJ-) Left Center Right (psi) (Id-) —1 2 3-4 5 —6 7 1 375.000 24.00 4.00 24.00 357.82 1.221 Approximate weight of strand - 522.6 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) h -3 Page 7 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM PIA -> c- ram. LEFT' CENTER RIGHT* LEFT CENTER RIGHT _-2--3____--4 1 .42.48 209.75 106.57 262.00 262.00 262.00 Note: • = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT' RIGHT' TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3 —4 5 6 7 8 9 1 .55 -171.84 --- -1067.10 ---319.03 --- -699.04 Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C 1 2 3-4 5 1 — -548.31 19.17 -166.02 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <—SPAN MOMENTS(k-ft)—> <— SPAN SHEARS(k)—> SPAN left` midspan right' SH(I) SH(r) —1 2 3 4 5 —6-- 1 377.83 -208.67 387.42 .00 .00 Note: / -of-support <—REACTIONS (k )—> <— COLUMN MOMENTS (k-ft) —> -joint 2— -Lower columns —Upper columns-- 1 .000 .000 .000 2 -.001 .000 .000 Page 8 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 10-FACTORED MOMENTS & REACTIONS C /"ad as (1.40D + 1.70E + 1.00 secondary moment effects) 10.1 ..CTORED DESIGN MOMENTS (k-ft) <--- left' -> <--- midspan --> <-- right' --> SPAN max min max min max min -1 2 3 -4 5-- -6 7 1-616.41 -352.12 970.57 827.70-381.45 -177.43 Note: *= face -of -support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left' -> <- midspan -> <- right' -> 1 2 3- 4 1 413.67 413.75 413.75 Note: = face -of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min 1 2 3 4 5 -6 7 1 110.11 81.86 .00 .00 .00 .00 2 54.48 40.50 .00 .00 .00 .00 11-MILD STEEL Sf SIC CRITERIA for ONE-WAY or BEAM SYSTEM 25% of unreduced Live load capacity requirement R,...., of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 1-5 Page 9 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 11.1 TOTAL WEIGHT OF REBAR = 716.9 lb AVERAGE = 1.4 psf 11.i. STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <--ULT-MIN-D+.25L-> (in"2) <--ULT-MIN-D+.25L-> 1 2 3-4 5 -6 7 8 9- 1 .00 ( .00 .00 .00) 1.99 ( .00 1.72 1.99) 11.2.2 SELECTION OF REBAR AT MID -SPAN <- TOP STEEL --> <-- BOTTOM STEEL ---> SPAN (in"2) <- SELECTION -> (in"2) <- SELECTION --> -1 2---3_y__--5_----6-----7-8-___g- 1 .00 1.99 2 # 9 x 401-6" 11.3.1 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+.25L-> 1 2 3 -4 5---6 7 8 9-- 1 3.85 ( .12 2.47 3.85) .00 ( .00 .00 .00) 2 2.94 ( .00 2.47 2.94) .00 ( .00 .00 .00) 11.3.2 SELECTION OF REBAR A T SUPPORT S <- TOP STEEL > <- BOTTOM STEEL --> JOINT (in"2) <- SELECTION -> (inA2) <-- SELECTION -> -1 2 3-4 5 6 7 8 9 1 3.85 7#7x 181-0" .00 2 2.94 5 # 7 x 181-0" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (fl ) r :-TOP BARS-> <-BOTTOM BARS-> JOI.. TO LEFT TO RIGHT TO LEFT TO RIGHT -1 2_-___-_3____--__4_____--5__-_ 1 .00(1) 16.00(1) .00(1) 12.80(1) 2 16.00(1) .00(1) 12.80(1) .00(1) Legend: 1 = Common Case of rebar 2 = Reber is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") Page 10 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 11-MILD STEEL "-s SPt, .0 CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacittl requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(lengthfspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 716.9 lb AVERAGE = 1.4 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- left* -> <-midspan -> <- right* -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3---4 5---6 7--8 -9 1-616.41 -352.12 970.57 827.70 -381.45 -177.43 .00 .00 Note: • = face -of -support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <- left' -> <- midspan -> <- right' -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3- -4 5 -6 7 -8 9- 1-611.79 -547.01 330.72 295.70 -472.26 -422.26 .00 .00 Nr -of-support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT-MIN-D+.25L-> (in'2) <-ULT--MIN-0+.25L-> 1 2 3--4 5--6 7 8 9- 1 .00 ( .00 .00 .00) 1.99 ( .00 1.72 1.99) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN Page 11 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 <— TOP STEEL --> <-- BOTTOM STEEL —> SPAN (in"2) <- SELECTION -> (in"2) <-- SELECTION -> 3-4 5 -6--7 8 9 1.99 2 # 9 x 401-6" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <--ULT--MIN--D+.25L-> (in"2) <--ULT---MIN--D+.25L-> - 1-2 3-----4---5--- 6 7 8 9 1 3.86 ( .12 2.47 3.86) .00 ( .00 .00 .00) 2 2.94 ( .00 2.47 2.94) .00 ( .00 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <— TOP STEEL --> <— BOTTOM STEEL --> JOINT (in"2) <-- SELECTION -> (in"2) <- SELECTION --> - 1 2 3-4 5 —6 7 8 9 1 3.86 7 # 7 x 18.-0" .00 2 2.94 5 # 7 x 181-0" .00 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <-TOP BARS-> <-BOTTOM BARS -> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 2 3 —4 5 1 .00(1) 16.00(1) .00(1) 12.80(1) 2 16.00(1) .00(1) 12.80(1) .00(1) Legend: 1 = Common Case of rebar 2 = Reber is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI-318-92) LEGEND: Concrete = NORMAL weight (kill shear allowed for) d = value of d used in equation 11-10 #6© = spacings of two -legged #6 stirrups, (fly= 60000. psi) *1"ln" means no stirrups are required Mu , Vu = factored moments and shears (secondary moment effects included) Page 12 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 CASES .. Vc = 1 ACI eqn 11-10 governs r.2 min permissible value of 2(fc)"1/2 govems 3 max permissible value of 5(fc)"1/2 govems Av = 1 no reinforcement required 2 min reinforcement required (ACI eqn 11-15), for beams only 3 stirrup required by analysis (ACI eqn 11-17) Note: for LEFT CANTILEVER (if any) XIL= 0.00 is at tip of cantilever, and X/L= 1.00 is at first support SPAN = 1 LENGTH = 64.00 ft (Net span from 1.00 to 63.25 ft ) X d Vu Mu RATIO Av # 4@ CASES XIL ft in k k-ft VuNc in"2/ft in Vc Av REMARKS 1 2 3---4 5- 6 7 8 9-10 11 .00 .00 24.00 -110.10 -720.79 .05 3.20 20.20 -98.65 -386.77 .71 .06 24.0 (3 2) BEAMS ONLY .10 6.40 19.20 -87.20 39.68 .63 .06 24.0 (3 2) BEAMS ONLY .15 9.60 22.20 -75.75 233.52 .54 .06 24.0 (3 2) BEAMS ONLY .20 12.80 24.80 -64.30 400.12 .54 .06 24.0 (1 2) BEAMS ONLY .25 16.00 27.00 -52.85 582.88 .66 .06 24.0 (1 2) BEAMS ONLY .30 19.20 28.80 -41.40 733.70 .71 .06 24.0 (1 2) BEAMS ONLY .35 22.40 30.20 -29.96 847.87 .51 .06 24.0 (2 2) BEAMS ONLY .40 25.60 31.20 -18.51 925.40 .31 .00 ""' (2 1) .45 28.80 31.80 -7.06 966.30 .11 .00 """ (2 1) .50 32.00 32.00 4.39 970.57 .07 .00 "'" (2 1) .55 35.20 31.80 15.84 938.20 .26 .00 ""' (2 1) .60 38.40 31.20 27.29 869.18 .45 .00 ""' (2 1) .65 41.60 30.20 38.74 763.52 .66 .06 24.0 (1 2) BEAMS ONLY .70 44.80 28.80 50.19 621.22 .66 .06 24.0 (1 2) BEAMS ONLY .75 48.00 27.00 54.49 449.45 .54 .06 24.0 (1 2) BEAMS ONLY .80 51.20 24.80 54.49 310.67 .42 .00 ""' (1 1) .85 54.40 22.20 54.49 181.05 .39 .00 ""' (3 1) T *---50 19.20 54.49 51.42 .39 .00 ""' (3 1) b 10 20.20 54.49 -247.96 .42 .00 "*" (1 1) 1.0u ..+.00 24.00 54.49 -422.32 gti Page 13 TYPICAL P.T.BEAM (PTBM4.Pt) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS r s modulus of elasticity Ec = 3600.00 ksi Cre., .actor K = 2.00 leffective/Igross...(due to cracking) K = 1.00 Where stresses exceed 6(fc')"1/2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP -1 2 3-- ---4- 1 .26 .07 .21( 3698) .08(10204) .28( 2714) -ramTAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 , P A S A O E N A. C A L I F OA% II261 35A I 0 7 (626) 351-BBB1 N b� sheet 1?i31 of by phtz4U M4 %tud1U tRE lob no. 1315 date 9/11 _ reK t7G5l6N MTh 46 i rp, p, T, e G N e GA 5 et /,3,yh " ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, California 94061 Ar/u.PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System -3 Woodside Road, Suite 220, Redwood City, Califomia 94061 I Phone: (650)306-2400 Fax: (650)364-4678 Email: Support@AdaptSoft.com I Web site: http:/twww.AdaptSoft.com DATE AND TIME OF PROGRAM EXECUTION: May 23,1999 At Time: 9:51 PROJECT TITLE: HOAG PARKING STRUCTURE (PTBEAM7.) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS (-V. £ GP4e ©, CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi for COLUMNS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi for COLUMNS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At all locations .450 RF ,— RCEMENT: Yi ength 60.00 ksi Mina,..., Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 inA2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. 1.00 in 1.75 in Page 2 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 Min average precompression 150.00 psi Max spacing between strands (factor of slab depth) 8.00 Te ( 'rofile type and support widths (see section 9) ANAL, 0IS OPTIONS USED: Structural system BEAM Moment of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S Fl 1 1 TOP IBOTTOMIMIDDLEI 1 P 01 1 1 FLANGE 1 FLANGE 1 REF 1 MULTIPLIER A RI LENGTH' WIDTH DEPTH' width thick.) width thick.IHEIGHTI left right N MI ft I in in I in in I in in I in I -1-3--4 5--6--7---8-9---10--11_-12--13- 1 1 46.00 18.00 36.00 36.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever r 3 - FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <— LOWER COLUMN ---> <— UPPER COLUMN —> WIDTH LENGTH B(DIA) D CSC* LENGTH B(DIA) D CBC' JOINT in ft in in ft in in 1 2 3--4 5-6 7-8 9 10 1 24.00 12.00 24.00 24.00 (1) .00 .00 .00 (1) 2 60.00 12.00 24.00 60.00 (1) .00 .00 .00 (1) Page 3 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 'THE COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends ...(STANDARD) = 1 Hir near end, fixed at far end = 2 Fi •ar end, hinged at far end = 3 Fixeu .ear end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <—CLASS--> <— TYPE--__----> D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE k/ftA2 ( ft ft) (k-ft or k ...ft) kfft 1 2 3--4 5- 6 7 8 9 1 D Li .00 46.00 1 L Li .00 46.00 1.900 .540 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (klftA2), ( CON. or PART.) (MOMENT) SP ,— ASS TYPE LINE(klft) (k(§2ft or ft-ft) (k-ft @ ft ) -1 -3-4 5 0 7 -8 1 L. L 1.900 .00 46.00 1 L L .540 .00 46.00 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES Page 4 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 4.2 - Computed Section Properties for Segments of Nonprismatic Spans 5< roperties are listed for all segments of each span A= t.. ,a -sectional geometry Yt= centroidal distance to top fiber I= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA I Yb Yt (SEGMENT) inA2 inA4 in in 2 3 -4 5 SPAN 1 1 648.00 .6998E+05 18.00 18.00 5- DEAD LOAD MOMENTS, SHEARS & REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(I)* Midspan M(r)' SH(I) SH(r) -1 2 3 -4 5--6 1-334.83 167.73 -334.81 -43.70 43.70 Note: • = Centerline moments JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1 2 Lower columns --Upper columns- 1 43.70 .00 .00 2 43.70 .00 .00 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> <- left' -> <-- midspan -> <-- right' -> <-SHEAR FORCE--> SPAN max min max min max min left right 1 2 3-4 5 -6 7 8 9 1 -95.16 .00 47.67 .00 -95.16 .00 -12.42 12.42 Note: • = Centerline moments <- 62 REACTIONS (k) -> <-- 6.3 COLUMN MOMENTS (k-ft) --> �35 Page 5 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 <- LOWER COLUMN -> <-- UPPER COLUMN --> JOINT max min max min max min -f �•-2 3 -4 5 -6 7 2.42 .00 .00 .00 .00 .00 2 12.42 .00 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left* -> <- midspan -> <- right' -> -1 2 1 -292.08 167.75 -231.50 Note: • = face -of -support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <- lefts -> <- midspan -> <- right' -> SPAN max min max min max min -1 2 3 -4 5 -6 7- 1 -83.02 .00 47.67 .00 -65.79 .00 Note: • = face -of -support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) M 3f dead load and live load span moments combined for s.,..iceability checks ( 1.00DL + 1.00LL ) <-- left' --> <- midspan -> <- right' --> SPAN max min max min max min -1 2 3 4 56 7 1-375.10 -292.08 215.42 167.75 -297.29 -231.50 Note: • = face -of -support Page 6 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 9 -CTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS ' LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1/L X2/L X3/L A/L 1 2 3----4 5- 1 2 .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE Tendon editing mode selected: FORCE SELECTION <— SELECTED VALUES --> <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> P/A Wbal SPAN (Id-) Left Center Right (psi) (Id-) — 1 2 3 —4-- 5--6 7 1 260.000 24.00 4.00 24.00 401.23 1.638 A /"hate weight of strand 254.8 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT* CENTER RIGHT* LEFT CENTER RIGHT — 1 2 3 ---4 5 —6 7 1 173.16 86.50 138.89 97.20 97.20 97.20 Note: = face -of -support Page 7 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 9.6 SERVICE STRESSES (psi) (tension shown positive) Pa" LEFT' RIGHT* .OP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C -1-2 3--4------5------6---7 8---9- 1 — -267.03 ---791.67 -----292.80 --- -712.73 Note: = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C -1 2 3-4 5 1 — -609.64 ---339.96 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <— SPAN MOMENTS(k-ft)--> <— SPAN SHEARS (k)—> SPAN left* midspan right' SH(I) SH(r) 1 2 3 --moo 5--6 1 248.58 -147.92 196.33 .00 .00 Note: = face -of -support <—REACTIONS (k )--> <— COLUMN MOMENTS (k-ft) —> -joint 2 --Lower columns —Upper columns-- 1 .000 .000 .000 2 .000 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <— left' —> <-- midspan —> <— right' —> SPAN max min max min max min -1 2 3 -- 4 5 — 6 7— Page 8 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 1-396.90 -255.18 471.32 390.28 -281.24 -169.20 Nei , -- of-support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left -> <- midspan -> <- right` -> 1 2 3 -4 1 155.50 155.42 155.42 Note: • = face -of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min 1 2 3 -4 5 6 7 1 82.29 61.18 .00 .00 .00 .00 2 82.29 61.18 .00 .00 .00 .00 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity> factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in , far extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 384.2 lb AVERAGE = 5.6 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (i02) <-ULT-MIN-D+.25L-> (002) <-ULT-MIN-D+.25L-> 1 2 3 -4 5 6 7 8 9 �31 Page 9 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 1 .00 ( .00 .00 .00) 1.30 ( .00 1.30 1.11) 1 ELECTION OF REBAR AT MID -SPAN - TOP STEEL --> <--- BOTTOM STEEL --> SPAN (inA2) <- SELECTION --> (inA2) <- SELECTION --> 1 .00 1.30 2 # 9 x 30.-0" 11.3.1 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <--ULT-MIN-D+25L-> (inA2) <--ULT-MIN--D+.25L-> -1-2 3-----4---5----�----7---8----g--- 1 1.95 ( .00 1.30 1.95) .00 ( .00 .00 .00) 2 1.53 ( .00 1.30 1.53) .00 ( .00 .00 .00) 11.3.2 SELECTION OF REBAR AT SUPPORTS <- TOP STEEL --> <- BOTTOM STEEL -> JOINT (inA2) <- SELECTION -> (inA2) <- SELECTION -> -1 2-3- -5-- -6 7-8-9- 1 1.95 3#8x 13'-6" .00 2 1.53 2 # 8 x 13'-6" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <-TOP BARS-> <-BOTTOM BARS -> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 2 3 -4- 5 1 .00(1) 11.50(1) .00(1) 9.20(1) 2 11.50(1) .00(1) 9.20(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span p'nge of rebar requirement is not fully explidt in this table. ' to either the print plot or detailed printout of rebar at .._nth points (file "SELBAR.DAT") 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity> factored (design) moment Page 10 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 Support cut-off length for minimum steel(length/span) ... .17 Sr /'-utof length for minimum steel(tength/span) ... .33 r extension beyond zero -point 12.00 in Sottu..- oar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 384.2 lb AVERAGE = 5.6 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- left' --> <- midspan -> <- right* -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3-4 5 -6 7 8 9 1-396.90 -255.18 471.32 390.28 -281.24 -169.20 .00 .00 Note: = face -of -support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <- left• -> <- midspan -> <- right -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3 4 5----6- 7-8 9- 1 -328.05 -293.32 187.59 167.73 -259.35 -231.89 .00 .00 Note: • = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN--D+.25L-> -1--2 -3---4---5 --6----7-8--9- 1 /"'1 ( .00 .00 .00) 1.30 ( .00 1.30 1.11) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL > <- BOTTOM STEEL ----> SPAN (in"2) <- SELECTION -> (in"2) <- SELECTION -> -1 2 3-4 5 6 7 8 9- 1 .00 1.30 2N9x 301-0" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA Page 11 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 JOINT (in^2) <—ULT—MIN—D+.25L-> (inA2) <--ULT--MIN—D+.25L-> —1-2 3-4 5 —6 7--8 9- 1 /-06 ( .00 1.30 1.96) .00 ( .00 .00 .00) ( .00 1.30 1.54) .00 ( .00 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <-- TOP STEEL --> <--- BOTTOM STEEL --> JOINT (inA2) <— SELECTION --> (in^2) <— SELECTION —> —1 2 3-4--5------6----7---8--9-- 1 1.96 3 # 8 x 13'£" .00 2 1.54 2#8x 131-6" .00 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <—TOP BARS—> <--BOTTOM BARS —> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT —1 2 3 -4 5- 1 .00(1) 11.50(1) .00(1) 9.20(1) 2 11.50(1) .00(1) 9.20(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI-318-92) LEGEND: Concrete = NORMAL weight (full shear allowed for) d r value of d used in equation 11-10 #t = spacings of two -legged #6 stirrups, (fy= 60000. psi) """ means no stirrups are required Mu , Vu .. = factored moments and shears (secondary moment effects included) CASES .. Vc = 1 ACI eqn 11-10 govems 2 min permissible value of 2(fc)^1/2 governs 3 max permissible value of 5(tc)^1/2 govems Av = 1 no reinforcement required 2 min reinforcement required (ACI eqn 11-15), for beams only 3 stirrup required by analysis (ACI eqn 11-17) ��2 Page 12 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 Note: for LEFT CANTILEVER (if any) X/L= 0.00 is at tip of cantilever, and X/L= 1.00 is at first support SPAN = 1 LENGTH = 46.00 ft (Net span from 1.00 to 43.50 ft ) X d Vu Mu RATIO Av # 4(§) CASES X/L ft in k k-ft VuNc in"2/ft in Vc Av REMARKS 1 2 3 -4 5--6 7 8 910 11 .00 .00 24.00 -82.29 -475.08 .05 2.30 20.20 -74.06 -295.27 .53 .04 24.0 (3 2) BEAMS ONLY .10 4.60 16.80 -65.84 -134.38 .47 .00 "I" (3 1) .15 6.90 22.20 -57.61 45.52 .41 .00 """'" (3 1) .20 9.20 24.80 -49.38 136.99 .35 .00 """ (3 1) .25 11.50 27.00 -41.15 234.71 .30 .00 """ (1 1) .30 13.80 28.80 -32.92 319.89 .35 .00 "r" (1 1) .35 16.10 30.20 -24.69 386.15 .35 .00 "ins (1 1) .40 18.40 31.20 -16.46 433.45 .27 .00 "nth (2 1) .45 20.70 31.80 -8.23 461.85 .13 .00 tn" (2 1) .50 23.00 32.00 .00 471.32 .00 .00 "*" (2 1) .55 25.30 31.80 8.23 461.87 .13 .00 **"' (2 1) .60 27.60 31.20 16.46 433.47 .27 .00 ***" (2 1) .65 29.90 30.20 24.69 386.14 .35 .00 "4" (1 1) .70 32.20 28.80 32.92 319.90 .35 .00 """ (1 1) .75 34.50 27.00 41.15 234.73 .30 .00 """• (1 1) .80 36.80 24.80 49.37 137.00 .35 .00 """ (3 1) .85 39.10 22.20 57.60 45.53 .41 .00 '"*" (3 1) .90 41.40 16.80 65.83 -134.35 .47 .00 """"" (3 1) .95 43.70 20.20 74.06-295.23 1.00 46.00 24.00 82.29 -475.05 ��J Page 13 PT BEAM (PTBEAM7.) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS ( s modulus of elasticity Ec = 3600.00 ksi Cree„ ,actor K = 2.00 leffective/Igross...(due to cracking) K = 1.00 Where stresses exceed 6(f6)"1/2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP -1 2--3-----4------5-----6--- 1 .15 .01 .04(12362) .04(12879) .09( 6307) Ts TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 `PAS AOE NA. CALIFORNIA 91 1 07 626) 351-9991 FAX 1626) 351-5319 NaAei sheet b 45 of by p, uN4 5ffrzuc' i Re Job no. 1399 date 9/11 r et. 45f r'15 e 9 frrr. Leda. Ii 'x36"' (F136) t 4*I, 70Sb 4- 1 1 4 *t x 1&D I coL - ($x 3 le„ et: citc36 &X 36., Ilf° rtnc SLSH *rh 56E rill, ixoti e 6440 ® lir Ier&L. F> C12,416&1),4-y 11131 h6-WI4N bl..(C 1)(a15)X11131'1' *' Witso I5+ o101po 3j)- 065teri w R. = 01 93 x f K < t 6 -fit + > GG5 I /3»/1»/ 32,1�,21. ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, Califomia 94061 Pr rPT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System u Woodside Road, Suite 220, Redwood City, Califomia 94061 I Phone: (650)306-2400 Fax: (650)364-4678 Email: Support(gAdaptSoft.com I Web site: http://www.AdaptSoft.com DATE AND TIME OF PROGRAM EXECUTION: May 23,1999 At Time: 9:37 PROJECT TITLE HOAG PARKING STRUCTURE (ptbeam10) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi for COLUMNS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi for COLUMNS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (Pc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (Pc)) At all locations .450 Rr r°CEMENT: YI :ngth 60.00 ksi Minim_... Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 inA2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. 1.00 in 1.75 in Page 2 PT BEAMS (plbeaml0) ADAPT -PT V- 5.30 Min average precompression 150.00 psi Max spacing between strands (factor of slab depth) 8.00 Te p rofile type and support widths (see section 9) ANA, .1iS OPTIONS USED: Structural system BEAM Moment of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOMIMIDDLEI 1 P 01 I I FLANGE I FLANGE I REF I MULTIPLIER A RI LENGTH' WIDTH DEPTHI width thick.I width thick.IHEIGHTI left right N MI ft I in in I in in l in in I in 1 -1-3-4-5--6 7--8 9-10 11 12 13- 1 2 64.00 18.00 36.00 98.00 5.00 38.00 .50 .50 2 2 64.00 18.00 36.00 98.00 5.00 36.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3 - FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN -> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CBC' LENGTH B(DIA) D CSC* JOINT in ft in in ft in in 1 2 3 4 5--6 7 -8 9 10- 1 24.00 12.00 24.00 24.00 (1) 12.00 24.00 24.00 (1) 2 36.00 12.00 24.00 36.00 (1) 12.00 24.00 36.00 (1) �T� Page 3 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 3 24.00 12.00 24.00 24.00 (1) 12.00 24.00 24.00 (1) /"ILUMN BOUNDARY CONDITION CODES (CBC) Fi oth ends ...(STANDARD) = 1 Hine.._ at near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <—CLASS—> D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) ( M or C ...At) Total on Trib SPAN CLASS TYPE kHN2 ( ft ft) (k-ft or k ...ft) k/ft 1 2 3-4 5— 6 7-8 9 1 D Li .00 64.00 2.000 1 L Li .00 64.00 .520 2 D Li .00 64.00 2.000 2 L Li .00 64.00 .520 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3.4,' 4DING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/f f,2), (CON. or PART.) (MOMENT) SPAN CLASS TYPE LINE(k/ft) (k(§ft or ft-ft) (k-ft © ft ) 1 2 3-4 5— 6- 7 8- 1 D L 2.000 .00 64.00 1 L L .520 .00 64.00 2 D L 2.000 .00 64.00 2 L L .520 .00 64.00 Page 4 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 4.2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber I= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA I Yb Yt (SEGMENT) inA2 inA4 in in 2 3 4 5- SPAN 1 1 1048.00 .1302E+06 23.92 12.08 SPAN 2 1 1048.00 .1302E+06 23.92 12.08 5- DEAD LOAD MOMENTS, -SHEARS & REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(I)' Midspan M(r)` SH(I) SH(r) -1 2 3 5 -6 --- 1 -682.22 341.76 -682.26 -64.00 64.00 2 -682.22 341.76 -682.27 -64.00 64.00 Note: • = Centerline moments JOIN. < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1 2 Lower columns -Upper columns- 1 64.00 .00 .00 2 128.00 .02 .02 3 64.00 .00 .00 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS =E g41 Page 5 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 <- 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) --> eft• -> <-- midspan -> <- right* --> <-SHEAR FORCE-> S iax min max min max min left right -1- 3 -4 5-6 7 8 9 1-186.57 9.20 93.46 -4.60 -177.39 -18.40 -17.07 16.64 2-177.38 -18.40 93.46 -4.60 -186.59 9.20 -16.64 17.07 Note: • = Centerline moments <- 6.2 REACTIONS (k) -> <--- 6.3 COLUMN MOMENTS (k-ft) ---> <- LOWER COLUMN -> <- UPPER COLUMN --> JOINT max min max min max min -1 2--3'-'-----4-----5-- 6----7- 1 17.07 -.43 .00 .00 .00 .00 2 33.28 16.64 70.30 -70.29 70.30 -70.29 3 17.07 -.43 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left* -> <-midspan-> <- right* -> -1 2 3 4 1-619.25 341.75 -588.50 2-588.50 341.75 -619.25 Note: • = face -of -support .4 REDUCED LIVE LOAD MOMENTS (k-ft) <- left* --> <-- midspan --> <-- right* -> SPAN max min max min max min 1 2 3 4 5 6 7- 1-169.75 8.77 93.42 -4.60 -153.00 -17.75 2-153.00 -17.75 93.42 -4.60 -169.75 8.77 Note: • = face -of -support Its 911 Page 6 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 8 - "b""r OF DEAD AND LIVE MOMENTS (k-ft) Ma.._ .._ of dead load and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL )' <— left' —> <-- midspan —> <— right' —> SPAN max min max min max min -1 2 3 —4 5 —6 7 1-789.00 -610.48 435.17 337.15 -741.50 -606.25 2-741.50 -606.25 435.17 337.15 -789.00 -610.48 Note: = face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1/L X2/L X3/L A/L — 2----3----4----5--- 1 .000 .500 .000 .000 2 .. .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE Tendon editing mode selected: FORCE SELECTION SELECTED VALUES > <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> P/A Wbal Page 7 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 SPAN (k/-) Left Center Right (psi) (k/-) - 1 2---3----4----5'-- 6---7--- 1 .' Q.000 24.00 4.00 32.00 400.76 1.641 / )00 32.00 4.00 24.00 400.76 1.641 Approximate weight of strand 1089.8 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT' CENTER RIGHT' LEFT CENTER RIGHT - 1 2 3 -4 5- -6 7 1 224.57 238.96 193.47 157.20 157.20 157.20 2 193.48 238.97 224.56 157.20 157.20 157.20 Note: = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT* RIGHT' TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3 -4 5 --6 7 8 9 1 - -253.51 --1085.57 ---142.85 --911.22 2 - -142.81 --911.29 --253.55 --1085.49 Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C 1 --573.15 ---275.66 2 -- -573.15 ---275.65 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS 8 REACTIONS <-SPAN SPAN left* - 1 2 1 478.25 2 509.83 MOMENTS (k-ft)-> midspan right' 3 4 -280.42 509.83 -280.42 478.25 <- SPAN SHEARS (k) --> SH(I) SH(r) 3.28 3.28 3.28 -3.28 -3.28 Page 8 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 Note: = face -of -support -REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) -> -joint -2 Lower columns -'Upper columns--- 1 -3.280 .000 .000 2 6.561 -.017 -.017 3 -3.281 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <- left' -> <- midspan -> <- right" -> SPAN max min max min max min -1 2 3 5-,`. 7 1-641.20 -336.73 1054.01 887.32-772.10 -541.03 2-772.05 -540.99 1054.02 887.33 -641.26 -336.76 Note: = face -of -support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left* -> <- midspan -> <- right" -> 1 2 3- -4 1 518.33 416.67 316.67 2 316.58 416.67 518.42 Nr� :of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min -1 2 3--4 5 6 7 1 115.34 85.59 .00 .00 .00 .00 2 242.34 214.05 119.52 -119.48 119.52 -119.48 3 115.34 85.59 .00 .00 .00 .00 E93 Page 9 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 11 STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 1947.6 lb AVERAGE = 1.9 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3---4 5 6 7 8 9- 1 .00 ( .00 .00 .00) 2.22 ( .00 1.72 2.22) 2 .00 ( .00 .00 .00) 2.22 ( .00 1.72 2.22) 11.2.2 SELECTION OF REBAR AT MID -SPAN <- TOP STEEL > <- BOTTOM STEEL ---> SPAN (inA2) <- SELECTION -> (inA2) <- SELECTION -> -1 2 3-4 5 6 7 8 9 1 .00 2.22 3 N 9 x 401-6" 2 .00 2.22 3 # 9 x 401-6" 11.3.. STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <-ULT--MIN-D+.25L-> (in"2) <-ULT-MIN-D+25L-> 1 2 3-4 5 6 7 8 9 1 4.26 ( .00 2.47 4.26) .00 ( .00 .00 .00) 2 4.01 ( .00 2.47 4.01) .00 ( .00 .00 .00) 3 4.26 ( .00 2.47 4.26) .00 ( .00 .00 .00) 11.3.2 SELECTION OF REBAR AT SUPPORTS la>51- Page 10 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 <- TOP STEEL --> <-- BOTTOM STEEL ----> JOINT (inA2) <- SELECTION -> (inA2) <- SELECTION -> - - ---2 3--4--5-----6---7--8-9--- , 26 6 # 8 x 181-0" .00 2 ..01 6 # 8 x 341-0" .00 3 4.26 6 # 8 x 181-0" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <-TOP BARS-> <-BOTTOM BARS --> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT -1 2 3 --4 5 1 .00(1) 16.00(1) .00(1) 12.80(1) 2 16.00(1) 16.00(1) 12.80(1) 12.80(1) 3 16.00(1) .00(1) 12.80(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT') 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live bad capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity> factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cutoff length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in ._.01FORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 1848.1 lb AVERAGE = 1.8 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- lefts <- midspan -> <- right* -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3--4--5 6 7 8 9 1-640.20 -336.02 1076.79 919.22 -709.80 -496.54 .00 6.75 2-709.80 -496.54 1076.78 919.20 -640.26 -336.05 6.75 .00 P.5 Page 11 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 Note: ' >1"e-of-support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <- IeM-> <- midspan -> <- right*-> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3-4 5 G 7 8 9- 1 -690.66 -616.18 431.39 395.40 -546.59 -499.46 .00 14.69 2-546.59 -499.46 431.37 395.38 -690.71 -616.23 14.69 .00 Note: ' = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (in"2) <-ULT--MIN-D+.25L-> (in"2) <-ULT--MIN-D+.25L-> -1-2 3---4-5 7 8 9- 1 .00 ( .00 .00 .00) 2.52 ( .00 1.72 2.52) 2 .00 ( .00 .00 .00) 2.52 ( .00 1.72 2.52) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (in"2) <- SELECTION -> (in"2) <- SELECTION -> 1 2 3-4 5 -6 7 8 9 1 .00 2.52 3 # 9 x 44.-0" 2 .00 2.52 3 # 9 x 441-0" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT-MIN-D+.25L-> (in12) <-ULT-MIN-0+.25L-> -1 /''--3-4 5 -6 7 8 9 ( .00 2.47 4.26) .00 ( .00 .00 .00) 2 -..j3 ( .00 2.47 3.33) .00 ( .00 .00 .00) 3 4.26 ( .00 2.47 4.26) .00 ( .00 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <- TOP STEEL > <- BOTTOM STEEL -> JOINT (in"2) <- SELECTION -> (in"2) <- SELECTION -> -1 2 3-4 5 6 7-8 9 1 4.26 6#8x 18.-0" .00 2 3.33 5 # 8 x 281-0" .00 3 4.26 6 # 8 x 181-0" .00 56 Page 12 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 1' facTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) 4—TOP BARS—> <--BOTTOM BARS—> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT —1 2_5- 1 .00(1) 16.00(1) .00(1) 12.80(1) 2 12.80(1) 12.80(1) 9.60(1) 9.60(1) 3 16.00(1) .00(1) 12.80(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI-318-92) LEGEND: Concrete = NORMAL weight (full shear allowed for) d = value of d used in equation 11-10 #6@ = spacings of two -legged #6 stirrups, (fy= 60000. psi) ""' means no stirrups are required Mu , Vu = factored moments and shears (secondary moment effects included) CASES .. Vc = 1 ACI eqn 11-10 govems 2 min permissible value of 2(fc)"1l2 govems 3 max permissible value of 5(fc)"1f2 govems Av = 1 no reinforcement required 2 min reinforcement required (ACI eqn 11-15), for beams only r3 stirrup required by analysis (ACI eqn 11-17) Note.. -. LEFT CANTILEVER (if any) X/L= 0.00 is at tip of cantilever, and XIL= 1.00 is at first support SPAN = 1 LENGTH = 64.00 ft (Net span from 1.00 to 62.50 ft ) X d Vu Mu RATIO Av # 40 CASES XL ft in k k-ft VuNc in"2Rt in Vc Av REMARKS 1 2 3-4 5-6 7 8 910 11 .00 .00 24.00 -118.62 -750.65 Page 13 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 .05 3.20 20.20 -106.83 -400.42 .77 .10 6.40 19.20 -95.04 72.57 .68 . .1 c js0 22.20 -83.25 274.78 .60 24.80 -71.46 448.29 .60 S. J0 27.00 -59.68 627.14 .72 .30 19.20 28.80 -47.89 786.41 .77 .35 22.40 30.20 -36.10 908.72 .62 .40 25.60 31.20 -24.31 994.89 .40 .45 28.80 31.80 -12.52 1043.30 .20 .50 32.00 32.00 .73 1054.01 .01 .55 3520 31 72 11.79 1027.00 .19 .60 38.40 30.88 23.58 962.26 .39 .65 41.60 29.48 35.37 859.79 .62 .70 44.80 27.52 47.16 719.60 .75 .75 48.00 25.00 58.95 541.69 .68 .80 51.20 21.92 70.73 326.06 .51 .85 54.40 18.28 82.52 94.95 .59 .90 57.60 21.92 94.31 -244.98 .68 .95 60.80 26.68 106.10 -576.13 .76 1.00 64.00 32.00 117.89 -945.02 .07 24.0 (3 2) BEAMS ONLY 07 24.0 (3 2) BEAMS ONLY .07 24.0 (3 2) BEAMS ONLY .07 24.0 (1 2) BEAMS ONLY .07 24.0 (1 2) BEAMS ONLY .07 24.0 (1 2) BEAMS ONLY .07 24.0 (2 2) BEAMS ONLY .00 ***" (2 1) .00 ***" (2 1) .00 «... (2 1) .00 ** (2 1) .00 "•" (2 1) .07 24.0 (2 2) BEAMS ONLY .07 24.0 (1 2) BEAMS ONLY .07 24.0 (1 2) BEAMS ONLY .07 24.0 (1 2) BEAMS ONLY .07 24.0 (3 2) BEAMS ONLY .07 24.0 (3 2) BEAMS ONLY .07 24.0 (3 2) BEAMS ONLY SPAN = 2 LENGTH = 64.00 ft (Net span from 1.50 to 63.00 ft ) X d Vu Mu RATIO Av #4Q CASES EL ft in k k-ft VuNc in"2/ft in Vc Av REMARKS 1 2 3-4 5 6 7 8 9-10-11 .00 .00 32.00 -117.89 -944.96 .05 3.20 26 68 -106.10 -576.08 .10 6.40 21.92 -94.31 -244.94 .15 9.60 18.28 -82.52 94.97 .20 12.80 21.92 -70.73 326.09 .25 16.00 25.00 -58.94 541.71 .30 19.20 27.52 -47.15 719.63 .35 22.40 29.48 -35.36 859.82 .40 25.60 30.88 -23.58 962.26 .45 28.80 31.72 -11.79 1027.00 .5a j"a0 32.00 .73 1054.02 ) 31.80 12.52 1043.31 31.20 24.31 994.86 .65 41.60 30.20 36.10 908.71 .70 44.80 28.80 47.89 786.39 .75 48.00 27.00 59.68 627.13 .80 51.20 24.80 71.47 448.28 .85 54.40 22.20 83.26 274.75 .76 .07 24.0 (3 2) BEAMS ONLY .68 .07 24.0 (3 2) BEAMS ONLY 59 .07 24.0 (3 2) BEAMS ONLY .51 .07 24.0 (1 2) BEAMS ONLY .68 .07 24.0 (1 2) BEAMS ONLY .75 .07 24.0 (1 2) BEAMS ONLY .62 .07 24.0 (2 2) BEAMS ONLY .39 .00 •nt' (2 1) .19 .00 ***** (2 1) .01 .00 ***** (2 1) .20 .00 ""' (2 1) .40 .00 ""' (2 1) .62 .07 24.0 (2 2) BEAMS ONLY .77 .07 24.0 (1 2) BEAMS ONLY .72 .07 24.0 (1 2) BEAMS ONLY .60 .07 24.0 (1 2) BEAMS ONLY .60 .07 24.0 (3 2) BEAMS ONLY .90 57.60 19.20 95.04 72.55 .68 .07 24.0 (3 2) BEAMS ONLY .95 60.80 20.20 106.83 -400.46 .77 .07 24.0 (3 2) BEAMS ONLY 1.00 64.00 24.00 118.62 -750.71 Page 15 PT BEAMS (ptbeaml0) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS modulus of elasticity Ec = 3600.00 ksi Cre actor K = 2.00 lefective/Igross...(due to cracking) K =' 1.00 Where stresses exceed 6(tc')Ml2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1 2 3 —4 5 6 1 .32 .06 .17( 4423) .08( 9240) .26( 2991) 2 .32 .06 .17( 4420) .08( 9240) .26( 2990) -TES� TAYLOR & GAINES STRUCTURAL ENGINEERS ^ 320 NORTH HALSTEAO SREET • SUITE 200 PASADENA. CALIFORNIA 91 1 07 (6261 351-9931 FAX [6261 351 -5319 HaMr sheet ebb of by paizwN4 tfluiciU12E lob no. �395 date /11 r1 1559iri lesip. 041 L. X IA? 11„ „l,n t* 10 +4 10 I 1 ,11_a_e' .-4*14 I ." I Val I es -be 3b" tom (Pi) 14g ¢444 o omits b6sIdtN C(.9AxOI19) tC oIDI )JXIb,5 i' C I$x31/ )x i5 I76514N I,L = 'c re„ - a4b o,5ktf A. 191. 1 d GRIM ®a © < sp5145.6,UfNN Q is I I }76s1414 l2L— (3'in. s0,15) x lb,511)24tot _0,b iae ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, Califomia 94061 h �^ PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System a3 Woodside Road, Suite 220, Redwood City, Califomia 94061 I Phone: (650)306-2400 Fax: (650)364-4678 Email: Support©AdaptSoft.com I Web site: http://ww✓.AdaptSoft.com DATE AND TIME OF PROGRAM EXECUTION: Jun 20,1999 At Time: 9:14 PROJECT TITLE: HOAG PARKING STRUCTURE (3TBEAM10) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At all locations .450 REn'CORCEMENT: YI strength 60.00 ksi Mi,/^n Cover at TOP 1.00 in Mil Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 inA2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. Mai average precompression 150.00 psi Max spacing between strands (factor of slab depth) 8.00 1.00 in 1.75 in Page 2 PT BEAMS (PTBEAM10) ADAPT -PT V- 5.30 Tendon profile type and support widths (see section 9) Al "-CIS OPTIONS USED: Strut system BEAM Mon. . of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOM/MIDDLEI I P 01 1 I FLANGE I FLANGE I REF I MULTIPLIER A RI LENGTH' WIDTH DEPTH' width thick.) width thick.IHEIGHTI left right N MI ft 1 in in I in in I in in I in 1 1 3-1-5--6 7 8-9 10-11 12 13- 1 2 64.00 18.00 36.00 98.00 5.00 36.00 .50 .50 2 2 64.00 18.00 36.00 98.00 5.00 36.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3-FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN -> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CDC* LENGTH B(DIA) D CBC' JOINT in ft in in ft in in 1 2 3---4-5-ti 7-8 9 10- 1 .00 .00 .00 .00 (1) .00 .00 .00 (1) 2 .00 .00 .00 .00 (1) .00 .00 .00 (1) 3 .00 .00 .00 .00 (1) .00 .00 .00 (1) Page 3 PT BEAMS (PTBEAM10) ADAPT -PT V- 5.30 'THF COLUMN BOUNDARY CONDITION CODES (CBC) Fi t both ends ...(STANDARD) = 1 H6 mat near end, fixed at far end = 2 Fix( ear end, hinged at far end = 3 Pixe.. near end, roller with rotational fusty at far end .. = 4 3-INPUT APPLIED LOADING <—CLASS—> < —TYPE D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE kMA2 ( ft ft) (k-ft or k ...ft) kilt 1 2 3 -4 5 6 7 8 9- 1 D Li .00 64.00 1.780 1 L Li .00 64.00 .500 1 D Li .01 18.00 .600 2 D Li .00 64.00 1.780 2 L U .00 64.00 .500 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3. 1ADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/ftA2), ( CON. or PART.) (MOMENT) SPAN CLASS TYPE LINE(k/ft) (kCft or ft-ft) (k-ft @I ft ) 1 2 3---4 5-6 7 8 1 D L 1.780 .00 64.00 1 L L .500 .00 64.00 1 D L .600 .01 18.00 2 0 L 1.780 .00 64.00 2 L L .500 .00 64.00 Page 4 PT BEAMS (PTBEAMIO) ADAPT -PT V- 5.30 h LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 4.2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber 1= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA (SEGMENT) inA2 2 Yb inA4 in 3 -4 SPAN 1 1 1048.00 .1302E+06 23.92 SPAN 2 1 1048.00 .1302E+06 23.92 Yt in 5- 12.08 12.08 5- DEAD LOAD MOMENTS, SHEARS & REACTIONS <5.1 SPAN MOMENTS (k-ft)> SPAN M(I)' Midspan M(r)• 1 2 3 1-675.27 315.12 -614.41 2-614.40 302.36 -603.60 No'- mtedine moments < 5.2 SPAN SHEARS (k) > SH(I) SH(r) 5---6 -67.19 57.53 -57.13 56.79 JOIN, - 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1 2 Lower columns --Upper columns- 1 67.19 .00 .00 2 114.66 .00 .00 3 56.79 .00 .00 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS Page 5 PT BEAMS (PTBEAM10) ADAPT -PT V- 5.30 <-- 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> �.Ipft•-> <- midspan -> <- right* -> <-SHEAR FORCE-> SP/ nax min max min max min left right -1- 3--4 5-6 7- -8 9 1-213.19 42.64 106.76 -21.32 -170.56, -85.28 -18.00 16.00 2-170.56 -85.28 106.76 -21.32 -213.20 42.64 -16.00 18.00 Note: • = Centerline moments <- 6.2 REACTIONS (k) -> < 6.3 COLUMN MOMENTS (k-ft) > <- LOWER COLUMN -> <- UPPER COLUMN -> JOINT max min max min max min -1 2 3-4 5 6 7 1 18.00 -2.00 .00 .00 .00 .00 2 32.00 16.00 .00 .00 .00 .00 3 18.00 -2.00 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left* -> <- midspan -> <- right* -> 1 2 3 4 1 -675.25 315.08-614.42 2 -614.42 302.33 -603.58 Note: • - `Ice -of -support REDUCED LIVE LOAD MOMENTS (k-ft) <- left* -> <- midspan -> <- right* -> SPAN max min max min max min -1 2 3 56 7 1-213.17 42.64 106.75 -21.32 -170.58 -85.25 2-170.58 -85.25 106.75 -21.32 -213.17 42.64 Note: • = face -of -support 1%‘5 Page 6 PT BEAMS (PTBEAM10) ADAPT -PT V- 5.30 8 OF DEAD AND LIVE MOMENTS (k-ft) Ma if dead load and live Toad span moments combined for serviceability checks ( 1.00DL + 1.00LL ) <— left' --> <— midspan —> <— right' —> SPAN max min max min max min -1 2 34 6 7- 1-888.42 -632.61 421.83 293.77 -785.00 -699.67 2-785.00-699.67 409.08 281.02 -816.75 -560.94 Note: ' = face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE (PE X1/L X2/L X3/L A/L 2 3 5 1 .000 .500 .000 .000 2 .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE Tendon editing mode selected: FORCE SELECTION <— SELECTED VALUES > <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> P/A Wbal Page 7 PT BEAMS (PTBEAMIO) ADAPT -PT V- 5.30 SPaN (Id-) Left Center Right (psi) (Id-) - 2 3---4 5 -6 7 1--36.000 12.00 4.00 32.00 511.45 1.570 2 6.000 32.00 4.00 12.00 511.45 1.570 Approximate weight of strand 1430.4 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM PIA -> SPAN LEFT* CENTER RIGHT* LEFT CENTER RIGHT -1 2 3-4 5 6 7 1 322.57 271.01 217.73 157.20 157.20 157.20 2 217.73 257.17 280.34 157.20 157.20 157.20 Note: • = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT' RIGHT• TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3--4 5 6 7-8 9 1 - -308.74 --1476.34 --343.42 --844.01 2 - -343.42 --844.01 ---388.57 --1318.35 Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C 1 2 3-4 5 1 ' --689.81 - -440.69 2 - -675.62 - 468.77 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <-SPAN SPAN left* 1 2 1 450.50 2 634.08 M OMEN T S (k-ft)-> midspan right* 3 4 -261.67 634.08 -261.67 450.58 <- SPAN SHEARS (k) --> SH(I) SH(r) 5 0- 11.09 11.09 -11.09 -11.09 Page 8 PT BEAMS (PTBEAM10) ADAPT -PT V- 5.30 )e-of-support REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) -> -joint 2 -Lower columns -Upper columns--- 1-11.090 .000 .000 2 22.180 .000 .000 3-11.090 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <- left' -> <- midspan SPAN max min max 1 2 3 4 1-325.01 109.90 1250.57 2 -877.05 -732.07 1232.74 Note: • = face -of -support -> <- right* -> min max min 5--� 7 1032.84-877.10 -732.11 1015.00 -224.66 210.27 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left -> <- midspan -> <- right' -> 1 2 3 4 1 982.50 627.92 273.00 2 273.08 627.92 982.50 Not e • of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min -1 2 1 113.58 79.58 .00 .00 .00 .00 2 237.16 209.96 .00 .00 .00 .00 3 99.02 65.02 .00 .00 .00 .00 62) Page 9 PT BEAMS (PTBEAM10) ADAPT -PT V- 5.30 11 D STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduoed Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity> factored (design) moment Support cut-off length for minimum steel(Iength/span) ... .17 Span cut-off length for minimum steel(length/span) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 2260.9 lb AVERAGE = 2.2 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (in"2) <-ULT---MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3--4 5 6 7 8 9 1 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 2 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 11.2.2 SELECTION OF REBAR AT MID -SPAN <- TOP STEEL > <- BOTTOM STEEL -> SPAN (in"2) <- SELECTION -> (In02) <- SELECTION -> 1 2 3-4 5 6 7 8 9 1 .00 .00 .00 .00 r 11.S. STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+.25L-> 1 2 3 4 5--6 7 8 9 1 4.75 ( .00 2.47 4.75) 2.94 ( 2.94 1.72 2.10) 2 4.23 ( .00 2.47 4.23) .00 ( .00 .00 .00) 3 4.27 ( .00 2.47 4.27) 2.03 ( .67 1.72 2.03) 11.3.2 SELECTION OF REBAR AT SUPPORTS PA 1 Page 10 PT BEAMS (PTBEAM10) ADAPT -PT V- 5.30 <- TOP STEEL > <- BOTTOM STEEL -> (inA2) <- SELECTION -> (in=2) <- SELECTION -> -5 �2 3-4 5 6 7-8 9 1 ' 3 7#8x 18'-0" 2.94 3#9x 53'-6" 2 '• h3 6#Bx 34'-0" .00 3 4.27 6#8x 18'-0" 2.03 3#9x 531-6" 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ff ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT -1 2 3 -4 5- 1 .00(1) 16.00(1) .00(1) 51.20(1) 2 16.00(1) 16.00(1) .00(1) .00(1) 3 16.00(1) .00(1) 51.20(1) .00(1) Legend: 1 = Common Case of rebar 2 = Reber is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead 4- 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(length/span) ... .17 Span cut-off length for minimum steel(IengBUspan) ... .33 To- bar extension beyond zero -point 12.00 in B bar extension beyond zero -point 12.00 in Rom.. .rORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 2095.1 lb AVERAGE = 2.0 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <_ left* <- midspan -> <-right"-> COEFFICIENT(%) SPAN max min max min max min left right -1 2--3--4--5 -6 7--8 9- 1-325.01 109.90 1250.57 1032.84-877.10 -732.11 .00 .00 2-877.05 -732.07 1232.74 1015.00 -224.66 210.27 .00 .00 67 0 Page 11 PT BEAMS (PTBEAMIO) ADAPT -PT V- 5.30 N • /rcpof-support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <- left* -> <- midspan -> <- right' -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3 4 5 6 7 8 9- 1-764.10 -657.50 409.08 358.41 -581.12 -551.00 .00 15.22 2-581.12 -551.00 396.31 345.65 -692.43 -585.83 15.22 .00 Note: ' = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (kt2) <-ULT-MIN-0+.25L-> (in"2) <-ULT-MIN-D+.25L-> 1 2 3--4 -6 7 8 9 1 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 2 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (in"2) <- SELECTION -> (in"2) <- SELECTION -> 1 2 3-4-5--6--7 8-9- 1 .00 .00 2 .00 .00 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM 4s DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA Jt (in"2) <-ULT-MIN-0+.25L-> (in"2) <-ULT-MIN-0+.251-> 3-4 5 6 7 -8 9 1 5 ( .00 2.47 4.75) 2.94 ( 2.94 1.72 2.39) 2 a5 ( .00 2.47 3.55) .00 ( .00 .00 .00) 3 4.27 ( .00 2.47 4.27) 2.32 ( .67 1.72 2.32) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT S U P P O R T S <- TOP STEEL > <- BOTTOM STEEL -> JOINT (Intl) <- SELECTION -> (inA2) <- SELECTION -> -1 2 3-4 5 0 7-8 9- 1 4.75 7*8x 15'-0" 2.94 3a9x 561-6" 2 3.55 5t8x 28'-0" .00 3 4.27 6*8x 18'-0" 2.32 3if9x 561t" V(I Page 12 PT BEAMS (PTBEAMIO) ADAPT -PT V- 5.30 11. OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <—TOP BARS—> <—BOTTOM BARS --> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 2 3 --4 5 1 .00(1) 12.80(1) .00(1) 54.40(1) 2 12.80(1) 12.800) .00(1) .00(1) 3 16.03(1) .00(1) 54.40(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th paints (file "SELBAR.DAT") 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI-318-92) LEGEND: Concrete = NORMAL weight (full shear allowed for) d = value of d used in equation 11-10 *60 = spacings of two -legged *6 stirrups, (fy= 60000. psi) ****1' means no stirrups are required Mu , Vu = factored moments and shears (secondary moment effects included) CASES Vc = 1 ACI eqn 11-10 governs 2 min permissible value of 2(fc)^1/2 govems 3 max permissible value of 5(fc)^1l2 govems 4v = 1 no reinforcement required 2 min reinforcement required (ACI eqn 11-15), for beams only /"'3 stirrup required by analysis (ACI eqn 11-17) Note.._., LEFT CANTILEVER (if any) X/L= 0.00 is at tip of cantilever, and X/L= 1.00 is at first support SPAN = 1 LENGTH = 64.00 ft (Net span from .00 to 64.00 ft ) X d Vu Mu RATIO Av * 4Q CASES XIL ft in k k-ft VuNc in^2/ t in Vc Av REMARKS 1 2 2 4 5 6 7--8 910-11 .00 .00 24.00 -124.66 109.90 .89 .09 24.0 (3 2) BEAMS ONLY Page 13 PT BEAMS (PTBEAMIO) ADAPT -PT V- 5.30 .05 1.20 25.52 -111.28 347.50 .80 .09 24.0 (3 2) BEAMS ONLY -97.90 550.98 .70 .09 24.0 (3 2) BEAMS ONLY -84.52 720.34 .83 .09 24.0 (1 2) BEAMS ONLY -71.14 855.59 .89 .09 24.0 (1 2) BEAMS ONLY -57.75 975.04 .89 .09 24.0 (1 2) BEAMS ONLY -45.38 1092.68 .76 .09 24.0 (2 2) BEAMS ONLY -34.69 1178.05 .57 .09 24.0 (2 2) BEAMS ONLY -23.99 1236.44 .39 .00 ***"" (2 1) -13.30 1260.63 .22 .00 ""' (2 1) 4.19 1250.57 .07 .00 ""' (2 1) 12.17 1206.31 .20 .00 "s" (2 1) 22.18 1127.80 .37 .00 ""' (2 1) 32.88 1015.10 .58 .09 24.0 (2 2) BEAMS ONLY 43.57 868.17 .78 .09 24.0 (2 2) BEAMS ONLY 687.00 .80 .09 24.0 (1 2) BEAMS ONLY 471.62 .69 .09 24.0 (1 2) BEAMS ONLY 222.02 .54 .09 24.0 (3 2) BEAMS ONLY -185.03 .62 .09 24.0 (3 2) BEAMS ONLY .95 60.80 26.68 97.04 -513.95 .70 .09 24.0 (3 2) BEAMS ONLY 1.00 64.00 32.00 107.74 -877.10 .82 .09 24.0 (1 2) BEAMS ONLY 40 26 88 .10 28.08 .29 10 29.12 .2t JO 30.00 .30 19.20 30.72 .35 22.40 31.28 .40 25.60 31.68 .45 28.80 31.92 .50 32.00 32.00 .55 35.20 31.72 .60 38.40 30.88 .65 41.60 29.48 .70 44.80 27.52 .75 48.00 25.00 54.27 .80 51.20 21.92 64.96 .85 54.40 18.28 75.66 .90 57.60 21.92 86.35 SPAN = 2 LENGTH = 64.00 ft (Net span from .00 to 64.00 ft ) X d Vu Mu RATIO Av XIL ft in k k-ft VuNc in"2I8 in 1 2 3-4 5 6 7 .00 .00 32.00-107.18-877.05 .82 . .69 . .62 . .54 . .68 .79 .77 .57 .36 .19 .06 .22 .40 .58 .05 3.20 26.68 -96.49 -515.71 .10 6.40 21.92 -85.79 -188.58 .15 9.60 18.28 -75.10 216.69 .20 12.80 21.92 -64.40 464.51 .25 16.00 25.00 -53.71 678.10 .30 19.20 27.52 -43.01 857.47 .35 22.40 29.48 -32.32 1002.62 .4^ 15.60 30.88 -21.63 1113.54 • :80 31.72 -11.61 1190.23 5y-t00 32.00 -3.63 1232.74 .5( 10 31.92 13.86 1240.99 .61, . .40 31.68 24.55 1215.03 .65 41.60 31.28 35.24 1154.84 N 40 CASES Vc Av REMARKS 8-9 10-11 09 24.0 (1 2) BEAMS ONLY 09 24.0 (3 2) BEAMS ONLY 09 24.0 (3 2) BEAMS ONLY 09 24.0 (3 2) BEAMS ONLY .09 24.0 (1 2) BEAMS ONLY .09 24.0 (1 2) BEAMS ONLY .09 24.0 (2 2) BEAMS ONLY .09 24.0 (2 2) BEAMS ONLY .00 ""' (2 1) .00 ""' (2 1) .00 ..... (2(21)) .00 ""' (2 1) .09 24.0 (2 2) BEAMS ONLY .70 44.80 30.72 45.94 1067.68 .77 .09 24.0 (2 2) BEAMS ONLY .75 48.00 30.00 56.63 949.93 .87 .09 24.0 (1 2) BEAMS ONLY .80 51.20 29.12 67.33 838.38 .87 .09 24.0 (1 2) BEAMS ONLY .85 54.40 28.08 78.02 719.63 .82 .09 24.0 (1 2) BEAMS ONLY .90 57.60 26.88 88.72 575.36 .72 .09 24.0 (1 2) BEAMS ONLY .95 60.80 25.52 99.41 405.57 .71 .09 24.0 (3 2) BEAMS ONLY 1.00 64.00 24.00 110.11 210.27 .79 .09 24.0 (3 2) BEAMS ONLY Page 15 PT BEAMS (PTBEAM10) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS Cor. 's modulus of elasticity Ec = 3600.00 ksi Cre. actor K = 2.00 leffective/Igross...(due to cracking) K = 1.00 Where stresses exceed 6(fc'r1/2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1 2 3 -46- 1 .30 .06 . 18( 4284) .08( 9608) .26( 2963) 2 .28 .03 .10( 7345) .08(9612) .18(4163) -EsSTRUCTURAL TAYLOR& GAINES STRU ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASADEN A. CALI F ORNI A Si 1 07 (6261 351-B8B 1 FAX (6261 351-5319 N eMr p, w 5frrzuclure sheet 15 of by job no. 131 9 date 9/11 ref. 43501-s e O -nrr ce-L. (h) ros 1�kmmiti 1 iesissrl L°A»S <-Ner, (16 , 5' im'Ye''' 125 L1/41 x 3 6".b vow I.ohbs 34"1 (gx Ii v` Y x 0419> z b(5 S 1't'tl i3 colic �� yak bl. o, o t x � O S .�z 015 sce -�DDV6 N w'ltil 1) L/, : /g. = 1I,5 4r1 y s t6,5t 0i 4e abx 5')*IB'(A- 9V 3 wt., J 4— C ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, California 94061 AT,PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System .3 Woodside Road, Suite 220, Redwood City, California 94061 I Phone: (650)306-2400 Fax: (650)364-4678 Email: Support@AdaptSoft.com 1 Web site: http://vnvw.AdaptSof.com DATE AND TIME OF PROGRAM EXECUTION: May 22,1999 At Time: 10:24 PROJECT TITLE: HOAG PARKING STRUCTURE ( ) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi for COLUMNS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi for COLUMNS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At all locations .450 R' p RCEMENT: Y. 3ngth 60.00 ksi Minir,. . Cover at TOP 2.00 in Minimum Cover at BOTTOM 2.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 in"2 Min CGS of tendon from TOP 12.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. 3.00 in 3.00 in Page 2 PT BEAM ( ) ADAPT -PT V- 5.30 Min average precompression 200.00 psi Max spacing between strands (factor of slab depth) 8.00 Tr a orofile type and support widths (see section 9) ANt, AS OPTIONS USED: Structural system BEAM Moment of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOMIMIDDLEI I P OI I I FLANGE I FLANGE I REF I MULTIPLIER A RI LENGTH! WIDTH DEPTHI width thick.I width thick.IHEIGHTI left right N MI ft I in in I in in I in in I in I 1 3 4 5 -6 7 8- 9 10 11 12 13 1 2 46.00 18.00 36.00 98.00 5.00 36.00 .50 .50 2 2 46.00 18.00 36.00 98.00 5.00 36.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3 - FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN ---> <---- UPPER COLUMN --> WIDTH LENGTH B(DIA) D CBC• LENGTH B(DIA) D CRC* JOINT in ft in in ft in in 1 2 3-4 5-6- 7-8 9 10 1 24.00 12.00 24.00 24.00 (1) 12.00 24.00 24.00 (1) 2 24.00 .00 .00 24.00 (1) .00 .00 24.00 (1) Page 3 PT BEAM ( ) ADAPT -PT V- 5.30 3 24.00 12.00 24.00 24.00 (1) 12.00 24.00 24.00 (1) 'T caQLUMN BOUNDARY CONDITION CODES (CBC) F�. •oth ends ...(STANDARD) = 1 Hint' .4 near end, fixed at tar end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <—CLASS---> <-------TYPE-- ---' O = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE k/ft^2 (ft ft) (k-ft or k ...ft) k/ft 1 2 3--4 5 6 7 8 9- 1 D Li .00 46.00 .750 1 L Li .00 46.00 .520 2 D Li .00 46.00 .750 2 L Li .00 46.00 .520 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3,. ,— FADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/ft^2), (CON. or PART.) (MOMENT) SPAN CLASS TYPE LINE(kift) (k©ft or ft-ft) (k-ft @ ft ) -1-2-3-4---5--6--_—__7____-8 1 D L .750 .00 46.00 1 L L .520 .00 46.00 2 D L .750 .00 46.00 2 L L .520 .00 46.00 Page 4 PT BEAM ( ) ADAPT -PT V- 5.30 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 4.2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber 1= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA 1 Yb Yt (SEGMENT) inA2 inn•4 in in 2 3 --4 5- SPAN 1 1 1048.00 .1302E+06 23.92 12.08 SPAN 2 1 1048.00 .1302E+06 23.92 12.08 5- DEAD LOAD MOMENTS, SHEARS & REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(I)• Midspan M(r)* SH(I) SH(r) 1 2 3 -4 5 -6 1-132.17 66.21 -132.17 -17.25 17.25 2-132.17 66.21 -132.16 -17.25 17.25 Note: • = Centerline moments JOI1.. < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1 2 ----Lower columns --Upper columns---- 1 17.25 .00 .00 2 34.50 .00 .00 3 17.25 .00 .00 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS 1311 Page 5 PT BEAM ( ) ADAPT -PT V- 5.30 <- 6.1 LIVE LOAD SPAN MOMENTS (k-fl) and SHEAR FORCES (k) -> rft• ---> <-- midspan -> <- right --> <-SHEAR FORCE-> S ax min max min max min left right -1-- - 3--�----5-- ----7 6-----9-- 1-114.54 22.91 57.36 -11.45 -91.63 -45.82 -13.45 11.96 2 -91.63 -45.82 57.36 -11.45 -114.54 22.91 -11.96 13.45 Note: = Centerline moments <- 6.2 REACTIONS (k) -> <--- 6.3 COLUMN MOMENTS (k-ft) - <--- LOWER COLUMN -> <- UPPER COLUMN -> JOINT max min max min max min 1 13.45 -1.49 .00 .00 .00 .00 2 23.92 11.96 .00 .00 .00 .00 3 13.45 -1.49 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left• -> <- midspan -> <- right* -> -1 2 3 --4 1-115.25 66.21 -115.25 2-115.25 66.21 -115.25 Note: • = face -cif -support ..t REDUCED LIVE LOAD MOMENTS (k-ft) <- left* ---> c-- midspan --> <-- right* --> SPAN max min max min max min -1 2 3 -4 5---6 7 1-101.33 21.42 57.36 -11.46 -79.93 -35.61 2 -79.93 -35.61 57.36 -11.45 -101.33 21.42 Note: • = face -of -support Page 6 PT BEAM ( ) ADAPT -PT V- 5.30 8 rea4 OF DEAD AND LIVE MOMENTS (k-ft) Main. ..f dead load and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL) <-- left* ---> <--- midspan SPAN max min max -1 1-216.58 -93.83 123.57 2-195.18 -150.86 123.57 Note: • = face -of -support —> <__-_ right* ----> min max min 54.75 -195.18 -150.86 54.76 -216.58 -93.83 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1/L X2IL X3/L A/L 1 .000 .500 .000 .000 2 _ .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE Tendon editing mode selected: FORCE SELECTION <--- SELECTED VALUES > <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> P/A Wbal Page 7 PT BEAM ( ) ADAPT -PT V- 5.30 SPAN (k/-) Left Center Right (psi) (k/-) 14.000 24.00 18.00 32.00 248.09 .819 000 32.00 18.00 24.00 248.09 .819 Approximate weight of strand 494.0 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT` CENTER RIGHT* LEFT CENTER RIGHT -1 -2---3-----4-------5---6----7- 1 .00 .00 .00 209.60 209.60 209.60 2 .00 .00 .00 209.60 209.60 209.60 Note: • = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT* RIGHT• TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3 -4 5 -6 7 8 9 1 - -264.72 - -485.67 --190.03 --363.01 2 - -190.03 --363.01 --264.72 --485.68 Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C - -305.13 ---286.83 - -305.13 --286.83 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <-SPAN MOMENTS(k-ft)-> SPAN left• midspan dght' -1 2 3 1 108.75 -72.33 143.00 2 143.00 -72.34 108.75 <- SPAN SHEARS (k ) -> SH(I) SH(r) 56 2.83 2.83 -2.83 -2.83 frEs Page 8 PT BEAM ( ) ADAPT -PT V- 5.30 Note: • = face -of -support -REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) -> joint---2--------Lower columns --Upper columns---- 1 -2.826 .000 .000 2 5.651 .000 .000 3 -2.825 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.400 + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <- left* ---> <-midspan -> <-- right' --> SPAN max min max min max min 1 2 3 5- 6 7 1-216.96 -7.68 246.04 129.05 -304.89 -229.54 2-304.85 -229.50 246.06 129.08 -216.94 -7.68 Note: • = face -of -support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left* -> <- midspan -> <- right* -> 1 2 3 -4 1 118.00 55 83 -6.34 2 -6.30 55.85 118.00 Nr� -of-support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <-- UPPER column --> JOINT max min max min max min -1 2 3 -4 5 -6 7 1 44.19 18.78 .00 .00 .00 .00 2 94.61 74.28 .00 .00 .00 .00 3 44.19 18.79 .00 .00 .00 .00 Page 9 PT BEAM ( ) ADAPT -PT V- 5.30 11 r-&D STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 869.1 lb AVERAGE = 1.2 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3-4 5 6 7 8 9 1 .00 ( .00 .00 .00) 1.72 ( .00 1.72 .54) 2 .00 ( .00 .00 .00) 1.72 ( .00 1.72 .54) 11.2.2 SELECTION OF REBAR AT MID -SPAN <- TOP STEEL --> <--- BOTTOM STEEL -> SPAN (inA2) <- SELECTION -> (inA2) <- SELECTION -> - 1 2 3-4 5 6 7 8 9 1 .00 1.72 2 # 9 x 32'-0" 2 .00 1.72 2#9x 32'-0" 11.3. STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <---ULT-MIN-D+.25L-> (inA2) <-ULT--MIN-D+.25L-> - 1-2 3-4 5 -6 7---8--9-- 1 2.47 ( .00 2.47 .95) .00 ( .00 .00 .00) 2 2.47 ( .00 2.47 .89) .00 ( .00 .00 .00) 3 2.47 ( .00 2.47 .95) .00 ( .00 .00 .00) 11.3.2 SELECTION OF REBAR AT SUPPORTS Page 10 PT BEAM ( ) ADAPT -PT V- 5.30 <- TOP STEEL ----> <--- BOTTOM STEEL ----> JOINT (inA2) <- SELECTION --> (inA2) <- SELECTION -> 47 8#5x 131-6" .00 2 _.47 8 # 5 x 25-0" .00 3 2.47 8 # 5 x 13'-0" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <-TOP BARS--> <--BOTTOM BARS --> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 .00(1) 11.50(1) .00(1) 9.20(1) 2 11.50(1) 11.50(1) 6.90(1) 6.90(1) 3 11.50(1) .00(1) 9.20(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(length/span) ... .17 Span cut-off length for minimum steel(length/span) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in . ..4FORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 903.1 lb AVERAGE = 1.2 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- left* -> <- midspan -> <- right' -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3-4 5--6 7 8 9- 1-216.08 -7.00 261.75 149.26 -265.35 -198.80 .00 11.55 2-265.35 -198.80 261.75 149.27 -216.07 -6.99 11.55 .00 Page 11 PT BEAM ( ) ADAPT -PT V- 5.30 Note: ree-of-support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <- left' --> <- midspan --> <-- right' --> COEFFICIENT(%) SPAN max min max min max min left right 1-157.45 -106.24 104.34 77.46 -117.88 -102.92 .00 18.81 2-117.88 -102.92 104.34 77.46 -157.45 -106.23 18.81 .00 Note: = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (in"2) <-ULT-MIN--D+.25L-> (in"2) <---ULT-MIN-D+.25L-> 1 2 3 -4 5 -6 7 8 9 1 .00 ( .00 .00 .00) 1.72 ( .00 1.72 .63) 2 .00 ( .00 .00 .00) 1.72 ( .00 1.72 .63) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL ---> <-- BOTTOM STEEL -> SPAN (in"2) <- SELECTION -> (in"2) <- SELECTION -> -1 2_3-4-__5__ 1 .00 1.72 2 # 9 x 34.-6" 2 .00 1.72 2 # 9 x 34'-0" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <--ULT--MIN-D+.25L-> (in"2) <---ULT--MIN-D+.25L-> c-.0 1 ( .00 2.47 .95) .00 ( .00 .00 .00) 2 .7 ( .00 2.47 .71) .00 ( .00 .00 .00) 3 2.47 ( .00 2.47 .95) .00 ( .00 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <-- TOP STEEL ---> <-- BOTTOM STEEL ---> JOINT (in"2) <_ SELECTION -> (in"2) <- SELECTION -> -1 2 3---4--5------6---7-8--9--- 1 2.47 8#5x 13'-6" .00 2 2.47 8#5x 25'-0" .00 3 2.47 8 # 5 x 13'-6 .00 Page 12 PT BEAM ( ) ADAPT -PT V- 5.30 1' ''STANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) 4-TOP BARS—> <—BOTTOM BARS—> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT —1 2—_---3"___--- 4------_5_- 1 .00(1) 11.50(1) .00(1) 6.90(1) 2 11.50(1) 11.50(1) 6.90(1) 6.90(1) 3 11.50(1) .00(1) 6.90(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI 318-89) No shear reinforcement required 257 Page 13 PT BEAM ( ) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS ( n modulus of elasticity Ec = 3600.00 ksi Cree, -tor K = 2.00 leffective/Igross...(due to cracking) K = 1.00 Where stresses exceed 60c4)^1/2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1 .03 .00 .00(""') .02(24893) .02(26114) 2 .03 .00 .00( ) .02(24892) .02(26196) ��•-�, TAYLOR & GAINES J STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 �, PASAO E NA, CALI FORNI A 91 1 07 [626) 351 -9991 FAX (62E11 351 -5319 11444 pa2WN4 ThiciuRe sheet D of by job no. 1315 date 5/il `(. 43,60ris evDLo 17: 6I6N L hfl ebb t 64fl 41 %tf <r <axbytto '` i5> ,b ita bt, o, o l x l ent1 ), uve Lbws 0.65 $ 6Tttl I) lir 46>4 II& 4rhi•10ee 3) yi.tt udx5'>tla'"z 9 3ttoest Let. 4b� I St1 tJ 3 e" t:, SA- T h3 e (ezip < -rYctt3 (I 5It145/216') Aan 4— e414Thet. It ,'44 ADAPT' STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, California 94061 7PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System 3 Woodside Road, Suite 220, Redwood City, California 94061 I Phone: (650)306-2400 Fax: (650)364-4678 Email: Support©AdaptSoft.com I Web site: http://www.AdaptSoft.com DATE AND TIME OF PROGRAM EXECUTION: May 22,1999 At Time: 10:27 PROJECT TITLE HOAG PARKING STRUCTURE ( ) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi for COLUMNS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi for COLUMNS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (Pc)) At all locations .450 P ,-QRCEMENT: Y. ength 60.00 ksi Minix, . Cover at TOP 2.00 in Minimum Cover at BOTTOM 2.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 in"2 Min CGS of tendon from TOP 12.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. 3.00 in 3.00 in It Page 2 PT BEAM ( ) ADAPT -PT V- 5.30 Min average precompression 200.00 psi Max spacing between strands (factor of slab depth) 8.00 Tf ,.:,,profile type and support widths (see section 9) AN. S OPTIONS USED: Structural system BEAM Moment of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY SS 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOMIMIDDLEI I P OI I I FLANGE I FLANGE I REF MULTIPLIER A RI LENGTH' WIDTH DEPTH' width thick] width thick.IHEIGHTI left right N MI ft I in in I in in I in in I in I 1 3-4 5--6 7-6 9 10 11 12 13- 1 2 46.00 18.00 36.00 98.00 5.00 36.00 .50 .50 2 2 46.00 18.00 36.00 98.00 5.00 36.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3 - FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN -> <- UPPER COLUMN ----> WIDTH LENGTH B(DIA) D CBC' LENGTH B(DIA) D CBC' JOINT in ft in in ft in in 1 2 3--4 5--6 7-8 9 10 1 24.00 12.00 24.00 24.00 (1) 12.00 24.00 24.00 (1) 2 24.00 .00 .00 24.00 (1) .00 .00 24.00 (1) Page 3 PT BEAM ( ) ADAPT -PT V- 5.30 3 24.00 12.00 24.00 24.00 (1) 12.00 24.00 24.00 (1) 'T _QLUMN BOUNDARY CONDITION CODES (CBC) FL oth ends ...(STANDARD) = 1 Hkq, , near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <—CLASS—> <-----TYPE-----> D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Tdb SPAN CLASS TYPE k/ftA2 ( ft ft) (k-ft or k ...ft) k/ft 1 2 3-4 5 6 7--8 9 1 D Li .00 46.00 .740 1 L Li .00 46.00 .480 2 D Li .00 46.00 .740 2 L Li .00 46.00 .480 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3 FADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/t"2), (CON. or PART.) (MOMENT) SPAN CLASS TYPE LINE(k/ft) (k@ft or ft-ft) (k-ft @ ft ) 1 2 3---4 5---6 7 8 1 D L .740 .00 46.00 1 L L .480 .00 46.00 2 D L .740 .00 46.00 2 L L .480 .00 46.00 Page 4 PT BEAM ( ) ADAPT -PT V- 5.30 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 4.2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber 1= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA (SEGMENT) in^2 -2-- SPAN 1 1 1048.00 SPAN 2 1 1048.00 Yb Yt inA4 in in 3-_-_____ 4---__5-- .1302E+06 23.92 12.08 .1302E+06 23.92 12.08 5- DEAD LOAD MOMENTS, SHEARS 8 REACTIONS <5.1 SPAN SPAN M(I)* -1 2 1-130.40 2-130.40 MOMENTS (k-ft) > < 5.2 SPAN SHEARS (k) > Midspan M(r)' SH(I) SH(r) 3 -4 5---6 65.33 -130.40 -17.02 17.02 65.33 -130.40 -17.02 17.02 Note: = Centerline moments JOII. < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1- 2---Lower columns-Uppercolumns- 117.02 .00 .00 2 34.04 .00 .00 3 17.02 .00 .00 6- LIVE LOAD MOMENTS, SHEARS 8 REACTIONS Page 5 PT BEAM ( ) ADAPT -PT V- 5.30 <- 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> Ja`> <-- midspan -> <-- right* -> <-SHEAR FORCE-> Si 3x min max min max min left right -1- --3----4-----5---6---7 8--9- 1-105.73 21.15 52.95 -10.57 -84.59 42.29 -12.42 11.04 2 -84.59 -42.29 52.95 -10.57 -105.73 21.15 -11.04 12.42 Note: `= Centerline moments <- 6.2 REACTIONS (k) -> <------ 6.3 COLUMN MOMENTS (k-ft)-------> <- LOWER COLUMN --> <-- UPPER COLUMN --> JOINT max min max min max min -1 2-----3-------4-------5-----6 7--- 1 12.42 -1.38 .00 .00 .00 .00 2 22.08 11.04 .00 .00 .00 .00 3 12.42 -1.38 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <-left*-> <-midspan-> <- right' -> -1 2 3 4 1-113.75 65.33 -113.75 2-113.75 65.33 -113.75 Note: • = face -of -support REDUCED LIVE LOAD MOMENTS (k-ft) <- left' --> <-- midspan ----> <-- right' --> SPAN max min max min max min -1 2 34 5-6 7 1 -93.58 19.77 52.95 -10.57 -73.78 -32.88 2 -73.78 -32.88 52.95 -10.57 -93.58 19.77 Note: • = face -of -support Page 6 PT BEAM ( ) ADAPT -PT V- 5.30 8 "..-4N OF DEAD AND LIVE MOMENTS (k-ft) Max. .if dead load and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL) <-- left' —> <-- midspan --> < right' ----> SPAN max min max min max min -1`-2---3- - 4-------5--6-----7-- 1-207.33 -93.98 118.28 54.75 -187.53 -146.63 2-187.53 -146.63 118.28 54.75 -207.33 -93.98 Note: = face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1/L X2IL X3/L A/L 2- 3-------5-_ 1 "�, .000 .500 .000 .000 2 . .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE Tendon editing mode selected: FORCE SELECTION < SELECTED VALUES > <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> P/A Wbal PA 5 Page 7 PT BEAM ( ) ADAPT -PT V- 5.30 bib SPAN (Id-) Left Center Right (psi) (Id-) -1 2 3 -4 5- 6 7 10.000 24.00 18.00 32.00 248.09 .819 •.000 32.00 18.00 24.00 248.09 .819 Approximate weight of strand 494.0 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM PIA -> SPAN LEFT* CENTER RIGHT* LEFT CENTER RIGHT -1 2 3 -4 5 -6 7 1 .00 .00 .00 209.60 209.60 209.60 2 .00 .00 .00 209.60 209.60 209.60 Note: • = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT• RIGHT* TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3 1 5 -Q 7 8-9 1 - -264.55 -- -465.29 --198.54 --- -346.16 2 - -198.54 --346.16 --264.55 ---465.30 Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C -1 ,�� 2 3---4 5 1 -- -299.24 ---286.84 2 -- -299.24 ---286.84 9.7 POST -TENSIONING B A LAN C E D M O M E N T S, SHEARS 8 REACTIONS <- SPAN MOMENTS(k-ft)-> <-- SPAN SHEARS(k)-> SPAN left' midspan right' SH(I) SH(r) -1 2 3 4 5 6 1 108.75 -72.33 143.00 2.83 2.83 2 143.00 -72.34 108.75 -2.83 -2.83 Page 8 PT BEAM ( ) ADAPT -PT V- 5.30 Note: • = face -of -support REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) --> joint----2------Lower columns ---+Upper columns--- 1 -2.826 .000 .000 2 5.651 .000 .000 3 -2.825 .000 .000 10-FACTORED MOMENTS 8 REACTIONS Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <- left* --> <-- midspan --> <-- right` -> SPAN max min max min max min 1 2 3---4 5 -6- 7 1-201.49 -8.32 237.30 129.32 -292.23 -222.67 2-292.19 -222.63 237.32 129.34 -201.49 -8.32 Note: • = face -of -support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left' -> <- midspan -> <- right` -> 1 2 3- --4 1 118.00 55.83 -6.34 2 -6.30 55.85 118.00 N of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <-- LOWER column --> <- UPPER column -> JOINT max min max min max min -1 2 3 -4- 5 6 --7- 1 42.12 18.66 .00 .00 .00 .00 2 90.84 72.08 .00 .00 .00 .00 3 42.12 18.66 .00 .00 .00 .00 �91 Page 9 PT BEAM ADAPT -PT V- 5.30 1' "..--4 D STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity> factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(length/span) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 869.1 lb AVERAGE = 1.2 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT--MIN-D+.25L-> (inA2) <-ULT--MIN-D+.25L-> -1-2 3--I 5 -6 7 8-9- 1 .00 ( .00 .00 .00) 1.72 ( .00 1.72 .52) 2 .00 ( .00 .00 .00) 1.72 ( .00 1.72 .52) 11.2.2 SELECTION OF REBAR AT MID -SPAN <- TOP STEEL ---> <-- BOTTOM STEEL ---> SPAN (inA2) <- SELECTION -> (inA2) <- SELECTION --> -1 2 3-4 5 -6 7 8 9 1 .00 1.72 2 # 9 x 321-0" 2 .00 1.72 2 # 9 x 321-0" 11.3. STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <-ULT--MIN-D+.25L-> (inA2) <-ULT-MIN--D+.25L-> -1-2 3----4--5-- 6 7---8 9-- 1 2.47 ( .00 2.47 .92) .00 ( .00 .00 .00) 2 2.47 ( .00 2.47 .87) .00 ( .00 .00 .00) 3 2.47 ( .00 2.47 .92) .00 ( .00 .00 .00) 11.3.2 SELECTION OF REBAR AT SUPPORTS Page 10 PT BEAM ( ) ADAPT -PT V- 5.30 <- TOP STEEL ---> <--- BOTTOM STEEL --> JOINT (inA2) <-- SELECTION --> (in"2) <- SELECTION -> 3-4- -5-- ---6--7-8--9- A 8 # 5 x 13.-6" .00 2 .47 8 # 5 x 251-0" .00 3 2.47 8 # 5 x 131-6" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <-TOP BARS-> <-BOTTOM BARS--> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 .00(1) 11.50(1) .00(1) 9.20(1) 2 11.50(1) 11.50(1) 6.90(1) 6.90(1) 3 11.50(1) .00(1) 9.20(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT') 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(length/span) ... .17 Span cut-off length for minimum steet(length/span) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in r R .. ORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 903.1 lb AVERAGE = 1.2 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- left' -> <- midspan -> <- right* -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3- -4 5 -6 7-8 9- 1-200.65 -7.66 252.52 148.69 -254.32 -192.89 .00 11.55 2-254.32 -192.89 252.53 148.69 -200.65 -7.66 11.55 .00 Page 11 PT BEAM ( ) ADAPT -PT V- 5.30 Note: ' -.eof-support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <- left• --> <- midspan -> <- right` ---> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3 -4 5--0 7 -8 9 1-152.66 -105.39 101.33 76.53 -114.57 -100.77 .00 18.85 2-114.57 -100.77 101.34 76.53 -152.66 -105.39 18.85 .00 Note: • = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <--ULT-MIN-D+.25L-> (inA2) <-_-ULT---MIN-D+.25L-> 1 2 3-4 5 7 -8 9 1 .00 ( .00 .00 .00) 1.72 ( .00 1.72 .61) 2 .00 ( .00 .00 .00) 1.72 ( .00 1.72 .61) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL --> <-- BOTTOM STEEL -> SPAN (inA2) <- SELECTION -> (inA2) <- SELECTION --> -1 2 3-4 5- 6 7 8 9 1 .00 1.72 2 # 9 x 34'-6" 2 .00 1.72 2 # 9 x 34'-6" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <--ULT--MIN-D+.25L-> (inA2) <--ULT----MIN-D+.25L-> ,r0 ( .00 2.47 .92) .00 ( .00 .00 .00) 2 _ / ( .00 2.47 .69) .00 ( .00 .00 .00) 3 2.47 ( .00 2.47 .92) .00 ( .00 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <- TOP STEEL ----> <-- BOTTOM STEEL --> JOINT (inA2) <- SELECTION -> (inA2) <- SELECTION -> -1 2 3-4 5- 6 7 8 9 1 2.47 8#5x 13'-6" .00 2 2.47 8#5x 25'-0" .00 3 2.47 8#5x 13'-6" .00 l tist Page 12 PT BEAM ( ) ADAPT -PT V- 5.30 1' ".STANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ) <—TOP BARS—> <—BOTTOM BARS—> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT —1— 2— 3— —4- 1 .00(1) 11.50(1) .00(1) 6.90(1) 2 11.50(1) 11.50(1) 6.90(1) 6.90(1) 3 11.50(1) .00(1) 6.90(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT') 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI 318-89) No shear reinforcement required Page 13 PT BEAM ( ) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS i 's modulus of elasticity Ec = 3600.00 ksi Cre. Jctor K = 2.00 (effective/Igross...(due to cracking) K = 1.00 Where stresses exceed 6(f0M/2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1 .03 .00 .00('"") .02(26950) .02(28611) 2 .03 .00 .00('"'7 .02(26949) .02(28577) 3, tS:- T�TAYLOR& GAES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SPEET • SUITE 200 er^,PASAOE NA, CALIFORNIA 91 1 07 8291 351 -8081 FAX (5251 351 -5319 Hbe sheet 1271o3 of by p g2a N4 ScrizUfriu r2E job no. 13 9 5 date 5/11 r. er. le.u9 r -oNL - te3 +Oere M 4°ran, p51 Norzrtdt k►`1'.. P otF LSkeL Kos M Sme 4," et o pb'(I iv1'I0bH Y=2 t < -> 1 aIc i> Lto— 12Gt4,'C. UNe.,oN05v �ivnt�DNt. tin . Lofty i ti sF Live l bkb IkirSt2UC.-Gro 30 rw < Pros 11111 UAt—) OSS of 5t Rif ADAPT STRUCTURAL CONCRETE SOFTWAkE SYSTEM 1 1733 Woodside Road, Suite 220, Redwood City, California 94061 1 An^PT-PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System 13 Woodside Road, Suite 220, Redwood City, California 94 1 I F ;: (650)306-2400 Fax: (650)364-4678 Ema9: Support©AdaptSoft.com 1 Web site: httpJMrww.AdaptSoft.com II DATE AND TIME OF PROGRAM EXECUTION: May 16,1999 At Time: 20:8 PROJECT TITLE: HOAG PARKING STRUCTURE (PTBEAM4.) 1•USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi for COLUMNS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi for COLUMNS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (Pc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (Pc)) At all locations .450 REINFORCEMENT: YIELD Strength 60.00 ksi Minimum Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in Pr ,..---TENSIONING: S , UNBONDED UM strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 in"2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Mkn CGS of tendon from BOTTOM for EXTERIOR spans.. 1.00 in 1.75 in Page 2 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 Min average pprecompression 150.00 psi Mr .oac•uqbetween strands (factor of slab depth) 8.00 T : profse type and support widths (see section 9) Atr IS OPTIONS USED: Stn. el system BEAM Moment of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S F) I ) TOP IBOTTOMIMIDDLEI P O1 II 1 FLANGE I FLANGE I REF I MULTIPLIER A RI LENGTH' WIDTH DEPTH) width thidc.I width 8ddc.IHEIGHTI left right N MI ft) In in) in in I in in I in ) 1 3 -4 .5 6 7 8 9-10-11 12 13- 1 2 64.00 18.00 36.00 98.00 5.00 5.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1-SPAN C = Cantilever 3 - FORM 1 = Rectangular section 2 =Tor Inverted L section 3 =1 section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line SUPPORT WIDTH AND COLUMN DATA 'PORT <— LOWER COLUMN —> <— UPPER COLUMN —> JTH LENGTH B(DIA) D CBC' LENGTH B(DIA) D CBC' JOIN i in ft in in ft in in 1 2 3---4 5— 6 7 8 9 10 1 24.00 12.00 24.00 24.00 (1) .00 .00 .00 (1) 2 18.00 12.00 24.00 18.00 (1) .00 .00 .00 (1) Page 3 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 'THE COLUMN BOUNDARY CONDITION CODES (CBC) Fir .< at both ends ...(STANDARD) = 1 F ''+attenear end, fixed at far end = 2 F x ear end, rollerlwithhiar rotati al fixity at far end I. ..= 4 3-INPUT APPLIED LOADING <—CLASS—> < TYPE > D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT U= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE WW2 ( ft ft) (k-ft or k ...ft) k/ft 1-2-3 -1 5 6 7 8 9- 1 D U .00 64.00 1.900 1 L U .00 64.00 .540 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFO)RM T. ) SPAN CLASS PIPE (CON. R LINNE(k/ft) (k4ft ft or ft-(k ft(MOMENT) ft ) 1-2-3 1 S 6 7 8 1 D L 1.900 .00 64.00 1 L L .540 .00 64.00 NUr'VE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES Page 4 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 4.2 - Computed Section Properties for Segments of Nonprismatic Spans S. .properties are listed for all segments of each span AW ;sectional geometry Yt= centrodal distance to top fiber 1=1, , moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA I Yb Yt (SEGMENT) inr2 inA4 in in 2 3 1 5— SPAN 1 1 1048.00 .1302E+06 23.92 12.08 5- DEAD LOAD MOMENTS, SHEARS & REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(I)* Midspan M(r)* SH(I) SH(r) 1 2 1 4 5----6--- 1 -648.10 324.67-648.15 -60.80 60.80 Note: • = Centerline moments JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> —1 2—Lower columns Upper columns- 1 60.80 .00 .00 2 60.80 .00 .00 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS o=====m=v ==se==u== -= =__ <— 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) —> <— lefts —> <— midspan —> <— right* —> <—SHEAR FORCE—> Sr max min max min max min left right t 2-3 4 5 6 7-8 9- 1t'.20 .00 92.28 .00-184.21 .00 -17.28 17.28 Note. • = Centerline moments <- 6.2 REACTIONS (k) -> <— 6.3 COLUMN MOMENTS (k-ft) —> Page 5 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 1 `t, <- LOWER COLUMN -> <_ UPPER COLUMN -> JOINT max min max min max min -1 .. 2 3 4 5 6 7 ��1728 .00 .00 .00 .00 .00 7.28 .00 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7 - MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 R E D U C E D DEAD LOAD MOMENTS (k-ft) SPAN <-left•-> <- midspan-> <- right -> 1 2 3 4 1-588.25 324.67 -603.08 Note: • = faceof-support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <- lefts -> <- midspan -> <-right•-> SPAN max min max min max min 1 2 3-- 4-5 -67- 1-167.17 .00 92.25 .00-171.42 .00 Note: • = face -of -support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) 1=======-... .•'...-...••••=2Z=22=================== =es== Maxima of dead bad and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL ) <- left -> <- midspan -> <- right* -> sr- • max min max min max min 2 1 .5.42 -588.25 416.92 324.67 -774.50 -603.08 Note: • = face -of -support Page 6 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 9 ECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 .OFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever. 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1/L X2/L X3IL AIL 1-2 3 4 5- 1 2 .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE Tendon editing mode selected: FORCE SELECTION <— SELECTED VALUES —> <- CALCULATED VALUES -> FORCE <- DISTANCE OF CGS (in) -> P/A Wbal SPAN (k/-) Left Center Right (psi) (Id-) 1 2 3 4 5 6 7 1 420.000 24.00 4.00 24.00 400.76 1.367 Approximate weight of strand 557.4 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) /-r BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SI LEFT' CENTER RIGHT' LEFT CENTER RIGHT -1 2 3 4 a 7- 1 230.30 232.19 237.58 157.20 157.20 157.20 Note: • = face -of -support Page 7 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 9.6 SERVICE STRESSES (psi) (tension shown positive) ,e—`LEFT* RIGHT• 3P BOTTOM TOP BOTTOM .-T max-C max-T max-C max-T max-C max-T max-C 1 2 3 4 5 6 7-8-9- 1 —-186.86--1192.47 8.72-182.14 --1211.18 Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C 1 2-3 -4 5 1 — -574.59 —-260.07 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <—SPAN MOMENTS(k-ft)—> <— SPAN SHEARS (k)—> SPAN left' midspan right* SH(I) SH(r) 1-2 3 4 5 6 1 396.17 -260.83 406.75 .00 .00 ore: • = face -of -support <—REACTIONS (k )—> <— COLUMN MOMENTS (k-ft) —> -joint 2 Lower columns —Upper columns- 1 -.001 .000 .000 2 .001 .000 .000 10-FACTORED MOMENTS & REACTIONS __ C ad as (1.40D + 1.70L + 1.00 secondary moment effects) ___________ 10.1 t ACTORED DESIGN MOMENTS (k-ft) <— )ef —> <— midspan —> <— right' —> SPAN max min max min max min -1 2 3 4 5 6 7 Page 8 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 1-1760.45 -1475.22 -37.35-194.22-1787.78 -1495.55 Note: p -ce-of-support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left' -> <- midspan -> <- right* -> 1 2 3 4 1 -648.75 -648.75 -648.75 Note: = face -of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) 1 (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min 1 2 3 4 5 6 7- 1 114.50 85.12 .00 .00 .00 .00 2 114.50 85.12 .00 .00 .00 .00 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduoed Live load capacity requirement Ratio of reduced to total Live loading 60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cutoff le npm for minimum steel(length/span) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments TOTAL WEIGHT OF REBAR = 1288.9 lb AVERAGE = 2.5 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT--MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3---4 5 0 7 8 9- Page 9 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 1?)II"7-- 1 2.47 ( .00 2.47 .00) 2.12 ( .00 .00 2.12) 1 ,-- SELECTION OF REBAR A T MID -SPA N - TOP STEEL -> <- BOTTOM STEEL -> SP, (InA2) <- SELECTION -> (inA2) <- SELECTION -> 1 2 3 4 5 G-i7-8-9- 1 2.47 4#8x 28'-0" 2.12 3#9x 40'-6" 11.3.1 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (int2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3-4 5-6 7-8 9 1 4.05 ( .00 2.47 4.05) .00 ( .00 .00 .00) 2 4.16 ( .00 2.47 4.16) .00 ( .00 .00 .00) 11.3.2 SELECTION OF REBAR A T SUPPORT S <- TOP STEEL > <- BOTTOM STEEL -> JOINT (m'2) <- SELECTION -> (inA2) <- SELECTION -> 1 2 3-4 8 7-8--9- 1 4.05 6#8x 18'-0" .00 2 4.16 6#8x 18'-0" .00 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 .00(1) 16.00(3) .00(1) 12.800(((1)) 2 16.00(3) .00(1) 12.80(1) .00(1) Legend: 1 = Common Case of rebar 2 = Reber is needed continuosy over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") x ... =========r=r==xxszxxx=xs==xxx axz_zxzzzz x SPEUFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduoed Live load capacity requirement Ratio of reduced to total Live loading .... 60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Page 10 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 ... .17 Span ^cutoff length for minimum teel(lengthlcul-off length for minimum steel( �span)san)... .33 T ,/"+ar extension beyond zero -point 12.00 In E ,ar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 1288.9 lb AVERAGE = 2.5 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- left* -> <- midspan -> <- right -> COEFFICIENT(%) SPAN max min max min max min left right 1 2 3-4 5 6 7-8-9- 1-1760.45 -1475.22 -37.35 -194.22 -1787.78 -1495.55 .00 .00 Note: • = face -of -support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <-Ie8•-> <- midspan -> <- right -> COEFFICIENT(%) SPAN max min max min max min left right 1-2-3 -4 5 6 7 8 9- 1-660.25 -590.34 363.12 324.67 -676.45 -604.83 .00 .00 Note: • = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN As DIFFERENT REBAR CRITERIA T T As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT-MIN-D+.25L-> (ine2) <-ULT-MIN-D+.25L-> 1 2 3- 1 5 6 7-8 9- 1 2.47 ( .00 2.47 .00) 2.12 ( .00 .00 2.12) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT M I D- S P A N <- TOP STEEL > <- BOTTOM STEEL -> SPA (inA2) <- SELECTION -> (inA2) <- SELECTION -> - 2 3-4 56 7-8 9 1 2.47 4#8x 28'-0" 2.12 3B9x 40'-6" 11.8.1 REDISTRIBUTED STEELAT SUPPORTS As DIFFERENT REBAR CRITERIA BOTTOM T As DIFFERENT REBAR CRITERIA Pp Page 11 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 JOINT (inA2) <—ULT—MIN—D+.25L-> (inA2) <—ULT—MIN—D+.25L-> 1-2-3 1 5 6 7 A 9- 1 4.06 ( .00 2.47 4.06) .00 .00 .00 00 p"d7 ( .00 2.47 4.17) .00 ( .00 .00 .00 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT S U P P O R T S <— TOP STEEL —> <— BOTTOM STEEL —> JOINT (inA2) <— SELECTION —> (inA2) <— SELECTION —> 1 2-3-4--5 6 7-8 9 1 4.06 6*8x 181-0" .00 2 4.17 608x 181-0" .00 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( 8 ) <—TOP BARS—> <—BOTTOM BARS—> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 2 3--- 5 1 00(1) 16.00(3) .00(1) 12.80(1) 2 16.00(3) .00(1) 12.80(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosty over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI-318-92) LEGEND: Concrete = NORMAL weight (full shear allowed for) d = value of d used in equation 11-10 *60 = spacings of two -legged 06 stirrups, (fy= 60000. psi) "*" means no stirrups are required Mu , Vu = factored moments and shears (secondary moment effects induded) C � 2 mn 11-10 govems in permissible value of 2(fc)A1/2 govems 3 max permissible value of 5(fc)A1/2 govems Av = 1 no reinforcement required 2 min reinforcement required (ACI eqn 11-15), for beams only 3 stirrup required by analysis (ACI eqn 11-17) 13 l II- Page 12 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 Note: for LEFT CANTILEVER (if any) XIL= 0.00 is at tip of cantilever, <nd XIL= 1.00 is at first support SPA. LENGTH = 64.00 ft (Net span from 1.00 to 63.25 ft ) X d Vu Mu RATIO XIL ft Ink k-ft VuNc in^2/ft 1 2 3 4 5 6 .00 .00 55.00 -114.49 -1869.22 .05 3.20 51.20 -103.05 -1521.16 .5 .10 6.40 47.80 -91.60 -1209.73 .5 .15 9.60 44.80 -80.15 -934.95 .45 .20 12.80 42.20 -68.70 -696.81 .38 .25 16.00 40.00 -57.25 -534.67 .3 .30 19.20 38.20 -45.80 -412.11 .2 .35 22.40 36.80 -34.35 -316.78 .40 25.60 35.80 -22.90 -248.70 .1 .45 28.80 35.20 -11.45-207.83 .1 .50 32.00 35.00 .00-194.22 .00 .55 35.20 35.20 11.45-207.85 .1 .60 38.40 35.80 22.90 -248.72 .1 .65 41.60 36.80 34.35 -316.82 .2 .70 44.80 38.20 45.80 -412.16 .2 .75 48.00 40.00 57.25 -534.74 .80 51.20 42.20 68.70 -696.90 .85 54.40 44.80 80.15 -935.06 .90 57.60 47.80 91.60-1209.85 . .95 60.80 51.20 103.05 -1521.29 . 1.00 64.00 55.00 114.50 -1869.36 Av #4© CASES in Vc Av REMARKS 7--8-- 9 1011 5 .05 24.0 (1 2) BEAMS ONLY 0 .06 24.0 (1 2) BEAMS ONLY .00 'gat' (1 1) .00 ""' (1 1)) 1 7 .00 "'a' (1 1) 21 3 .00 ..... t 1 8 .00 aaaaa 1 1 4 .00 ""' (211) 4 .00 ""' (1 1 8 .00 "a" 1 1 3 .00 ..... 1 1 7 .00 "'a' 1 1 33 .00 ..... 1 1 38 .00 a"" 1 1 4i0 .06 24.0 (1t2) BEAMS ONLY 55 .05 24.0 (1 2) BEAMS ONLY Page 13 PT BEAM (PTBEAM4.) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS C ea<ete's modulus of elasticity Ec = 3600.00 ksi 4 idor K = 2.00 le. 1e lgross...(due to cracking) K = 1.00 Where stresses exceed 6(fc t1/2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1-2 3 4 5 6 1 .30 .03 .10( 7570) .09( 8897) .19( 4090) -TEETAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOEN A. CALIFORNIA S 1 1 07 �`9261 351 -S2S1 FAX (626) 351 .5319 HbMr sheet b l l of by FlocNelS ucrulob no. 1315 date '`/11 I 5" C Tl p. t_v. 0 4- qt _k5t414 > ps NI brativ i s f1 ( x 6%44) x S �o. Pe UvEr LoAt:+s Lt C&u = o,bxsbprof- = - < rtnC.LI-_> pi lams �-� <5x3W44)x 0.15 x 4tL-496-xesI5)40101>x RI?46Lre. I.L• (a, D 3 x 1105 41 eisa- 01$X94(4¢)x l&x 6tLt(~i.xd,l5+6•01) X Ki x 64 = .(0 r c .. 510 0 K < _, -;- _ k.w> _c % 224?:/47 4c' ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, California 94061 te•:j-PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software. System J3 Woodside Road, Suite 220, Redwood City, Califomia 94061 I Phone: (650)306-2400 Fax: (650)364-4678 'Email: Support@AdaptSoft.com I Web site: http:/twww.AdaptSoft.cam DATE AND TIME OF PROGRAM EXECUTION: Jun 13,1999 At Time: 8:54 PROJECT TITLE: HOAG PARKING STRUCTURE (PTGIRDER) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi for COLUMNS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi for COLUMNS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At all locations .450 R'�RCEMENT: :rength 60.00 ksi Min,. .. n Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 inA2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. 1.00 in 1.75 in Page 2 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 Min average precompression 125.00 psi Max spacing between strands (factor of slab depth) 8.00 Tr „profile type and support widths (see section 9) AN; ,S OPTIONS USED: Structural system BEAM Moment of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Limited plastification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOMIMIDDLEI I P 01 1 I FLANGE I FLANGE I REF I MULTIPLIER A RI LENGTH' WIDTH DEPTH' width thick.' width thick.IHEIGHTI left right N MI ft I in in I in in I in in I in I 1 3-4---5 6 7-8 9-10 11 12 13 1 2 46.00 28.00 36.00 108.00 5.00 36.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever r 3 - FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <— LOWER COLUMN --> <— UPPER COLUMN —> WIDTH LENGTH B(DIA) D CBC' LENGTH B(DIA) D CBC' JOINT in ft in in ft in in 1 2 3--4 5 6 7 8 9-10- 1 24.00 12.00 24.00 24.00 (1) 12.00 24.00 24.00 (1) 2 24.00 12.00 24.00 36.00 (1) 12.00 24.00 36.00 (1) Page 3 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 'THE COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends ...(STANDARD) = 1 Hi- „..!.$t near end, fixed at far end = 2 F r iear end, hinged at far end = 3 Fixt. .sear end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <—CLASS---> < TYPE D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE kAt^2 ( ft ft) (k-ft or k ...ft) Idit 1 2 3--4 5-6 7 8 9- 1 D Li 1 D C 1 L C 1 D C 1 L C .00 46.00 80.00 18.00 22.00 18.00 102.00 32.00 27.00 32.00 1.000 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (kHM2), (CON. or PART.) (MOMENT) SPAN CLASS TYPE LINE(k/ft) (k@ft or ft-ft) (k-ft @ ft ) 1 2 3— 4— 5 —6 7 8- 1 D L 1.000 .00 46.00 1 D C 80.00 18.00 1 L C 22.00 18.00 1 D C 102.00 32.00 1 L C 27.00 32.00 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 Page 4 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 4-1, . ULATED SECTION PROPERTIES 4.2 - Computed Section Properties for Segments of Nonprtsmatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber I= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA I Yb Yt (SEGMENT) inA2 inA4 in in 2 3 —4 5 SPAN 1 1 1408.00 .1785E+06 22.40 13.60 5- DEAD LOAD MOMENTS, SHEARS 8 REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(I)* Midspan M(r)• SH(I) SH(r) —1 2 3 4 5 6 1-1011.74 587.85 -1209.56 -98.44 129.56 Note: • = Centerline moments JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> —1 2 Lower columns —Upper columns- 1 98.44 .00 .00 2 ,— 129.56 .00 .00 6- LIVE LOAD MOMENTS, SHEARS 8 REACTIONS <— 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) —> <— left• —> <— midspan —> <— right* —> <—SHEAR FORCE—> SPAN max min max min max min left right 1 2 -3-4 5--6 7---8 9- 1-226.65 .00 135.14 .00-277.07 .00 -20.51 28.49 Page 5 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 Note: • . &nterline moments <- 6.2 REACTIONS (k) -> <— 6.3 COLUMN MOMENTS (k-ft) > <— LOWER COLUMN —> <— UPPER COLUMN --> JOINT max min max min max min —1 2 3— -4 5 6 7— 1 20.51 .00 .00 .00.00 .00 2 28.49 .00 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left' -> <- midspan -> <- right* -> 1 2 1-914.17 587.83 -1080.83 Note: • = face -of -support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <—left•—> <---midspan —> <— right* —> SPAN max min max min max min -1 2 3 5---6 7 1-206.17 .00 135.17 .00-248.58 .00 Nr -of-support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) Maxima of dead load and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL ) <—left'—> <—midspan —> <-- right* —> SPAN max min max min max min -1 2 34 5 6 7— I )-C' . Page 6 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 1-1120.33 -914.17 723.00 587.83 -1329.42 -1080.83 Nr -of-support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE XIIL X2/L X3/L AIL 1 2 3-4 5 1 2 .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE rani Tendon editing mode selected: FORCE SELECTION <— SELECTED VALUES > <- CALCULATED VALUES -> .=ORCE <- DISTANCE OF CGS (in) -> PIA Wbal Si (k/-) Left Center Right (psi) (k/-) —1— 2 3 4 5 6 7- 1 590.000 22.50 4.00 22.50 419.03 3.439 Approximate weight of strand 586.0 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT* CENTER RIGHT* LEFT CENTER RIGHT Page 7 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 1 2 3 —4 5-6 7 1 421.56 477.54 546.61 176.00 176.00 176.00 N of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT' RIGHT' TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3 4 5 6 7 8 9- 1 121.91 46.54 --1310.32 313.14 — — -1625.39 Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C 1 2 3--4 5 1 — -802.28 212.41 — 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <—SPAN MOMENTS(k-ft)—> <— SPAN SHEARS (k)—> SPAN left* midspan right* SH(I) SH(r) —1 2 3 4 56- 1 528.50 -303.75 528.42 .00 .00 Note: = face -of -support ,—REACTIONS (k )—> <— COLUMN MOMENTS (k-ft) —> -tc —2 Lower columns —Upper columns-- 1 -.003 .000 .000 2 .003 .000 .000 10-FACTORED MOMENTS & REACTIONS a===== === ====== = Calculated as (1.400 + 1.70L + 1.00 secondary moment effects) Page 8 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 10.1 FACTORED DESIGN MOMENTS (k-ft) left' -> <- midspan -> <-- right* -> SP, max min max min max min -1 2 3 4 5- 6 7 1-1029.49 -679.06 1653.82 1424.08 -1335.19 -912.60 Note: = face -of -support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left' -> <- midspan -> <-- right* -> 1 2 3 -4 1 601.17 601.08 601.00 Note: ' = face -of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min 1 2 3 1 5 6 7 1 172.68 137.81 .00 .00 .00 .00 2 229.88 181.44 .00 .00 .00 .00 11-MILD STEEL == SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - -/qum steel 0.004A - It capacity > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(Iengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 1154.9 lb AVERAGE = 2.8 psf Page 9 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 11.2.1 STEEL AT MID -SPAN TOP BOTTOM DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SP>. .n"2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+25L-> - 1-2 3 -4 5 ---6 T 8 9 1 .00 ( .00 M0 .00) 3.85 ( .00 2.51 3.85) 11.2.2 SELECTION OF REBAR AT MID -SPAN <-. TOP STEEL > <- BOTTOM STEEL ---> SPAN (inA2) <- SELECTION -> (in42) <- SELECTION -> - 1 2 3-4 5 6 7-8 9- 1 .00 3.85 5 # 8 x 341-6" 11.3.1 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+.25L-> 1 2 3---4 5 6 7-- 8 9- 1 6.10 ( 1.39 3.12 6.10) .25 ( .25 .00 .00) 2 7.32 ( 3.53 3.12 7.32) 2.33 ( 2.33 .00 .00) 11.3.2 SELECTION OF REBAR AT SUPPORTS <- TOP STEEL -> <- BOTTOM STEEL -> JOINT (in"2) <- SELECTION -> (in"2) <- SELECTION -> 1 2 3-4 5 6 7-8 9 1 6.10 20 # 5 x 13'-6" .25 1# 8 x 7'-0" 2 7.32 24 # 5 x 131-8" 2.33 3# 8 x 7'-0" 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <-TOP BARS-> <-BOTTOM BARS -> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT --2 3 --4 5- .00(1) 11.50(1) .00(1) 4.60(3) 2 11.50(1) .00(1) 4.60(3) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT') 11-MILD STEEL Page 10 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - - 25% of unreduced Live load capacity requirement reduced to total Live loading .... .60 - NIL .,n steel 0.004A - Moment capadly> factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cutoff length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 1154.9 lb AVERAGE = 2.8 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <-left•-> <-midspan -> <-- right* -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3--4 5 6 7 -8 9 1-1029.49 -679.06 1653.82 1424.08 -1335.19 -912.60 .00 .00 Note: • = face -of -support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <- left* -> <- midspan -> <- right* -> COEFFICIENT(%) SPAN max min max min max min left right 1 2 3 -4 5- -6 7-8 9- 1-1000.32 -914.43 644.16 587.85 -1184.75 -1081.17 .00 .00 Note: • = face -of -support 11 - EDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (in"2) <-ULT--MIN-D+.25L-> (in42) <-ULT-MIN-D+.25L-> -1-2 3-4 5 6 7-8 9 1 .00 ( .00 .00 .00) 3.85 ( .00 2.51 3.85) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL > <- BOTTOM STEEL -> SPAN (in"2) <- SELECTION -> (1n1,2) <- SELECTION -> -1 2 3-4 5 6 7-8 9- Page 11 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 1 .00 3.85 5#8x 34'-0" 1 REDISTRIBUTED STEELAT. SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA ' As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN--D+.25L-> 1 2 3-4- 5 -6 7-8 9- 1 6.11 ( 1.39 3.12 6.11) .25 ( .25 .00 .00) 2 7.32 ( 3.53 3.12 7.32) 2.33 ( 2.33 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <- TOP STEEL > <- BOTTOM STEEL --> JOINT (inA2) <- SELECTION -> (inA2) <- SELECTION -> -1 2 3-4 5 6 7 8 9 1 6.11 20#5x 131-6" .25 1#8x 7'-0" 2 7.32 24 # 5 x 13'-6" 2.33 3# 8 x 7'-0" 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT -1 2 3 4 5 1 .00(1) 11.50(1) .00(1) 4.60(3) 2 11.50(1) .00(1) 4.60(3) .00(1) Legend: 1 = Common Case of rebar 2 = Reber is needed continuosy over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") AR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI-318-92) LEGEND: Concrete = NORMAL weight (full shear allowed for) d = value of d used in equation 11-10 #6� = spacings of two -legged #6 stirrups, (fy= 60000. psi) '""" means no stimips are required Mu , Vu = factored moments and shears (secondary moment effects included) CASES Vc = 1 ACI eqn 11-10 govems 2 min permissible value of 2(fc)41/2 govems Page 12 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 3 max permissible value of 5(fc)"1/2 govems 1 no reinforcement required 2 min reinforcement required (ACI eqn 11-15), for beams only 3 stirrup required by analysis (ACI eqn 11-17) Note: for LEFT CANTILEVER (it any) X/L= 0.00 is at tip of cantilever, and X/L= 1.00 is at first support SPAN = 1 LENGTH = 46.00 ft (Net span from 1.00 to 45.00 ft ) X d Vu Mu RATIO Av # 5@ CASES EL ft in k k-ft VuNc in"2/ft in Vc Av REMARKS 1 2 3 4 5 --6 7 8 9-10-11 .00 .00 22.50 -172.69 -1200.53 .05 2.30 18.99-169.47-807.13 .91 .08 24.0 (1 2) BEAMS ONLY .10 4.60 15.84-166.25 -421.05 .77 .08 24.0 (3 2) BEAMS ONLY .15 6.90 22.94 -163.03 102.28 .75 .08 24.0 (3 2) BEAMS ONLY .20 9.20 25.34 -159.81 393.33 .74 .08 24.0 (3 2) BEAMS ONLY .25 11.50 27.38 -156.59 692.69 .72 .08 24.0 (3 2) BEAMS ONLY .30 13.80 29.04 -153.37 1049.12 .78 .08 24.0 (1 2) BEAMS ONLY .35 16.10 30.33 -150.15 1398.16 .91 .08 24.0 (1 2) BEAMS ONLY .40 18.40 31.26 2.47 1680.02 .03 .00 ""' (2 1) .45 20.70 31.82 5.69 1670.63 .06 .00 '1**** (2 1) .50 23.00 32.00 8.91 1653.82 .09 .00 ""' (2 1) .55 25.30 31.82 12.13 1629.60 .13 .00 ""*" (2 1) .60 27.60 31.26 15.35 1598.00 .16 .00 ""'" (2 1) .65 29.90 30.33 18.57 1558.96 .20 .00 *"*" (2 1) .70 32.20 29.04 210.49 1474.81 1.09 .14 24.0 (1 3) .75 34.50 27.38 213.71 986.95 .99 .08 24.0 (3 2) BEAMS ONLY .80 36.80 25.34 216.93 517.17 1.00 .08 24.0 (3 3) .85 39.10 22.94 220.15 125.90 1.02 .08 24.0 (3 3) .90 41.40 15.84 223.37 -521.02 1.03 .08 24.0 (3 3) .95 43.70 18.99 226.59 -1038.49 1.18 .29 24.0 (1 3) 1.00 46.00 22.50 229.81 -1563.43 Page 13 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS =s= l t s modulus of elasticity Ec = 3600.00 ksi Cr. actor K = 2.00 Ieffective/Igross...(due to cracking) K = 1.00 Where stresses exceed 6(fc )"1l2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1 2 3-4 5 --6- 1 .22 .11 .33(1664) .05(10941) .38( 1444) 1313a TAYLOR & GAINES TESTRUCTURAL ENGINEERS 320 NORTH HALSTEAD SKEET • SUITE 200 PASAO E NA. CALIFORNIA 91 1 07 (626) 351 -6BB1 FAX 16261 351 -5319 HbA4 sheet t' l3 ( of by p4F2-10 N4 cIU RE lob no. 1319 date 5/11 r1'. 43eAti6eG-rFL1}'@ (GIB 6l-b ICI e--"p 40L I I x 3611 j'IW c34,"1, 12ErSidtri t oeoS I 1 1-11 Cs$x.))6/(44) xo, 15 rI L0 175 <TIZI1 16,51 > 1a.= C 1 sx31/(4g-)0,15 x6F`"+C %x.,15. tool )xIG.S'ic 6*'1" = I14» kit; C D,47x JcfW)s I,1,,5Wx 64 " ��- la&PS (TI21t3=CI4-,5t I?L=fI2X3V44.)",15n46t-t (` oco,i5 ttlibOxItS/4X%L-='151` U,' (°, 6 >< 5o rico, 145wx tit* .>D,L } <--)22_-A:4> ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, Califomia 94061 A'�^.T-PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System I .,3 Woodside Road, Suite 220, Redwood City, Califomia 94061 I Phone: (650)306-2400 Fax: (650)364-4678 'Email: Support@AdaptSoft.com I Web site: http:llwww.AdaptSoft.com I DATE AND TIME OF PROGRAM EXECUTION: Jun 13,1999 At Time: 8:42 PROJECT TITLE: HOAG PARKING STRUCTURE (PTGIRDER) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi for COLUMNS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi for COLUMNS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At all locations .450 RVIRCEMENT: Y. rength 60.00 ksi Min,. .1 Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 in"2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. 1.00 in 1.75 in Page 2 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 Min average precompression 125.00 psi Max spadng between strands (factor of slab depth) 8.00 Tr �.arofile type and support widths (see section 9) ANAL S OPTIONS USED: Structural system BEAM Moment of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES limited plastification allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOM/MIDDLEI I P 01 1 1 FLANGE 1 FLANGE 1 REF 1 MULTIPLIER A RI LENGTH! WIDTH DEPTHI width thick.) width thick.IHEIGHTI left right N MI ft I in in I in in I in in I in 1 -1-3-4-5--6 7-8 9 10 11 12 13 1 2 45.00 28.00 36.00 108.00 5.00 36.00 .50 .50 2 2 6.00 28.00 36.00 108.00 5.00 36.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever r 3-FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN -> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CBC* LENGTH B(DIA) D CBC* JOINT in ft in in ft in in 1 2 3-4 5- 6 7 8 9 10 1 24.00 12.00 24.00 36.00 (1) 12.00 24.00 36.00 (1) 2 24.00 12.00 24.00 36.00 (1) 12.00 24.00 36.00 (1) Page 3 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 3 24.00 12.00 24.00 48.00 (1) 12.00 24.00 48.00 (1) `TIr QLUMN BOUNDARY CONDITION CODES (CBC) F, loth ends ...(STANDARD) = 1 Hina At near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <—CLASS—> < —TYPE---> D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To ) ( M or C ...At) Total on Trib SPAN CLASS TYPE kHM2 ( ft ft) (k-ft or k ...ft) Mt 1 2 3--4 5 6 7-8 9 1 D Li 1 D C 1 L C 1 D C 1 L C 2 D Li .00 45.00 114.00 16.50 32.00 16.50 75.00 33 00 20.00 33.00 1.000 .00 6.00 1.000 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3.1 ,ADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/ftA2), ( CON. or PART.) (MOMENT) SPAN CLASS TYPE LINE(k/ft) (k@ft or ft-ft) (k-ft ft ) 1 2 J 4 5-6 7 8 1 D L1.000 .00 45.00 1 D C 114.00 16.50 1 L C 32.00 16.50 1 D C 75.00 33.00 Page 4 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 1 L C 20.00 33.00 2 L 1.000 .00 6.00 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 4.2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber I= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA (SEGMENT) in"2 2 SPAN 1 1 1408.00 SPAN 2 1 1408.00 Yb Yt in"4 in in 3 4 5 .1785E+06 22.40 13.60 .1785E+06 22.40 13.60 5- DEAD LOAD MOMENTS, SHEARS & REACTIONS =s = _= <5.1 SPAN MOME SPAN M(I)* Midspan -1 2 3 1-1142.24 571.77 2 p..658.69 -162.42 Not. Centerline moments N T S (k-ft) > < 5.2 SPAN SHEARS (k) > M(r)• SH(I) SH(r) 5 -6- -1001.46 -117.83 116.17 324.85 -166.92 -160.92 JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1 2 Lower columns -Upper columns-- 1 117.83 .00 .00 2 283.10 171.39 171.39 3-160.92 .00 .00 13� Page 5 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> <- left' -> <- midspan -> <- right -> <-SHEAR FORCE-> SPAN max min max min max min left right 1 2 3-4 5- 6 7 8 9 1-268.68 .00 134.02 .00-231.28 .00 -26.43 25.57 2-151.88 .00 .00 -37.97 .00 75.94 -37.97 -37.97 Note: • = Centerline moments <- 6.2 REACTIONS (k) -> < 6.3 COLUMN MOMENTS (k-ft) ---> <- LOWER COLUMN -> <- UPPER COLUMN -> JOINT max min max min max min -1 2 3 ---4 5 6 7- 1 26.43 .00 .00 .00 .00 .00 2 63.54 .00 39.70 .00 39.70 .00 3 .00 -37.97 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left* -> <-midspan-> <- right* -> -1 2 1 4 1-1025.00 571.75-885.83 2 -492.25 -162.42 163.42 • xof-support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <- left• --> <-- midspan -> <-- right* --> SPAN max min max min max min 1 2 3 4 5 6 7 1-242.25 .00 134.00 .00-205.67 .00 2-113.92 .00 .00 -37.97 .00 37.97 Page 6 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 Note: -of-support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) Maxima of dead load and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL ) <— left• —> <— midspan SPAN max min max -1 2 3 —4 1-1267.25 -1025.00 705.75 2 -06.17 -492.25 -162.42 Note: = face -of -support --> <-- right' --> min max min 5 6 7- 571.75 -1091.50 -885.83 -200.38 163.42 201.38 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever. 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 ENDON PROFILE TYPE XVL X2IL X3/L A!L 1 2 34 5--- 1 2 .000 .500 .100 .000 2 2 .100 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE Page 7 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 Tendon editing mode selected: FORCE SELECTION SELECTED VALUES -> <- CALCULATED VALUES -> RCE <- DISTANCE OF CGS (in) -> P/A Wbal SP, (k/-) Left Center Right (psi) (Id-) -1 2 3-4 5- -6- 7 1 590.000 22.50 4.00 22.50 419.03 4.043 2 590.000 22.50 22.50 22.50 419.03 .000 Approximate weight of strand 645.8 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(klps) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT* CENTER RIGHT* LEFT CENTER RIGHT -1 2 3--4 5 -0 -7- 1 475.35 411.27 467.46 176.00 176.00 176.00 2 173.43 .00 .00 176.00 176.00 176.00 Note: • = face -of -support 9.8 SERVICE STRESSES (psi) (tension shown positive) LEFT* RIGHT• TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C -1-2 3--4 5 6 7 8 9 1 191.60 -29.84 --1425.14 217.40 -1467.65 2 - -144.06 --1043.67 --544.65 --269.25 Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C -1 2 3-4 5- 1 - -723.39 82.44 -119.40 2 - -328.82 --624.85 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <-SPAN MOMENTS (k-ft)-> <-- SPAN SHEARS (k)-> SPAN Ieft• midspan right* SH(I) SH(r) Page 8 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 1 2 1 599.25 2 ,A41.42 3 -372.83 63.73 Note. = face -of -support -4- 5 6 395.25 6.58 6.58 -63.97 63.85 63.85 <-REACTIONS (k )-> <- COLUMN MOMENTS (k-ft) -> -joint- 2-- Lower columns --Upper columns-- 1 -6.582 .000 .000 2-57.270 -66.692 -66.692 3 63.850 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <- left* -> <-midspan SPAN max min max 1 2 1 4 1-1174.03 -762.21 1560.30 2 -696.18 -502.53 -168.42 Note: . = face -of -support -> <-right'-> min max min 5 -6 7 1332.47 -1200.24 -850.53 -232.97 160.05 224.59 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left' -> <- midspan -> <- right* -> -1 ,-2 3 -4 1 3.50 532.00 390.50 2 .16.67 58.97 -68.73 Note: • = face -of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min 1 2 3 4 5 6 7- Page 9 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 1 203.27 158.34 .00 .00 .00 .00 2 447.09 339.07 240.78 173.29 240.78 173.29 3 /461.41 -225.96 .00 .00 .00 .00 11-MILD STEEL _z SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthfspan) ... .17 Span cut-off length for minimum steel(lengthfspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 1318.7 lb AVERAGE = 2.9 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT--MIN-D+.25L-> (in"2) <-ULT-MIN--D+.25L-> 1 2 3-4 7 8 9 1 .00 ( .00 .00 .00) 4.17 ( .07 2.51 4.17) 2 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 11.2.2 SELECTION OF REBAR A T MID - SPA N <- TOP STEEL -> <-- BOTTOM STEEL --> SF p' (inA2) <- SELECTION -> (in"2) <- SELECTION -> - 2 3-4 5 6 7-8 9 1 .00 4.17 6 # 8 x 361-0" 2 .00 .00 11.3.1 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <-ULT--MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3--4 56 7--8 9 1 6.93 ( 2.38 3.12 6.93) 1.19 ( 1.19 .00 .00) 2 5.92 ( 2.19 3.12 5.92) .14 ( .14 .00 .00) �t 1 Page 10 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 3 .00 ( .00 .00 .00) 2.51 ( .00 2.51 1.04) 1. its-- SELECTION OF REBAR AT SUPPORTS - TOP STEEL > <-- BOTTOM STEEL -> JOINT (inA2) <- SELECTION -> (inA2) <-- SELECTION --> 1 2 3-4 5- -6 7 8 9 1 6.93 23#5x 13'-6" 1.19 2#8x 6'-6" 2 5.92 20 # 5 x 15'-6" .14 1# 8 x 4'-6" 3 .00 2.51 4#8x 41-6" 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <-TOP BARS-> <-BOTTOM BARS -> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT -1 2 3 4 5 1 .00(1) 11.25(1) .00(1) 4.50(3) 2 9.00(1) 4.20(1) 2.25(3) .00(1) 3 .00(1) .00(1) 2.10(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT') 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Si -off length for minimum steel(length/span) ... .17 Si. it -off length for minimum steelgength/span) ... .33 Top Ar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 1254.0 lb AVERAGE = 2.7 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <-left•-> <- midspan -> <-right•-> COEFFICIENT(%) Page 11 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 SPAN max min max min max min left right -1 2 3---4 5 -6 7 8 9- 1 ,^Z4.03 762.21 1560.30 1332.47 -1200.24 -850.53 .00 .00 2 - .18-502.53 -168.42 -232.97 160.05 224.59 .00 .00 Note: • = face -of -support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <- left* -> <-midspan -> <- right* -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3---4 5-6 7 8 9- 1-1122.76 -1022.14 703.37 654.82 -809.74 -738.29 .00 15.13 2 -630.77 -575.33 -212.25 -232.85 145.21 162.62 15.13 .00 Note: • = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (in"2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+.25L-> 1 2 3 4 5---6 7--8---9 1 .00 ( .00 .00 .00) 4.53 ( .07 2.51 4.53) 2 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL > <- BOTTOM STEEL -> SPAN (in"2) <- SELECTION -> (in"2) <- SELECTION -> -1 2 3-4--5 6 7--8-9 1 .00 4.53 6 S 8 x 361-0" 2 .00 .00 14/ REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3 ----4 5 -6 7 -8 9 1 6.91 ( 2.38 3.12 6.91) 1.19 ( 1.19 .00 .00) 2 4.89 ( 2.19 3.12 4.89) .14 ( .14 .00 .00) 3 .00 ( .00 .00 .00) 2.51 ( .00 2.51 .94) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <- TOP STEEL > <- BOTTOM STEEL -> JOINT (in"2) <- SELECTION -> (in"2) <- SELECTION -> Page 12 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 •1 2 3-4 5 -6 7 -8- 9 1 6.91 23 # 5 x 13'-6" 1.19 2# 8 x 6-6" 2 .0.-1.89 16 # 5 x 15'-6" .14 1# 8 x 4'-6" 10 2.51 4#8x 4'-6" 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <—TOP BARS—> <—BOTTOM BARS—> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT —1 2 3 —4 5- 1 .00(1) 11.25(1) .00(1) 4.50(3) 2 9.00(1) 4.20(1) 2.25(3) .00(1) 3 .00(1) .00(1) 2.10(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT') 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI-318-92) LEGEND: Concrete = NORMAL weight (full shear allowed for) d = value of d used in equation 11-10 itera = spacings of two -legged #6 stirrups, (fy= 60000. psi) "'"'" means no stirrups are required Mu , Vu = factored moments and shears (secondary moment effects included) CASES .. Vc = 1 ACI eqn 11-10 govems 2 min permissible value of 2(fc)^1/2 govems p—.3 max permissible value of 5(fc)"1/2 govems = 1 no reinforcement required 2 min reinforcement required (ACI eqn 11-15), for beams only 3 stirrup required by analysis (ACI eqn 11-17) Note: for LEFT CANTILEVER (if any) Xi= 0.00 is at tip of cantilever, and X/L= 1.00 is at first support SPAN = 1 LENGTH = 45.00 ft (Net span from 1.00 to 44.00 ft ) Page 13 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 X d Vu Mu RATIO Av # 5@ CASES XIL ft in k k-ft VuNc inA2/ft in Vc Av REMARKS \' 3--4 5 6 7 -8 9 10-11- reari2.50 -209.89 -1375.75 .0a .1 18.99 -206.74 -921.89 1.05 .10 4.50 15.84 -203.59 -475.07 .94 .15 6.75 22.94 -200.44 118.11 .92 .20 9.00 25.34 -197.29 449.66 .91 .30 13.50 29.04-190.99 1241.32 .35 15.75 30.33 -187.84 1652.70 .40 18.00 31.26 29.31 1735.98 .45 20.25 31.82 32.46 1651.68 .50 22.50 32.00 35.61 1560.30 .55 24.75 31.71 38.76 1461.83 .60 27.00 30.84 41.91 1356.28 .65 29.25 29.40 45.06 1243.65 .70 31.50 27.38 48.21 1123.92 .75 33.75 24.77 190.36 892.85 .80 36.00 21.59 193.51 448.15 .85 38.25 17.84 196.66 92.20 .90 40.50 22.50 199.81 -468.40 .95 42.75 22.50 202.96 -936.32 1.00 45.00 22.50 206.11 -1411.38 .09 24.0 (1 3) 08 24.0 (3 2) BEAMS ONLY 08 24.0 (3 2) BEAMS ONLY 08 24.0 (3 2) BEAMS ONLY .90 .08 24.0 (3 2) BEAMS ONLY .93 .08 24.0 (1 2) BEAMS ONLY 1.09 .12 24.0 (1 3) .31 .00 ""' (2 1) .34 .00 ""' (2 1) .37 .00 A'"' (2 1) .41 .00 "en" (2 1) .45 .00 ""' (2 1) .51 .08 24.0 (2 2) BEAMS ONLY .56 .08 24.0 (2 2) BEAMS ONLY .88 .08 24.0 (3 2) BEAMS ONLY .89 .08 24.0 (3 2) BEAMS ONLY .91 .08 24.0 (3 2) BEAMS ONLY .92 .08 24.0 (3 2) BEAMS ONLY .94 .08 24.0 (3 2) BEAMS ONLY SPAN = 2 LENGTH = 6.00 ft (Net span from 1.00 to 5.00 ft ) X d Vu Mu RATIO Av # 5@ CASES XIL ft in k k-ft VuNc inA2/t in Vc Av REMARKS 1 2 3-4 5-6 7-8-9-10 11 .00 .00 22.50 -298.24 -929.84 .05 .30 22.50 -297.82 -859.60 .10 .60 22.50 -297.40 -789.47 .15 .90 22.50 -296.98 -719.47 -649.60 1.37 -579.83 1.37 -510.21 1.36 -440.72 1.36 -371.35 1.36 -302.10 1.36 -232.97 1.36 -163.98 1.35 -95.11 1.35 -26.37 1.35 42.25 1.35 110.74 1.35 179.10 1.34 247.34 315.45 .20 1.20 .25 1.50 .40 J .45 2.70 .50 3.00 .55 3.30 .60 3.60 .85 3.90 .70 4.20 .75 4.50 .80 4.80 .85 5.10 .90 5.40 22.50 -296.56 22.50 -296.14 22.50 -295.72 22.50 -295.30 22.50 -294.88 22.50 -294.46 22.50 -294.04 22.50 -293.62 22.50 -293.20 22.50 -292.78 13.50 -292.36 13.50 -291.94 13.50 -291.52 13.50 -291.10 13.50 -290.68 .65 .65 .65 .64 .64 .63 .63 .63 .62 .62 .62 .61 .61 11.4 (3 3) 11.5 (3 3) 11.5 (3 3) 11.6 (3 3) 11.7 (3 3) 11.7 (3 3) 11.8 (3 3) 11.8 (3 3) 11.9 (3 3) 12.0 (3 3) 12.0 (3 3) 12.1 (3 3) 12.2 (3 3) Page 14 PT GIRDER (PTGGRDER) ADAPT -PT V- 5.30 .95 5.70 13.50 -290.26 383.43 1.00 6.00 13.50 -289,84 451.31 Page 15 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 614b 13-MAXIMUM SPAN DEFLECTIONS _==_ ____ C s modulus of elasticity Ec = 3600.00 ksi Cm Actor K = 2.00 Iefective/Igross...(due to cracking) K = 1.00 Where stresses exceed 6(f0M/2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1 2 3 5 6 1 .21 .09 .28( 1961) .05(10641) .33( 1655) 2 .00 .00 .00(16827) .00(""') .00(14930) T�f T & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 ,-..PASAOENA. CALIFORNIA 91107 '626) 351 -6661 FAX (626) 351 -5319 b sheet b L44-1 of by paiaw►t fMG1URe lob no. 1395 date 5/11 ref. 001-1 Aiu2 1$1-0 4 (O1t1W ere 1- 17614N 1eaerPS prott2 Low Jai* 27Di' k-' eti>L Q ' W x 36"1> 4t 4/1 &*x 36/(440 $ a 15 '' ft- 14205- I.I. 0-1 k- G6,4 e y-vL"7q K ADAPT 1 STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, California 94061 / /"APT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) ADAPT Structural Concrete Software System .3 Woodside Road, Suite 220, Redwood City, Califomia 94061 I Phone: (650)306-2400 Fax: (650)364-4678 Email: Support@AdaptSoft.com I Web site: http://www.AdaptSoft.com 1 DATE AND TIME OF PROGRAM EXECUTION: Jun 13,1999 At Time: 8:56 PROJECT TITLE: HOAG PARKING STRUCTURE (PTGIRDER) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi for COLUMNS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi for COLUMNS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At all locations .450 R' ( RCEMENT: YID ength 60.00 ksi Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 in"2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. 1.00 in 1.75 in Page 2 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 Min average precompression 125.00 psi Max sparing between strands (factor of slab depth) 8.00 Tr /+profile type and support widths (see section 9) AN.. .iIS OPTIONS USED: Structural system BEAM Moment of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Umlted plastiflcation allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOMIMIDDLEI I P 01 1 I FLANGE I FLANGE I REF I MULTIPLIER A RI LENGTH! WIDTH DEPTH' width thick.) width thick.IHEIGHTI left right N MI ft I in in I in in I in in I in I 1 3-4---5-6 7 8 9-10 11 12 13 1 2 46.00 28.00 36.00 108.00 5.00 38.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3-FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <— LOWER COLUMN —> <— UPPER COLUMN —> WIDTH LENGTH B(DIA) D CBC' LENGTH B(DIA) D CBCt JOINT in ft in in ft in in 1 2 3--4 5 -6 7-8 9 10- 1 24.00 12.00 24.00 24.00 (1) .00 .00 .00 (1) 2 24.00 12.00 24.00 36.00 (1) .00 .00 .00 (1) Page 3 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 t So 'THE COLUMN BOUNDARY CONDITION CODES (CBC) Fixed at both ends ...(STANDARD) = 1 H' at near end, fixed at far end = 2 FL( near end, hinged at far end = 3 Fix near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <_CLASS—> < —TYPE --> 0 = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE k/ftA2 ( ft ft) (k-ft or k ...ft) k/ft 1 2 3--4 5 6 7 8 9 1 D Li 1 D C 1 L C 1 D C 1 L C .00 46.00 80.00 18.00 22.00 18.00 102.00 32.00 27.00 32.00 1.000 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3.1 - LOADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/ftA2), ( SPAN CLASS TYPE 1 2 3--4 1 D L 1.000 1 D C 1 L C 1 D C 1 L C CON.orPART.) (MOMENT) LINE(k/ft) (k@ft or ft-ft) (k-ft @ ft ) 5--6 7-8 .00 46.00 80.00 18.00 22.00 18.00 102.00 32.00 27.00 32.00 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 Page 4 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 151 r 4-L. _CULATED SECTION PROPERTIES 4.2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber la gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA I Yb Yt (SEGMENT) inA2 InA4 in in 2 3 _4 5 SPAN 1 1 1408.00 .1785E+06 22.40 13.60 5- DEAD LOAD MOMENTS, SHEARS & REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(I) Midspan M(r)- SH(I) SH(r) 1 2 3 4 5 6 1-1011.74 587.85 -1209.56 -98.44 129.56 Note: • = Centerline moments JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> —1 2 Lower columns —Upper columns- 1 98.44 .00 .00 129.56 .00 .00 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS <— 6.1 LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) —> <— bft* —> <— midspan —> <— right*—> <—SHEAR FORCE—> SPAN max min max min max min left right -1 2 3--4 5--6 7-8 9- 1-226.65 .00 135.14 .00-277.07 .00 -20.51 28.49 Page 5 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 Note: ' „...-Lkntedine moments <- 6.2 REACTIONS (k) -> < 6.3 COLUMN MOMENTS (k-ft) > <— LOWER COLUMN —> <— UPPER COLUMN —> JOINT max min max min max min —1 2 3 5 6 7 1 20.51 .00 .00 .00 .00 .00 2 28.49 .00 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT as =_ 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left" -> <- midspan -> <- right` -> 1 2 2 4 1-914.17 587.83 -1080.83 Note: = face -of -support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <— left` —> <— midspan —> <— right' —> SPAN max min max min max min -1 2 3_4 5 6 7 1-206.17 .00 135.17 .00-248.58 .00 N -of-support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) Maxima of dead load and live load span moments combined for serviceability checks ( 1.00DL + 1.00LL ) <— left' —> <— midspan —> <— right` —> SPAN max min max min max min -1 2 3 5 0 7 t) S Page 6 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 1-1120.33 -914.17 723.00 587.83 -1329.42 -1080.83 N c-^ of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever: 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 TENDON PROFILE TYPE X1/L X2IL X3/L A/L 1 2 3- 5- 1 2 .000 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE _==__- _ ___ = = _=== = = = 23 ====_ =_____ `______ Tendon editing mode selected: FORCE SELECTION <— SELECTED VALUES > <- CALCULATED VALUES -> erORCE <- DISTANCE OF CGS (in) -> P/A Wbal S. (W-) Left Center Right (psi) (k/-) 1 2 3--4 6 7 1 590.000 22.50 4.00 22.50 419.03 3.439 Approximate weight of strand 586.0 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT' CENTER RIGHT' LEFT CENTER RIGHT Page 7 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 —1 2-3 --4— 5--6 7- 1 421.56 477.54 546.61 176.00 176.00 176.00 NI. •\ = of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT* RIGHT• TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3--4 5 6 7 8 9- 1 121.91 -66.54 --- -1310.32 313.14 — — -1625.39 Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C 1 2 3-4 1 — -802.28 212.41 — 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS & REACTIONS <— SPAN MOMENTS(k-ft)—> <—SPAN SHEARS(k)—> SPAN left* midspan right* SH(I) SH(r) —1 2 3 4 5--6 1 528.50 -303.75 528.42 .00 .00 Note: • = face -of -support "—REACTIONS (k )—> <— COLUMN MOMENTS (k-ft) —> -jo,. —2 Lower columns —Upper columns- 1 -.003 .000 .000 2 .003 .000 .000 10-FACTORED MOMENTS & REACTIONS Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) Page 8 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 10.1 FACTORED DESIGN MOMENTS (k-ft) left' -> <- midspan -> <- fight' -> SPA max min max min max min -1 2 3 4 5- 6 7 1-1029.49 -679.06 1653.82 1424.08 -1335.19 -912.60 Note: • = face -of -support 10.2 SECONDARY MOMENTS (k-ft) SPAN <- left* -> <- midspan -> <- right* -> -1 2 3 4 1 601.17 601.08 601.00 Note: • = face -of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <- LOWER column -> <- UPPER column -> JOINT max min max min max min 1 2 3 1 5 6 7- 1 172.68 137.81 .00 .00 .00 .00 2 229.88 181.44 .00 .00 .00 .00 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - rum steel 0.004A It capacity> factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(lengthlspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 1154.9 lb AVERAGE = 2.8 psf Page 9 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 11.2.1 STEEL AT MID -SPAN TOP BOTTOM �` DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPh. ,.n^2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+,25L-> 1 2 3-4 5 6 7 8 9 1 .00 ( .00 .00 .00) 3.85 ( .00 2.51 3.85) 11.2.2 SELECTION OF REBAR AT MID -SPAN <- TOP STEEL > <- BOTTOM STEEL -> SPAN Orel) <- SELECTION -> (in^2) <- SELECTION -> -1 2 3-4 5 6 7 -8 9 1 .00 3.85 5 # 8 x 341-6" 11.3.1 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+.25L-> 1 2 3--4 5 6 7 8 9 1 6.10 ( 1.39 3.12 6.10) .25 ( .25 .00 .00) 2 7.32 ( 3.53 3.12 7.32) 2.33 ( 2.33 .00 .00) 11.3.2 SELECTION OF REBAR AT SUPPORTS <- TOP STEEL -> <- BOTTOM STEEL -> JOINT (in"2) <- SELECTION -> (in"2) <- SELECTION -> 1 2 3-4 5 6 7--8---9- 1 6.10 20#5x 131-6" .25 1#8x 7'-0" 2 7.32 24 # 5 x 13'-0" 2.33 3# 8 x 7'-0" 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (8 ) <-TOP BARS-> <-BOTTOM BARS -> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT - //'^ 2 3 - 4 5 .00(1) 11.50(1) .00(1) 4.60(3) 2 11.50(1) .00(1) 4.60(3) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuo* over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT') 11-MILD STEEL e= s= ============ _ _ _ ____ Page 10 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 .31 SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - r.+ 25% of unreduced Live load capacity requirement of reduced to total Live loading .... .60 . - A.. . oum steel 0.004A - Moment capacity > factored (design) moment Support cut-off length for minimum steel(lengthfspan) ... .17 Span cut-off length for minimum steel(lengthfspan) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 1154.9 lb AVERAGE = 2.8 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- left* -> <-midspan -> <- right* -> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3 1 5 6 7 8 9 1-1029.49 -679.06 1653.82 1424.08 -1335.19 -912.60 .00 .00 Note: • = face -of -support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <-left•-> <-midspan -> <- right* -> COEFFICIENT(%) SPAN max min max min max min let right 1 2 3-4--5 6 7 8 9 1-1000.32 -914.43 644.16 587.85 -1184.75 -1081.17 .00 .00 Note: • = face -of -support ter 11 \REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> 1 2 3--4 5 6 7 8 9- 1 .00 ( .00 .00 .00) 3.85 ( .00 2.51 3.85) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL -> <- BOTTOM STEEL -> SPAN (inA2) <- SELECTION -> 0nA2) <- SELECTION -> 1 2 3-4 5 6 7-8 9 Page 11 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 px, sb 1 .00 3.85 5#8x 34'-6" 11 2 EDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+.25L-> 1 2 3-4 5-6 7 8 9- 1 6.11 ( 1.39 3.12 6.11) .25 ( .25 .00 .00) 2 7.32 ( 3.53 3.12 7.32) 2.33 ( 2.33 .00 .00) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <- TOP STEEL > <- BOTTOM STEEL -> JOINT (in"2) <- SELECTION -> (in"2) <- SELECTION -> -1 2 3-4 5 6 7 8 9 1 6.11 20#5x 131-6" .25 1#8x 7'-0" 2 7.32 24 # 5 x 131-6" 2.33 3# 8 x 7'-0" 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <-TOP BARS-> <-BOTTOM BARS-> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 2 3 4 5- 1 .00(1) 11.50(1) .00(1) 4.60(3) 2 11.50(1) .00(1) 4.60(3) .00(1) Legend: 1 = Common Case of rebar 2 = Reber is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1f20th points (file "SELBAR.DAT") 12 : A R DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI-318-92) ------------------------------------- LEGEND: Concrete = NORMAL weight (full shear allowed for) d = value of d used In equation 11-10 #6a = spacings of two -legged #6 stirrups, (fy= 60000. psi) """ means no stirrups are required Mu , Vu = factored moments and shears (secondary moment effects included) CASES .. Vc = 1 ACI eqn 11-10 govems 2 min permissible value of 2(fc)"112 govems Page 12 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 3 max permissible value of 5(fc)"1/2 governs i= 1 no reinforcement required min reinforcement required (ACI eqn 1.1-15), for beams only 3 stirrup required by analysis (ACI eqn 11-17) Note: for LEFT CANTILEVER (if any) X/L= 0.00 is at tip of cantilever, and X/L= 1.00 is at first support SPAN = 1 LENGTH = 46.00 ft (Net span from 1.00 to 45.00 ft ) X d Vu Mu RATIO Av N 5@ CASES XIL ft in k k-ft VuNc inA2/ft in Vc Av REMARKS 1 2 3-4 5- 8 7 8 910 11 .00 .00 22.50 -172.69 -1200.53 .05 2.30 18.99 -169.47 -807.13 .91 .08 24.0 (1 2) BEAMS ONLY .10 4.60 15.84 -166.25 -421.05 .77 .08 24.0 (3 2) BEAMS ONLY .15 6.90 22.94 -163.03 102.28 .75 .08 24.0 (3 2) BEAMS ONLY .20 9.20 25.34 -159.81 393.33 .74 .08 24.0 (3 2) BEAMS ONLY .25 11.50 27.38-156.59 692.69 .72 .08 24.0 (3 2) BEAMS ONLY .30 13.80 29.04 -153.37 1049.12 .78 .08 24.0 (1 2) BEAMS ONLY .35 16.10 30.33 -150.15 1398.16 .91 .08 24.0 (1 2) BEAMS ONLY .40 18.40 31.26 2.47 1680.02 .03 .00 "*" (2 1) .45 20.70 31.82 5.69 1670.63 .06 .00 ""' (2 1) .50 23.00 32.00 8.91 1653.82 .09 .00 ""' (2 1) .55 25.30 31.82 12.13 1629.60 .13 .00 ""' (2 1) .60 27.60 31.26 15.35 1598.00 .16 .00 ""' (2 1) .65 29.90 30.33 18.57 1558.96 .20 .00 ""' (2 1) .70 32.20 29.04 210.49 1474.81 1.09 .14 24.0 (1 3) .75 34.50 27.38 213.71 986.95 .99 .08 24.0 (3 2) BEAMS ONLY .80 36.80 25.34 216.93 517.17 1.00 .08 24.0 (3 3) .85 39.10 22.94 220.15 125.90 1.02 .08 24.0 (3 3) .90 41.40 15.84 223.37 -521.02 1.03 .08 24.0 (3 3) .95 43.70 18.99 226.59 -1038.49 1.18 .29 24.0 (1 3) 1.00 46.00 22.50 229.81 -1563.43 Page 13 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 13-MAXIMUM SPAN DEFLECTIONS s modulus of elasticity Ec = 3600.00 ksi Creep. ...ctor K = 2.00 leffectiveIIgross...(due to cracking) K = 1.00 Where stresses exceed 6(fc')A1/2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP 1 2 3 -4 5— ---6-- 1 .22 .11 .33( 1664) .05(10941) .38( 1444) TAYLOR S. GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SHEET • SUITE 200 / GAS AO ENA. CALIFORNIA 91 1 0 J (6261 351 -6661 FAX (6261 351 -5319 sheet D t4o of by p ?z1c H4 61.141CIU Re Job no. 13 9 55 date 5/11 6YG ref. $ r1e )e-u9 ® <A124 161-6 GA - OP to 4 PI A I I2--12E . Pot ibis 1 3 f6 r4" e,,fr kin ,<',6''1, 174 -z 126514H Lepo14 0M Sts (-).5,c 36A44) 0.15_. Ito. _p,__hps Lmos Kfr -"Dv- rip It`"ses = < A''$> ADAPT STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite 220, Redwood City, California 94061 0" cat -PT FOR POST -TENSIONED BEAM/SLAB DESIGN ACI-318-95/UBC-1994 (V-5.30) I ADAPT Structural Concrete Software System �3 Woodside Road, Suite 220, Redwood City, California 94061 I Phone: (650)306-2400 Fax: (650)364-4678 Email: Support@AdaptSoft.com I Web site: http://www.AdaptSoft.com DATE AND TIME OF PROGRAM EXECUTION: Jun 13,1999 At Time: 8:38 PROJECT TITLE: HOAG PARKING STRUCTURE (PTGIRDER) 1-USERSPECIFIED GENERAL DESIGN PARAMETERS sseava=v-_ ee CONCRETE: STRENGTH at 28 days, for BEAMS/SLABS 4000.00 psi for COLUMNS 4000.00 psi MODULUS OF ELASTICITY for BEAMS/SLABS 3600.00 ksi for COLUMNS 3600.00 ksi CREEP factor for deflections for BEAMS/SLABS 2.00 CONCRETE WEIGHT NORMAL TENSION STRESS limits (multiple of (fc)1/2) At Top 6.000 At Bottom 6.000 COMPRESSION STRESS limits (multiple of (fc)) At all locations .450 Rf �1RCEMENT: YI. / ength 60.00 ksi Mint.. ., Cover at TOP 1.00 in Minimum Cover at BOTTOM 1.00 in POST -TENSIONING: SYSTEM UNBONDED Ultimate strength of strand 270.00 ksi Average effective stress in strand (final) 175.00 ksi Strand area .153 in^2 Min CGS of tendon from TOP 1.00 in Min CGS of tendon from BOTTOM for INTERIOR spans.. Min CGS of tendon from BOTTOM for EXTERIOR spans.. 1.00 in 1.75 in Page 2 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 Min average precompression 125.00 psi Max spacing between strands (factor of slab depth) 8.00 Tr F-.profile type and support widths (see section 9) AN.. jIS OPTIONS USED: Structural system BEAM Moment of Inertia over support is NOT INCREASED Moments REDUCED to face of support YES Limited plastfication allowed(moments redistributed) YES Effective flange width consideration NO 2-INPUT GEOMETRY 2.1.1 PRINCIPAL SPAN DATA OF UNIFORM SPANS S FI I I TOP IBOTTOMIMIDDLEI I P 01 1 I FLANGE I FLANGE I REF I MULTIPLIER A RI LENGTH' WIDTH DEPTH' width thick.' width thick.IHEIGHTI left right N MI ft I in in I in in I in in I in I 1 3-4 5 6 7 8-9 10-11 12-13- 1 2 45.00 28.00 36.00 108.00 5.00 36.00 .50 .50 2 2 6.00 28.00 36.00 108.00 5.00 36.00 .50 .50 THE END SUPPORT AT LEFT IS ROTATIONALLY FIXED THE END SUPPORT AT RIGHT IS ROTATIONALLY FIXED LEGEND: 1 - SPAN C = Cantilever 3 - FORM 1 = Rectangular section 2 = T or Inverted L section 3 = I section 4 = Extended T or L section 7 = Joist 8 = Waffle 11 - Top surface to reference line 2.2-SUPPORT WIDTH AND COLUMN DATA SUPPORT <- LOWER COLUMN -> <- UPPER COLUMN -> WIDTH LENGTH B(DIA) D CSC* LENGTH B(DIA) D CBC• JOINT in ft in in ft in in 1 2 3-J4 5 6 7 8 9-10- 1 24.00 12.00 24.00 36.00 (1) .00 .00 .00 (1) 2 24.00 12.00 24.00 36.00 (1) .00 .00 .00 (1) Page 3 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 3 24.00 12.00 24.00 48.00 (1) .00 .00 .00 (1) 'T ,=QLUMN BOUNDARY CONDITION CODES (CBC) FL loth ends ...(STANDARD) = 1 Hi% at near end, fixed at far end = 2 Fixed at near end, hinged at far end = 3 Fixed at near end, roller with rotational fixity at far end .. = 4 3-INPUT APPLIED LOADING <—CLASS—> < TYPE —> D = DEAD LOAD U = UNIFORM P = PARTIAL UNIFORM L = LIVE LOAD C = CONCENTRATED M = APPLIED MOMENT Li= LINE LOAD SW= SELF WEIGHT Computed from geometry input and treated as dead loading Intensity ( From ... To) (M or C ...At) Total on Trib SPAN CLASS TYPE k/ft"2 ( ft ft) (k-ft or k ...ft) Kitt 1 2 3-4 5-6--7-8 9- 1 0 Li 1 D C 1 L C 1 D C 1 L C 2 D Li .00 45.00 114.00 16.50 32.00 16.50 75.00 33.00 20.00 33.00 1.000 .00 6.00 1.000 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 3.1 • ,ADING AS APPEARS IN USER'S INPUT SCREEN PRIOR TO PROCESSING UNIFORM (k/ft=2), (CON. or PART.) (MOMENT) SPAN CLASS TYPE LINE(ktft) (k(apft or ft-ft) (k-ft © ft ) 1 2 3---4 5-6 7 8 1 D L 1.000 .00 45.00 1 D C 114.00 16.50 1 L C 32.00 16.50 1 D C 75.00 33.00 Page 4 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 1 L C 20.00 33.00 2 . L 1.000 .00 6.00 NOTE: LIVE LOADING is SKIPPED with a skip factor of 1.00 4-CALCULATED SECTION PROPERTIES 4.2 - Computed Section Properties for Segments of Nonprismatic Spans Section properties are listed for all segments of each span A= cross -sectional geometry Yt= centroidal distance to top fiber 1= gross moment of inertia Yb= centroidal distance to bottom fiber SPAN AREA 1 Yb Yt (SEGMENT) in"2 in"4 in in 2 3 4 5- SPAN 1 1 1408.00 .1785E+06 22.40 13.60 SPAN 2 1 1408.00 .1785E+06 22.40 13.60 5- DEAD LOAD MOMENTS, SHEARS 8 REACTIONS <5.1 SPAN MOMENTS (k-ft)> <5.2 SPAN SHEARS (k) > SPAN M(I)* Midspan M(r)• SH(I) SH(r) 1 2 3-4 5 6 1-1150.43 575.87 -985.08 -118.37 115.63 2 1Z81.58 -193.14 386.29 -197.64 -191.64 Note. • = Centerline moments JOINT < 5.3 REACTIONS (k) > <- 5.4 COLUMN MOMENTS (k-ft) -> -1 2 Lower columns -Upper columns- 1 118.37 .00 .00 2 313.27 203.51 .00 3-191.64 .00 .00 Page 5 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 6- LIVE LOAD MOMENTS, SHEARS & REACTIONS <- LIVE LOAD SPAN MOMENTS (k-ft) and SHEAR FORCES (k) -> <- left' -> <-- midspan -> <- right' -> <-SHEAR FORCE-> SPAN max min max min max min left right 1 2 3 4 5 6 7 8 9 1-270.57 .00 134.97 .00-227.48 .00 -26 56 25.44 2-180.34 .00 .00 -45.09 .00 90.17 -45.09 -45.09 Note: = Centerline moments <- 6.2 REACTIONS (k) -> <-- 6.3 COLUMN MOMENTS (k-ft) -> <- LOWER COLUMN -> <- UPPER COLUMN -> JOINT max min max min max min -1 2 3 1 5 7 1 26.56 .00 .00 .00 .00 .00 2 70.53 .00 47.14 .00 .00 .00 3 .00 -45.09 .00 .00 .00 .00 Note: Block 6.2 and 6.3 values are maxima of all skipped loading cases 7- MOMENTS REDUCED TO FACE -OF -SUPPORT 7.1 REDUCED DEAD LOAD MOMENTS (k-ft) SPAN <- left' -> <- midspan -> <- right` -> -1 2 --34 1-1032.50 575.83 -870.00 2-584.42 -193.17 194.17 fa- N. = -e-of-support 7.2 REDUCED LIVE LOAD MOMENTS (k-ft) <- left* -> <-midspan -> <--right'-> SPAN max min max min max min -1 2 3 ----4 5-----6 7 1-244.00 .00 135.00 .00-202.00 .00 2-135.25 .00 .00 -45.08 .00 45.08 Page 6 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 Note: / -_ " -support 8 - SUM OF DEAD AND LIVE MOMENTS (k-ft) Maxima of dead load and live load span moments combined for serviceability checks (1.00DL + 1.0011) <— left* —> <— midspan —> <-- right* —> SPAN max min max min max min -1 2 3 5-6 7 1-1276.50 -1032.50 710.83 575.83 -1072.00 -870.00 2-719.67 -584.42 -193.17 -238.25 194.17 239.25 Note: • = face -of -support 9 - SELECTED POST -TENSIONING FORCES AND TENDON PROFILES 9.1 PROFILE TYPES AND PARAMETERS LEGEND: For Span: 1 = reversed parabola 2 = simple parabola with straight portion over support 3 = harped tendon For Cantilever. 1 = simple parabola 2 = partial parabola 3 = harped tendon 9.2 . ENDON PROFILE TYPE X1/1.. X2IL X3/L AIL 1 2 3 —4 5- 1 2 .000 .500 .100 .000 2 2 .100 .500 .000 .000 9.3 - SELECTED POST -TENSIONING FORCES AND TENDON DRAPE _ = = = Page 7 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 Tendon editing mode selected: FORCE SELECTION �-- SELECTED VALUES > <- CALCULATED VALUES -> 1RCE <- DISTANCE OF CGS (in) -> P/A Wbal SP. (k/-) Left Center Right (psi) (k/-) -1 2 3--4 5 -6 7 1 590.000 22.50 4.00 22.50 419.03 4.043 2 590.000 22.50 22.50 22,50 419.03 .000 Approximate weight of strand 645.8 LB 9.5 REQUIRED MINIMUM POST -TENSIONING FORCES(kips) <- BASED ON STRESS CONDITIONS -> <- BASED ON MINIMUM P/A -> SPAN LEFT* CENTER RIGHT' LEFT CENTER RIGHT 1 2 3 -6 7 1 479.16 414.83 457.28 176.00 176.00 176.00 2 262.02 .00 .00 176.00 176.00 176.00 Note: • = face -of -support 9.6 SERVICE STRESSES (psi) (tension shown positive) LEFT* RIGHT• TOP BOTTOM TOP BOTTOM max-T max-C max-T max-C max-T max-C max-T max-C 1 2 3-- 4 5 6 7 8 9- 1 197.34 -25.70 --1434.59 205.21 ---1447.57 2 31.04 -92.59 --1160.59 --568.33 --240.95 Note: • = face -of -support CENTER TOP BOTTOM max-T max-C max-T max-C 1 2 3 ----4 5 1 - -726 55 87.65 -115.63 2 - -311.67 --663.83 9.7 POST -TENSIONING BALANCED MOMENT S, SHEARS 8 REACTIONS <-SPAN MOMENTS (k-ft) -> <- SPAN SHEARS (k)-> SPAN left* midspan right* SH(I) SH(r) Page 8 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 1 2 3-- 5 6 1 602.17 -374.42 389.08 6.80 6.80 2 ,27.33 75.68 -75.92 75.80 75.80 No.,. • = face -of -support <—REACTIONS (k )—> <— COLUMN MOMENTS (k-ft) —> -joint 2 Lower columns —Upper columns- 1 -6.795 .000 .000 2-69.010 -79.192 .000 3 75.800 .000 .000 10-FACTORED MOMENTS 8 REACTIONS yam===== ---- ___ Calculated as (1.40D + 1.70L + 1.00 secondary moment effects) 10.1 FACTORED DESIGN MOMENTS (k-ft) <—left•—> <— midspan —> <— right' —> SPAN max min max min max min 1 2 3 4 5 6 7 1-1184.77 -769.95 1566.06 1336.61-1177.98-834.51 2-825.65 -595.71 -199.49 -276.13 191.09 267.74 Note: • = face -of -support 10.2 SECONDARY MOMENTS (k-ft) SPAN <— left* —> <- midspan -> c— right• --> -1 —2 3 —4 1 76.50 530.42 384.33 2 i22.50 70.91 -80.69 Note: = face -of -support 10.3 FACTORED REACTIONS 10.4 FACTORED COLUMN MOMENTS (k-ft) (k) <— LOWER column —> <— UPPER column —> JOINT max min max min max min -1 2 3--4 5-6 7 Page 9 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 f1 I 1 k 1 204.12 158.96 .00 .00 .00 .00 2 489.51 369.61 285.85 205.71 .00 .00 3 ,1.92.44 -269.09 .00 .00 .00 .00 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capadty > factored (design) moment Support cut-off length for minimum steel(lengthlspan) ... .17 Span cut-off length for minimum steel(length/span) ... .33 Top bar extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on NO REDISTRIBUTION of factored moments 11.1 TOTAL WEIGHT OF REBAR = 1218.4 lb AVERAGE = 2.7 psf 11.2.1 STEEL AT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT-MIN-D+.25L-> (in"2) <-ULT-MIN-D+25L-> 1 2 3-4 5 -6 7 8 9 1 .00 ( .00 .00 .00) 4.18 ( .09 2.51 4.18) 2 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 11.2.2 SELECTION OF REBAR AT MID -SPAN <- TOP STEEL > <- BOTTOM STEEL --> SF ,-. (in"2) <- SELECTION -> (inA2) <- SELECTION -> - ? 3-4-5-6 7-8 9 1 .0 4.18 6M8x 311-6" 2 .00 .00 11.3.1 STEEL AT SUPPORTS TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (in"2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+25L-> 1 2 3--4 5 -6 7-8 9- 1 6.98 ( 2.44 3.12 6.98) 1.26 ( 1.26 .00 .00) 2 5.81 ( 2.03 3.12 5.81) .00 ( .00 .00 .00) Page 10 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 13111 3 .00 ( .00 .00 .00) 2.51 ( .00 2.51 1.24) 1 SELECTION OF REBAR AT SUPPORTS - TOP STEEL > <- BOTTOM STEEL -> JOINT (IM2) <- SELECTION -> (in"2) <- SELECTION --> 1 2 3-4 5 -6 7 8 9 1 6.98 23#5x 1316" 1.26 2#8x 616" 2 5.81 19#5x 15'6" .00 3 .00 2.51 4 # 8 x 416" 11.4 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS (ft ) <-TOP BARS-> <-BOTTOM BARS -> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT -1 2 3 4 5 1 .00(1) 11.25(1) .00(1) 4.50(3) 2 9.00(1) 4.20(1) 6.75(3) .00(1) 3 .00(1) .00(1) 2.10(1) .00(1) Legend: 1 = Common Case of rebar 2 = Rebar is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 11-MILD STEEL SPECIFIC CRITERIA for ONE-WAY or BEAM SYSTEM - Dead + 25% of unreduced Live load capacity requirement Ratio of reduced to total Live loading .... .60 - Minimum steel 0.004A - Moment capacity > factored (design) moment Sr ( utof length for minimum steel(length/span) ... .17 SI it -off length for minimum steel(lengthlspan) ... .33 Top _dr extension beyond zero -point 12.00 in Bottom bar extension beyond zero -point 12.00 in REINFORCEMENT based on PLASTIC REDISTRIBUTION of factored moments 11.5 TOTAL WEIGHT OF REBAR = 1169.9 lb AVERAGE = 2.5 psf 11.6.1 REDISTRIBUTED DESIGN MOMENTS (k-ft) REDISTRIBUTION <- lefr -> <- midspan -> <- right* -> COEFFICIENT(%) Page 11 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 SPAN max min max min max min left right -1 2 3-4 5 6 7 8 9 1 /84.77 -769 95 1566.06 1336.61 -1177.98 -834.51 .00 .00 2 15 -595.71 -199.49 -276.13 191.09 267.74 .00 .00 Note: = face -of -support 11.6.2 (D+25%L) REDISTRIBUTED MOMENTS (k-ft) REDISTRIBUTION <- left' -> <- midspan -> <- right* --> COEFFICIENT(%) SPAN max min max min max min left right -1 2 3-4-- 5 6 7-8 9- 1-1131.19 -1029.83 707.04 658.02 -794.12 -724.03 .00 15.21 2-689.84 -629.13 -219.95 -241.35 184.32 203.98 15.21 .00 Note: = face -of -support 11.7.1 REDISTRIBUTED STEELAT MID -SPAN TOP BOTTOM As DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA SPAN (inA2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN-D+.25L-> -1-2-3--4-5 7 8-9- 1 .00 ( .00 .00 .00) 4.53 ( .09 2.51 4.53) 2 .00 ( .00 .00 .00) .00 ( .00 .00 .00) 11.7.2 SELECTION OF REDISTRIBUTED REBAR AT MID -SPAN <- TOP STEEL --> <- BOTTOM STEEL -> SPAN (inA2) <- SELECTION -> (inA2) <- SELECTION -> -1 2 3-4 5 6 7 8 9 1 .00 4.53 6#8x 311-6" 2 .00 .00 1' ,-REDISTRIBUTED STEELAT SUPPORTS TOP BOTTOM DIFFERENT REBAR CRITERIA As DIFFERENT REBAR CRITERIA JOINT (inA2) <-ULT-MIN-D+.25L-> (inA2) <-ULT-MIN--D+25L-> 1 2 3-4 5 -6 7 -8 9- 1 6.96 ( 2.44 3.12 6.96) 1.26 ( 1.26 .00 .00) 2 4.79 ( 2.03 3.12 4.79) .00 ( .00 .00 .00) 3 .00 ( .00 .00 .00) 2.51 ( .00 2.51 1.19) 11.8.2 SELECTION OF REDISTRIBUTED REBAR AT SUPPORTS <- TOP STEEL > <- BOTTOM STEEL -> JOINT (inA2) <- SELECTION -> (inA2) <- SELECTION -> Page 12 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 1 2 3-4 5 6 7 8 9- 1 6.96 23 # 5 x 13'-6" 1.26 2# 8 x 6'-6" 2 �4.79 16#5x 15'-6" .00 10 2.51 4#8x 4'-6" 11.9 DISTANCE OF INFLECTION POINTS (limit of zero rebar) FROM SUPPORTS ( ft ) <—TOP BARS—> <—BOTTOM BARS —> JOINT TO LEFT TO RIGHT TO LEFT TO RIGHT 1 2 3 -4 5 1 .00(1) 11.25(1) .00(1) 4.50(3) 2 9.00(1) 4.20(1) 6.75(3) .00(1) 3 .00(1) .00(1) 2.10(1) .00(1) Legend: 1 = Common Case of rebar 2 = Reber is needed continuosly over the entire span 3 = Range of rebar requirement is not fully explicit in this table. Refer to either the print plot or detailed printout of rebar at 1/20th points (file "SELBAR.DAT") 12 -SHEAR DESIGN FOR BEAMS AND ONE-WAY SLAB SYSTEMS (ACI-318-92) LEGEND: Concrete = NORMAL weight (full shear allowed for) d = value of d used in equation 11-10 = spacings of two -legged #6 stirrups, (fy= 60000. psi) """"" means no stirrups are required Mu , Vu = factored moments and shears (secondary moment effects included) CASES Vc = 1 ACI eqn 11-10 governs 2 min permissible value of 2(fc)"1/2 govems max permissible value of 5(fc)"1/2 govems = 1 no reinforcement required 2 min reinforcement required (ACI eqn 11-15), for beams only 3 stirrup required by analysis (ACI eqn 11-17) Note: for LEFT CANTILEVER (if any) X/L= 0.00 is at tip of cantilever, and X/L= 1.00 is at first support SPAN = 1 LENGTH = 45.00 ft (Net span from 1.00 to 44.00 ft ) Page 13 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 31.48 1655.72 34.63 1566.06 37.78 1469.32 .40 40.93 1365.48 .44 44.08 1254.56 .50 47.23 1136.55 .54 189.38 907.22 .87 192.53 462.28 .89 195.68 105.02 .90 198.83 -448.85 .92 .95 42.75 22.50 201.98 -915.05 .93 1.00 45.00 22.50 205.13 -1388.33 X d Vu Mu RATIO Av #5@ CASES X/L ft in k k-fl VuNcinA2/ft in VcAv REMARKS 3-4 5 6 7 8 910-11- 22.50 -210.87 -1387.25 .05 18.99 -207.72 -931.67 1.06 .10 24.0 (1 3) .10 4.50 15.84 -204.57 -483.12 .94 .08 24.0 (3 2) BEAMS ONLY .15 6.75 22.94 -201.42 113.56 .93 .08 24.0 (3 2) BEAMS ONLY .20 9.00 25.34 -198.27 446.34 .91 .08 24.0 (3 2) BEAMS ONLY .25 11.25 27.38 -195.12 819.97 .90 .08 24.0 (3 2) BEAMS ONLY .30 13.50 29.04 -191.97 1240.16 .93 .08 24.0 (1 2) BEAMS ONLY .35 15.75 30.33 -188.82 165328 1.09 .12 24.0 (1 3) .40 18.00 31.26 28.33 1738.29 .30 .00 """ (2 1) .33 .00 -- (2 1) .36 .00 - (2 1) ..... (2 1) ..... (2 1) fret" (2 1) 24.0 (2 2) BEAMS ONLY 24.0 (3 2) BEAMS ONLY 24.0 (3 2) BEAMS ONLY 24.0 (3 2) BEAMS ONLY 24.0 (3 2) BEAMS ONLY 24.0 (3 2) BEAMS ONLY .45 20.25 31.82 .50 22.50 32.00 .55 24.75 31.71 .60 27.00 30.84 .85 29.25 29.40 .70 31.50 27.38 .75 33.75 24.77 .80 36.00 21.59 .85 38.25 17.84 .90 40.50 22.50 .00 00 .00 .08 .08 .08 .08 .08 .08 SPAN = 2 LENGTH = 6.00 ft (Net span from 1.00 to 5.00 ft ) X d Vu Mu X/L ft in k k-ft 1 2 3- 4 .00 .00 22.50 -353.34 - .05 .30 22.50 -352.92 - .10 .60 22.50 -352.50 .15 .90 22.50 -352.08 .20 1.20 22.50 -351.66 .25 1.50 22.50 -351.24 ?" ra0 22.50 -350.82 22.50 -350.40 .40 J 22.50 -349.98 .45 2.70 22.50 -349.56 .50 3.00 22.50 -349.14 .55 3.30 22.50 -348.72 .60 3.60 22.50 -348.30 .65 3.90 22.50 -347.88 .70 4.20 13.50 -347.46 .75 4.50 13.50 -347.04 .80 4.80 13.50 -346.62 .85 5.10 13.50 -346.20 .90 5.40 13.50 -345.78 RATIO Av # 5© CASES VuNc inA2/ft in Vc Av REMARKS 5-6 7 8 910 11 1102.48 1019.29 -936.20 -853.26 -770.43 1.62 1.10 -687.73 1.62 1.10 -605.17 1.62 1.10 -522.72 1.62 1.09 -440.40 1.61 1.09 -358.20 1.61 1.09 -276.13 1.61 1.08 -194.21 1.61 1.08 -112.38 1.61 1.07 -30.70 1.60 1.07 50.87 1.60 1.07 132.30 1.60 1.06 213.61 1.60 1.06 294.80 375.86 6.8 (3 3) 6.8 (3 3) 6.8 (3 3) 6.8 (3 3) 6.8 (3 3) 6.9 (3 3) 6.9 (3 3) 6.9 (3 3) 6.9 (3 3) 6.9 (3 3) 7.0 (3 3) 7.0 (3 3) 7.0 (3 3) Page 14 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 5 .95 5.70 13.50 -345.36 456.80 1.00 6.00 13.50-344.94 537.61 Page 15 PT GIRDER (PTGIRDER) ADAPT -PT V- 5.30 him 13-MAXIMUM SPAN DEFLECTIONS C s modulus of elasticity Ec = 3600.00 ksi Crt. Actor K = 2.00 leflectivellgross...(due to cracking) K = 1.00 Where stresses exceed 6(fc')A1l2 cracking of section is allowed for. Values in parentheses are (span/max deflection) ratios < DEFLECTION ARE ALL IN inches, DOWNWARD POSITIVE > SPAN DL DL+PT DL+PT+CREEP LL DL+PT+LL+CREEP -1 2 3-4 5 6 1 .22 .09 .28( 1925) .05(10515) .33( 1627) 2 .00 .00-.01(14159) .00(""')-.01(12565) -EsTAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 /� PASAOENA. CALIFORNIA 91 1 07 (6261 351.9661 FAX (6261 351 -5319 N PA-4 Nazi< it44 '5 guclu RE sheet 0,111 of by Job no. 1395 date 5 it es r4 po 14cep GONG, new 'E LM P ' ®01A Ara n 0 T� 0 Oti W x 30" P> ° I$� vsst-v tamps ivas WA, t1¢c. �-IK t1 ejt=-Q'3j1c 6 N1 bugs:. 13 a'" ii frtiw 3 13! �5 *1- �a;'o,cr ata Forsigv, u*tr- W7 1 putilk p • I L$-t To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block Information ' will be printed on each page. Rev: 510300 (Air KW-050118 V« 5.1.5. 224n-1999. 1Wi02 _(q 15e3-99 ENERCALC Description Title : Dsgnr: Description : Scope: Multi -Span Concrete Beam Job # Date: 10:55AM, 28 AUG 99 HOAG PARKING STRUCTURE Page 1. 111 General Information Calculations are designed to ACI 318-95 and 1997 UBC Requirements Fy Pc 60,000.0 psi Spans Considered Continuous Over Supports ACI Dead Load Factor 4,000.0 psi Stirrup Fy 60,000.0 psi ACI Live Load Factor 1.70 1.40 Concrete Member Information Description Span Beam Width in Beam Depth In End Fixity Reinforcing Center Bar Dean Left Area Br Depth Right Ain Bar Depth ft BTWN5 TO BTWN6 TO BTWN7 TO 18.00 18.00 18.00 16.00 16.00 16.00 30.00 30.00 30.00 Fix -Pin Pin -Pin Pin -Fix 1.00in2 1.001n2 1.00in2 27.00in 27.00in 27.00in 1.00in2 1.001n2 1.001n2 3.00in 3.00in 3.00in 1.00in2 1.00in2 3.00in 3.00in Loads Using Live Load This Span ?? Dead Load k/ft Uve Load k/ft Yes Yes Yes 0.800 0.800 0.800 0.200 0.200 0.200 Results Overstress Beam OK Beam OK Mmax Q Cntr k-ft 19.71 19.71 19.71 X = ft 9.00 9.00 9.00 Mn • Phi k-ft 118.89 118.89 118.89 Max © Left End k-ft -39.42 -39.42 -39.42 Mn • Phi k-ft 118.89 118.89 118.89 Max @ Right End k-ft -39.42 -39.42 -39.42 Mn • Phi k-ft 0.00 118.89 118.89 Bending NG Bending OK Bending OK Shear © Left k 13.14 13.14 13.14 Shear re Right k 13.14 13.14 13.14 Reactions & Deflections DL © Left k 7.20 14.40 14.40 LL re Left k 1.80 3.60 3.60 Total © Left k 9.00 18.00 18.00 DL © Right k 14.40 14.40 7.20 LL © Right k 3.60 3.60 1.80 Total © Right k 18.00 18.00 9.00 Max. Deflection in -0.004 -0.004 -0.004 X = ft 9.00 9.00 9.00 Inertia : Effective in4 36,000.00 36,000.00 36,000.00 Shear Stirrups Stirrup Reber Area Spacing 4 Left Spacing at .21L Spacing re .4•L Spacing © .6'L Spacing © .8'L Spacing © Right in2 in in in in in in 0.400 Not Req'd Not Req'd Not Req'd Not Req'd Not Req'd Not Req'd 0.400 Not Req'd Not Req'd Not Req'd Not Req'd Not Req'd Not Req'd 0.400 Not Req'd Not Req'd Not Req'd Not Req'd Not Req'd Not Req'd F L reinforcement only, f= 4000 psi E R E 1.2 r FLEXURE 1.2-Coefficients for design of rectangular beams with tension Reference: ACI 318-77, Sections 9.3.2(a), 10.2, 10.3.1-10.3.3, and Commentary Section 10.3.1(A)(1) d M, M„ 4m. = K„ F, ft-kips where K, = dj'wj, w=pt and F = bd'/ 12,000 (from FLEX- URE 5) Also OM, = A,da,(A, in sq in.) where a, = 4I,J,, / 12,000 c/d= 1.18(w/13,) a/d = P,(c/d) 13, = 0.85 1, = 1 - (a/2d) = 1 - 0.59w 40,000 f - 50.000 /, = 60.000 - X. a' a, P. a, P' a, c/d a/d 0.020 71 0.0020 2.% 0.0016 3.71 0.0013 4.45 0.028 0.024 0.988 0.030 106 0.0030 2.95 0.0024 3.68 0.0020 4.42 0.042 0.035 0.982 0.040 141 0.0040 2.93 0.0032 3.66 0.0027 4.39 0.056 0.047 "0.976 0.050 175 0.0050 2.91 0.0040 3.64 0.0033 4.37 0.069 0.059 0.971 0.060 208 0.0060 2.89 0.0048 3.62 0.0040 4.34 0.083 0.071 0.965 0.070 242 0.0070 2.88 0.0056 3.60 0.0047 4.31 0.097 0.083 0.959 0.080 274 0.0080 2.86 0.0064 3.57 0.0053 4.29 0.111 0.094 0.953 0.090 307 0.0090 2.84 0.0072 3.55 0.0060 4.26 0.125 0.106 0.947 0.100 339 0.0100 2.82 0.0080 3.53 0,0067 4.23 0.139 0.118 0.941 0.110 370 0.0110 2.81 0.0088 3.51 0.0073 4.21 0.153 0.130 0.935 0.120 401 0.0120 2.79 0.0096 3.48 0.0080 4.18 0.167 0.142 0.929 0.130 432 0.0130 2.77 0.0104 3.46 0.0087 4.15 0.180 0.153 0.923 0.140 462 0.0140 2.75 0.0112 3.44 0.0093 4.13 0.194 0.165 0.917 0.150 492 0.0150 2.73 0.0120 3.42 0.0100 4.10 0.208 0.177 0.912 0.160 522 0.0160 2.72 0.0128 3.40 0.0107 4.08 0.222 0.189 0.906 0.170 551 0.0170 2.70 0.0136 3.37 0.0113 4.05 0.236 0.201 0.900 0.180 579 0.0180 2.68 0.0144 3.35 0.0120 4.02 0.250 0.212 0.894 0.190 607 0.0190 2.66 0.0152 3.33 0.0127 4.00 0.264 0.224 0.888 0.200 635 0.0200 2.65 0.0160 3.31 0.0133 3.97 0.278 0.236 0.882 0.210 662 0.0210 2.63 0.0168 3.29 0.0140 3.94 0.292 0.248 0.876 0.220 689 0.0220 2.61 0.0176 3.26 0.0147 3.92 0.305 0.260 0.870 p.230 716 0.0230 2.59 0.0184 3.24 0.0153 3.89 0.319 0.271 0.864 0.240 742 0.0240 2.58 0.0192 3.22 0.0160 3.86 0.333 0.283 0.858 0.250 767 0.0250 2.56 0.0200 3.20 0.0167 3.84 0.347 0.295 0.853 0.260 792 0.0260 2.54 0.0208 3.17 0.0173 3.81 0.361 0.307 0.847 0.270 817 0.0270 2.52 0.0216 3.15 0.0180 3.78 0.375 0.319 0.841 0.280 841 0.0280 2.50 0.0224 3.13 0.0187 3.76 0.389 0.330 0.835 0.290 865 0.0290 2.49 0.0232 3.11 0.0193 3.73 0.403 0.342 0.829 0.300 889 0.0300 2.47 0.0240 3.09 0.0200 3.70 0.416 0.354 0.823 0.310 912 0.0310 2.45 0.0248 3.06 0.0207 3.68 0.430 0.366 0.817 0.320 935 0.0320 2.43 0.0256 3.04 0.0213 3.65 0.444 0.378 0.811 0.330 957 0.0330 2.42 0.0264 3.02 0.458 0.389 0.805 0.340 978 0.0340 2.40 0.0272 3.00 0.472 0.401 0.799 0.350 1000 0.0350 2.38 0.486 0.413 0.794 0.360 1021 0.0360 2.36 0.500 0.425 0.788 0.370 1041 0.0370 2.35 0.514 0.437 0.782 0.0371 0.0275 0.0214 •Values of p above light rule are less than p,,,,: p,,,, = 200/1. as provided in Section 10.5.1 of ACI 318-77. For use of this Design Aid. see Flexure Examples 1-5. 8. 9. 11-13. 15. and 16. 148 -EsTAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 /- PASAOENA. CALIFORNIA 91 1 07 / (9281 351-9261 FAX (6261 351-5319 Nok4 sheet Ian, of by piMZIC I44 r-f(1ZI.1 C1U R& job no. I514 date ei H f o $4,CSp C- Nl c , A9M c ls� IQl r� 4(p-toE`JT% n ',At) G Tr icz)tits' 11x "Di 06314N Ltt S Ie LeM'S PI 69-r 9! Ste IN13 atef of 3 K►,F Uye L4493 < IA; 5t) rt? q= "NIS at y VLF rot< % 4GS < tt , 11/at X 4$ : 91)4 XLe% a It fri ap :.a Mom, tl e cb s 9S at& *q. lee L6 c. T^'� TAYLOR & GAINES 1.-1 STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 es--IBM CALIFORNIA S 1 1 07 [B2B] 351 •SBS 1 FAX [B261 351-531 S .heet,t/o& . /of c, ,A4LC/ Jq O.. by Sc job no. /3 9C date LNG . ,86A "f c al/2./ .0 A ,E. 86Z/o 2 to 3 St4. j''Ao,c ,c3/89 Mva 455-,4r1 0/;44/- 063/yAi ,BEA(-/ /)2 Sir-I/at rofP0/27-Ea ,8jv-i ,wk /, t(5f.3)7-/.7x,2 2/,ftYr,- gtu = A /f x 52 + i.7 X/¢ e• 9�. = /.0"21 ,t Q61 x 288 a 8/9 4 IG z td x5 c 564. of ' 27 7g7 e, 3 orro'1—i`9u=82oK>S/91' :—*fee fe/do tUL 7 47 .42Solu, TC TAYLOR & GAINES STRUCTURAL ENGINEERS 32 NORTH HALSTEAD STREET SrE 200 PASADENA, CA LIFORNIA 91107 (818) 351 -8881 FAX (8I8) 351-5319 HOAG MEMORIAL PARKING STRUCTURE sht: B180.2 by: sc Job No: 1395 Date: 4/3/00 CONCRETE BEAM CAPACITY NOTE: This program is limited to tension steel only & balanced condition. Based on fc<=5000osi Ref. AC1318-83 SEC.8.9 & 11 b INPUT fy (ksi) 60 b (in) 56.00 BEAM LOCATION fc (ksi) fy. (ksi stir.) 4.5 60 d (in) Bar size 27.00 #9 GRID A&E,2-3 Max As = 34.2 in2 (0.75 balanced condition) Min As = 5.04 in2 (200bd/fy) As balanced = .85p1fc87000bd/fy(87000+fy) Mu=4Mn=KnF=4fc(u(1-.59o4F WHEN w=pfy/fc AND p=As/bd F= bd2/12000= 3.40 $=0.9 for Mu; 0.85 for Vu Mu REDUCED by 33% when p<200/fy. Mu Tabulated up to Max. As=0.75 balanced Mu(max) = 3418 K' = 172.4 Mu(for min. p=200/fy) = 596.30 K' V„ (max) = 862.1 Stirrup •\ • • • • • d MOMENT (Mu) CAPACITY FOR DIFFERENT STEEL AREAS As(inA2) Mu(Kft) As(inA2) Mu(Kft) As(in^2) Mu(Kft) As(inA2) Mu(Kft) 1.00 90.9 7.00 819.5 13.00 1473 19.00 2080 2.00 180.8 8.00 931.5 14.00 1577 20.00 2177 3.00 269.8 9.00 1042.3 15.00 1680 21.00 2273 4.00 357.8 10.00 1151.8 16.00 1782 22.00 2367 5.00 444.9 11.00 1260.0 17.00 1883 23.00 2460 6.00 706.2 12.00 1367.0 18.00 1982 24.00 2552 When V <=1/2+Vc=.5*.85*2*fc'i2*bd = Shear Reinforcement is required When 1/24Vc= 86.2 <Vu < 314Vc = 517.3 Kips Min Spac'g of s=A„fy/50b or d/2 OR 24inches; Whichever controls. Max. Spac'g for #6,#5,#4 & #3 (in) = 13.50 13.29 8.57 When 34Vc<Vu<54Vc (Max.Spac'g NOT to exceed d/4 OR 12 inches) Max. Spac'g for #6 , #5, #4 & #3 (in) = 6.75 6.75 6.75 STIRRUP Spac'g for strength req. = s=$A„fy'd/(Vu-$Vc) 86.2 Kips 4.71 4.71 ULTIMATE SHEAR (V„ )CAPACITY FOR DIFFERENT STIRRUP SPACING INPUT Spac'g (in) #6 BAR #5 BAR #4 BAR #3 BAR 18.00 0 0 0 0 16.00 0 0 0 0 14.00 0 0 0 0 12.00 273 244 0 0 10.00 294 258 0 0 8.00 324 279 241 0 6.00 374 315 264 0 4.00 475 386 310 248 pia To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block information will be printed on each page. Title : Dsgnr: Description : Scope: Job # Date: 10:15AM, 28 AUG 99 Rev: 510500 Um: KW-0110115, Vr 5.11, V.A1.1-1g 9, WIn02 I0)1961E0ENERCALC Multi -Span Concrete Beam Page 1 Description HOAG PARKING STRUCYURE General information Calculations are designed to ACI 318-95 and 1997 BBC Requirements Fy Pc 60,000.0 psi 4,500.0 psi All Spans Considered as Individual Beams Stirrup Fy 40,000.0 psi ACI Dead Load Factor ACI Live Load Factor 1.40 1.70 Concrete Member information Description BTvan 2 To 3 Span ft 28.00 Beam Width In 16.00 Beam Depth in 30.00 End Fixity Pin -Fix Reinforcing Center A^• 5.00in2 27.00in Bar Nob Left Area 2.40in2 Bar Depth 3.00in Right Afee 6.40in2 Br Depth 3.00in Loads Using Live Load This Span ?? Yes Dead Load kilt 0.800 Live Load k/ft 0.200 Point #1 DL k 52.000 LL k 14.000 Q X ft 14.000 Results Beam OK Mmax @ Cntr k-ft 494.16 X = ft 14.00 Mn • Phi k-ft 550.61 Max © Left End k-ft 0.00 Mn • Phi k-ft 278.41 Max © Right End k-ft -650.23 Mn • Phi k-ft 684.49 Bending OK Shear © Left k 45.52 Shear a Right k 91.96 Reactions & Deflections DL @3 Left k 24.65 LL @ Left k 6.47 Total © Left k 31.12 DL © Right k 49.75 LL © Right k 13.12 Total © Right k 62.87 Max. Deflection in -0.463 X = ft 12.32 Inertia : Effective in4 16,398.13 Shear Stirrups Stirrup Rebar Area Spacing © Left Spacing © .2•L Sparing © .4•L Spacing GI .6•L Spacing © .8•L Spadng © Right in2 in in in in In In 0.400 13.50 13.50 13.50 13.50 10.64 9.31 1E3 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 PASAO E NA. CALIFORNIA 91 1 07 r (6263 351 -S9E11 FAX (6261 351.5319 sheet �l$ of by 12zKN4 'frPUGTukt Job no. n15 date 5 GoNC., laelerti c 16�x �o((D) MAP LAM'S 13ki 0, 5 kLF sLb 11N1P a ( 3 o, g K U vb LoAvis 4, 'rRlea G,2 tlet= Pik t'lku' 19,l" '&0242- o <' pn*Fso e c.L) To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block information r will be printed on each page. Title : Dsgnr: Description : Scope: Job # Date: 10:30AM, 28 AUG 99 Rev: 510300 IYer. KW-060115, Ws 5.1.3. 22Jurv1599. WN32 (1)1953-01> nERGLC Multi -Span Concrete Beam Description HOAG PARKING STRUCTURE Page 1. General Information Calculations are designed to ACI 318-95 and 1997 UBC Requirements Fy Pc 60,000.0 psi Spans Considered Continuous Over Supports ACI Dead Load Factor 4,000.0 psi Stirrup Fy 60,000.0 psi ACI Live Load Factor 1.40 1.70 Concrete Member Information Description 020rs11T012 Span ft 18.00 Beam Width in 16.00 Beam Depth in 30.00 End Fixity Pin -Pin Reinforcing Center A1°a 1.00in2 27.00in Bat Dapai Left Ma- 1.00in2 Bar Depth 3.00in Right Area 1.001n2 Bar Dinah 3.00ln Loads Using Live Load This Span 77 Yes Dead Load kfft 0.800 Live Load k/ft 0.200 Results Beam OK Mmax © Cntr k-ft 59.13 42/ X = ft 9.00 Mn • Phi k-ft 118.89 Max © Left End k-ft 0.00 Mn' Phi k-ft 118.89 Max al Right End k-ft 0.00 Mn * Phi k-ft 118.89 Bending OK Shear @ Left k 13.14 Shear y, Right k 13.14 Reactions & Deflections DL C2 Left k 7.20 LL © Left k 1.80 Total © Left k 9.00 DL it Right k 7.20 LL at Right k 1.80 Total (0 Right k 9.00 Max. Deflection in -0.018 X = ft 9.00 Inertia : Effective in4 36,000.00 LShear Stirrups Stirrup Rebar Area Spacing © Left Spacing © .21L Spacing © .4'L Spacing p .6'L Spacing © Spacing © Right In2 In in in in in in 0.400 Not Req'd Not Req'd Not Req'd Not Req'd Not Req'd Not Req'd T^'^ TAYLOR & GAINES V STRUCTURAL ENGINEERS 320 NORTH HALSTEA0 SREET • SUITE 200 pa... PASAOENA. CALIFORNIA 91 1 07 16261 351-6661 FAX C626) 351 -5319 HMA-4 I7MZKIN6 "-AKUC1uKE sheet �I 21— of by Job no. 1315 date 5 /1 f f2eINroI4cS GvNG, 1' t1 E !sl!ZIt' <1 4 x So'') 1*-51*-1 L 4V$ n L kvS 4414) 5td+3 TKI6 01 "F Uvts I,obPS < Ltq 90tsf% 12,0K LOWS (4,-31i c i. xC /> , 9b,K loVV 01 9"ex c )' l' la ridO , v11 114. r .9 �I 111"- fide k 6�,� M mow- 11&$ rfe m once t'1 I wo►A— ox k. te- TO TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOENA. CALIFORNIA 91 1 O7 IS2S] 351-S51S 1 FAX IS2S1 351 .5319 S24 /dc 7/u001L sheet 448/6 ¢ /ot by SG lob no. / 3 7 dea *//e)e) GOtJC , /✓EA M @ 4Z/4) A it /BE ra)acn/ 42/O /0 r //, tt. P /I, Pan. .at; ya it ustE. .941i/fcE /s41-7 ,Cvtc L44 3-74.3) f/17X. 2 =/. (746 Yj- /1 _/& 5s t/ 7x/¢ M ` /, $ e33, ?- /°J,$x f a-/O98, - /o4'.? /0f.3 cri< • Czgc /o TAYLOR 8 GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET STE 200 PASADENA, CA LIFORNIA 91107 (SIB)351 -EEEI FAX(SlIO 351.5319 HOAG MEMORIAL PARKING STRUCTURE sht: B1842 by: sc Job No: 1395 Date: 4/3/00 CONCRETE BEAM CAPACITY NOTE: This program is limited to tension steel only & balanced condition. Based on fc<=5000osi Ref. AC1318-83 SEC.8.9 & 11 INPUT fy (ksi) 60 b (in) 56.00 SEAM LOCATION fc (ksi) fy. (ksi stir.) 4.5 60 d (in) Bar size 27.00 #9 VniV A&E,10- 44 Max As = 34.2 in2 (0.75 balanced condition) Min As = 5.04 in2 (200bd/ff) As balanced = .85p,fc87000bd/fy(87000+fy) Mu=$Mn=KnF=4fcw(1-.59w)F WHEN w=pfy/fc AND p=As/bd F= bd2/12000= 3.40 0=0.9 for Mu; 0.85 for Vu MR REDUCED by 33% when p<200/fy. Mu Tabulated up to Max. As=0.75 balanced Stirrup 1' b k•\ • • • • • d MR(max) _ MR(for min. p=200/fy) = 3418 K' 596.30 K' 4V4 = VR (max) = 172.4 862.1 MOMENT (Mu) CAPACITY FOR DIFFERENT STEEL AREAS As(in^2) Mu(Kft) As(inA2) Mu(Kft) As(inA2) Mu(Kft) As(inA2) Mu(Kft) 1.00 90.9 7.00 819.5 13.00 1473 19.00 2080 2.00 180.8 8.00 931.5 14.00 1577 20.00 2177 3.00 269.8 9.00 1042.3 15.00 1680 21.00 2273 4.00 357.8 10.00 1151.8 16.00 1782 22.00 2367 5.00 444.9 11.00 1260.0 17.00 1883 23.00 2460 6.00 706.2 12.00 1367.0 18.00 1982 24.00 2552 When Vu<=1/2$Vc=.5`.85`2`fc""bd = Shear Reinforcement is required When 1/24Vc= 86.2 <Vu < 34Vc = 517.3 Kips Min Spac'g of s =A fy/50b or d/2 OR 24inches; Whichever controls. Max. Spac'g for #6,#5,#4 & #3 (in) = 13.50 13.29 8.57 4.71 When 34Vc<Vu<54Vc (Max.Spac'g NOT to exceed d/4 OR 12 inches) Max. Spac'g for #6 , #5, #4 & #3 (in) = 6.75 6.75 6.75 4.71 STIRRUP Spac'g for strength req. = s=4Alfy'd/(Vu-4Vc) 86.2 Kips ULTIMATE SHEAR (VN)CAPACITYFOR DIFFERENT STIRRUP SPACING INPUT Spac'g (in) #6 BAR #5 BAR #4 BAR #3 BAR 18.00 0 0 0 0 16.00 0 0 0 0 14.00 0 0 0 0 12.00 273 244 0 0 10.00 294 258 0 0 8.00 324 279 241 0 6.00 374 315 264 0 4.00 475 386 310 248 To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block information /-- will be printed on each page. Rev: 510300 User: KW-050115, Wr 5.1.3, 23Jun-1900. WN92 (C) 106390 ENERCALC Title Dsgnr: Description : Scope : Multi -Span Concrete Beam Job # Date: 10:35AM, 28 AUG 99 Page 1 I Description HOAG PARKING STRUCTURE L eneral information Calculations are designed to ACI 318-95 and 1997 UBC Requirements ■ Fy Pc 60,000.0 psi Spans Considered Continuous Over Supports ACI Dead Load Factor 4,000.0 psi Stirrup Fy 60,000.0 psi ACI Live Load Factor 1.40 1.70 Concrete Member Information Description BTWN 10 TO 11 Span ft 33.00 Beam Width in 16.00 Beam Depth in 30.00 End Fixity Fix -Pin Reinforcing Center Ana 7.00in2 BaroeWt 27.00ln Left Rry 9.001n2 Bar Depth 3.00in Right Ana 2.40in2 Bar Depth 3.00in Loads Using Live Load This Span ?? Yes Dead Load k/ft 0.800 Live Load k/ft 0.200 Point #1 DL k 58.000 LL k 16.000 @ X ft 16.500 Results Beam OK Mmax @ Cntr k-ft 658.31 @ X = ft 16.50 Mn • Phi k-ft 728.82 Max @ Left End k-ft -869.47 Mn • Phi k-ft 892.43 Max @ Right End k-ft 0.00 Mn • Phi k-ft 277.13 Bending OK Shear @ Left k 104.64 Shear @ Right k 51.94 Reactions & Deflections j DL @ Left k 56.37 LL @ Left k 15.12 Total @ Left k 71.50 DL @ Right k 28.02 LL @ Right k 7.47 Total @ Right k 35.50 Max. Deflection in -0.693 @ X = ft 18.48 Inertia : Effective in4 21,553.84 Shear Stirrups Stirrup Rebar Area Spacing @ Left Spacing @ .Z'L Spacing @ .4•L Spacing @ .6•L Spacing @ .8•L Spacing @ Right in2 in in in in In In 0.400 6.75 6.75 13.50 13.50 13.50 13.50 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 PASAOENA. CALIFORNIA 91 1 07 (626) 351 -81E11 FAX (626) 351 •5319 1,A K44 '51Ru clu KE :beet (?slo of by Job no. 1319 dote 5 /qet GINpos ceQ c- Nc, netti c !sJIWe i ic36" eutiN <1415X30(D, ret9dri L4WS bG*P tAitt7S 1311 5stf 41413 Cg111 W> UvEr LoAvs 5v x 1 lertte t1E. /3IK rl,MM = I3 b' K.. fif 0,tj ol. pAttA: ~I IK rl,s,wof tl bwow 1'�5f� o►� G�4ftln© To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block Information 1'. will be printed on each page. Title : Dsgnr: Description : Scepe : Job N Date: 10:46AM, 28 AUG 99 Rev: 510000 User: KW.0e0115, Vac 51.3, 904n1900. WM]0 (C) 196199 ENERCALC Description Multi -Span Concrete Beam HOAG PARKING STRUCTURE Page 1. • General Information Calculations are designed to ACI 318-95 and 1997 UBC Requirements Fy rc 60,000.0 psi Spans Considered Continuous Over Supports ACI Dead Load Factor 4,000.0 psi Stirrup Fy 60,000.0 psi ACI Live Load Factor 1.40 1.70 Concrete Member Information Description TWN a To WALL Span ft 27.00 Beam Width in 16.00 Beam Depth in 30.00 End Fixity Pin-Flx Reinforcing Center Area 2.00in2 Bar DaW1 27.00in Left A1ea 2.001n2 Bar Dept, 3.00in Right Nee 2.001n2 Bar Dap11 3.00in Loads Using Live Load This Span ?? Yes Dead Load kilt 1.200 Live Load k/ft 0.450 Results Beam OK Mmax © Cntr k-ft 125.32 e X = ft 10.08 Mn' Phi k-ft 233.07 Max a Left End k-ft 0.00 Mn • Phi k-ft 233.07 Max @ Right End k-ft -222.80 Mn' Phi k-ft 233.07 Bending OK Shear a Left k 24.76 Shear @ Right k 41.26 Reactions & Deflections DL @ Left k 12.15 LL @ Left k 4.56 Total el Left k 16.71 DL e Right k 20.25 LL © Right k 7.59 Total© Right k 27.84 Max. Deflection in -0.150 e X = ft 11.34 Inertia : Effective in4 15,202.08 Shear Stirrups Stirrup Rebar Area Spacing Q Left Spacing ©.2`L Spacing le .41L Spacing r_r .61L Spacing © .8'L Spacing © Right ln2 in in in in in in 0.400 Not Req'd Not Req'd Not Req'd Not Req'd 13.50 13.50 TC TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOENA. CALIFORNIA S 1 1 07 �'. (S2S1 351-SSS1 FAX [S2S1 351 .531 S Nbed tet p, lNet 6e ttic[4 stint'is 1" of by /FC-.- lob no, j 315 dote f e r6$t1 e LANE •fle Ur-ttifzNiKsisti b%slbrt IDS i3t9 5• 31e9i9, Oise, lets 12U= L 1-"4. U, SO 1944- - ' 01 4 ". WASH 6}K€s Vu z 19' tit :Pt F2tto•c 1 St4N t'1 D ttterN'7I Dip Wt. '{- 1 b elor Npjn'ai+1IK We 4e 1 o t3cirre1J To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block information ( ' will be printed on each page. Title : Dsgnr: Description : Scope : 13 Veil Job # Date: 9:08AM, 6 SEP 99 "°'°° w 510100 ,5, V« 9., f, t2J,n1999. WW2 Concrete Rectangular & Tee Beam Design Re tw1963-w Ertew.c Page 1 I Description HOAG PARKING STRUCTURE General information Calculations are designed to ACI 318-95 and 1997 UBC Requirements Span Depth Wdth Beam Weight Not Added 64.00 ft 47.000 in 16.000 in is Fy Concrete Wt. Seismic Zone 4,500 psi 60,000 psi 145.0 pcf 4 End Fixity Fixed -Fixed Live Load not acting with Short Term Reinforcing Reber © Center of Beam... Count Size 'd' from Top #1 4 10 44.00in Reber 4 Left End of Beam... Count Size 'd' from Top #1 4 10 3.00 in Reber a Right End of Beam... Count Size 'd' from Top #1 4 10 3.00 In Uniform Loads 1 1 Dead Load 1.400 k Summary I Live Load 0.400 k Shod Term k Start 0.000 ft End 64.000 ft Span = 64.00ft, Width= 16.00in Depth = 47.00in Maximum Moment : Mu -901.12 k-ft Allowable Moment : Mrephi 947.06 k-ft Maximum Shear : Vu Allowable Shear : Vn'phi 110.20 k Shear Stirrups... Stirrup Area ©Section 0.260 in2 Region 0.000 10.667 Max. Spacing 19.500 19.500 Max Vu 75.018 56.771 75.02 k 21.333 Not Req'd 28.385 Beam Design OK Maximum Deflection -0.6524 in Max Reaction © Left Max Reaction © Right 32.000 Not Req'd 27.709 42.667 Not Req'd 27.709 57.60 k 57.60 k 53.333 19.500 56.095 64.000 ft 19.500 In 74.342 k Bending & Shear Force Summary Bending... Center Left End Right End Shear... Left End Right End Mn*Phl 947.06 k-ft 947.06 k-ft 947.06 k-ft Vn•Phl 110.20 k 110.20 k Mu, Eq. 9-1 450.56 k-ft -901.12 k-ft -901.12 k-ft Vu, Eq. 9-1 75.02 k 74.34 k Mu, Eq. 9-2 334.51 k-ft -669.01 k-ft -669.01 k-ft Vu, Eq. 9-2 55.70 k 55.19 k Mu, Eq. 9-3 215.04 k-ft -430.08 k-ft -430.08 k-ft Vu, Eq. 9-3 35.80 k 35.48 k Deflection Deflections... Upward DL + [Bm Wt] 0.0000 in at DL + LL + [Bm Wt] 0.0000 In at DL+LL+ST+[Bm W] 0.0000 in at Reactions... @ Left DL + [Bm Wt]] 44.800 k DL + LL + [Bm Wt] 57.600 k DL+LL+ST+[Bm Wt] 44.800 k 0.0000 ft 0.0000 ft 0.0000 ft (rig Right 44.800 k 57.600 k 44.800 k Downward -0.4529 In at 32.0000ft -0.6524 In at 32.0000ft -0.4529 In at 32.0000ft To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block information /^ will be printed on each page. Title : Dsgnr: Description : Scope: Job # Date: 9:O8AM, 6 SEP 99 Rev. 510100 Lbw: 105.5000115, v.5.1.3, 22Jun-1999, WY32 _ (41551.50 ENERGLLC Concrete Rectangular & Tee Beam Design Page 2.1 Description HOAG PARKING STRUCTURE LSection Analysis Evaluate Moment Capacity... X : Neutral Axis a = beta ' Xneutral Compression in Concrete Sum [Steel comp. forces] Tension In Reinfordng Find Max As for Ductile Failure... X-Balanced Xmax = Xbal • 0.75 a -max = beta • Xbal Compression in Concrete Sum [Steel Comp Forces] Total Compressive Force AS Max = Tot Force / Fy Actual Tension As Center 6.035 in 4.979 in 304.707 k 0.000 k -304.800 k 26.041 in 19.531 in 21.484 in 986.101 k 0.000 k 986.101 k 16.435 In2 5.080 OK Left End 6.035 in 4.979 in 304.707 k 0.000 k -304.800 k 26.041 in 19.531 In 21.484 in 986.101 k 0.000 k 986.101 k 16.435 In2 5.080 OK Rlaht End 6.035 in 4.979 in 304.707 k 0.000 k -304.800 k 26.0408 in 19.531 In 21.484 In 986.101 k 0.000 k 986.101 k 16.435 In2 5.080 OK Additional Deflection Calcs I Neutral Axis !gross !cracked Elastic Modulus Fr=7.5•fc^.5 Z:Cracking Z:craddng > 175 : No Good! Eff. Flange Width 12.350 in 138430.67 in4 48,640.88 in4 3,823.7 ksi 503.115 psi 190.768 ksi 16.00 in Mcr Ms:Max DL + LL R1 = (Ms:DL+LLIMcr Ms:Max DL+LL+ST R2 = (Ms:DL+LL+STyMcr I:eff... Ms(DL+LL) I:eff... Ms(DL+LL+ST) 246.97 k-ft 614.40 k-ft 0.402 477.87 k-ft 0.517 54,472.994 In4 61,036.248 In4 ACI Factors (per ACI, applied intemally to entered loads) ACI 9-1 & 9-2 DL ACI 9-1 & 9-2 LL ACI 9-1 & 9-2 ST ....seismic = ST • : 1.400 1.700 1.700 1.100 ACI 9-2 Group Factor ACI 9-3 Dead Load Factor ACI 9-3 Short Term Factor 0.750 UBC 1921.2.7 "1.4" Factor 0.900 UBC 1921.2.7 "0.9' Factor 1.300 1.400 0.900 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD GREET • SUITE 200 PASADENA, CALIFORNIA B 1 1 O7 [BEM 351-0BB1 FAX (020, 351-5310 Et feet p1¢wr461 *ZUCtIR€ sheet F3141 of by It lob no. dote 174-8A-} r $4fr.k_ �6e6"a.c, x5bez11 k2SS I4t4 . / 41I PILL L C,6SS-I- 09 pit. 614eIS'►tf) MN" hix &k ,< j17- 163 1" art, " O, co-5 KN44.11- r _A 0 frzo,1bINz 5 * -6 a 64.4. vent GEt%- Sisistiico MA ci4cd115xI15X es 53)x3,5 WI u_ Nal GoM'fltl.-- ft AV L'= o, 33s CotI ,= 1' 0,,,31N' { 1)6SI4N L ko 1)4IQ,4 vvtT 1.4-0 121"2- (19+4) yop,15)(3,5i 0, 53 K4 &k c I2>"141' TAG TAYLORA& RUCTURL GAINES A TMAD COMPANY PASAOENA • SAN DIEOO • ENCINO PA Htoti srx4cfl4& sheet glal A of by SP job no date Li 1 r/042 c'(is r>tc Alt to ac ne m. I' Sivri.w pd,,,-} A 3 6" i2H 6", = r;- I, �'— s7� = 4, 11" ,tr(-bd ,11410.1_= Itan. AS o. 243 1;0-4 TT— p6wik A, 3141) wat.{ DL = -15ps4 (5.2s) • Pr`vtis-b pti„,,-eA 'tele K _ .3 H Z (3 .,) + ,-947 (II ") 1.03 f' vZ S; 1 u K/4-% spa_eQ lb., ate, _ , 18`f i�x ; 30,7 nk/fk 61 3S' t n a/{k • (DJJ = £9PO : PH .11H(304,1 = 17.21c >Vv dk At Set =,31 w,u4 or— 4T`° ;-3o z`t�1If} x I. Lt - 342- • 311 4+, -41•`1 = 4`17 7»9 1/444 - Vv 5= I, C - 54 3. I ta" A s = a. 2_2 1;0'4 a Se. l6 = 0.13 o R- 1t t-j tJ b tV,_ .IN (1L)3,tt, = Lit 3r -4 > Vv= 1791 ok-. 0,2,1 Ten TAYLORA& GAINES A TMAD COMPANY PASADENA • SAN 011600 • ENCINO t/ vAG, PAV-CtNL, STRyan E sheet Pi T3 of by 517 job no date WW2 ?nut. 5 , slab vJ Freceast ritrA-4A 514,10 = > (.15v) 1131 1;'-1 = . 1 35 .01-17 U, = ,0S(1,Si3),(1,7 _ • 139 1,04 1l{{.. - • I1`I kst. (1Z) 3,1$ " k13r V-4ir > Vv /O4 bk. -3t-tom- C 19 +3) ' 7� -` -C7 ( I`j }9) .1315 ( 1 `I 1 %,,) _ / ,. 3 13�1 L I1 /L- = 1.3 38•0 1,K/„., 19s1Z", cis 3.I61' As= 0.23 G.74, olt dr�� I� i2`1 TAYLOR & GAINES TAG•tNUCTD•AL ENSI A TMAO COMPANY PA•AOENA • SAN DIEGO • ENCINO sheet Ni1Gof by SP +-1 0Aln job no PM $-1NG S'Tq-UvrUP-C date 4/Slob p bmdC 0 VI) Di- WA^'1 _ .342- vs-LA 5} & • a{47 5" s Itib s g,(.1i-)I,67 x 1,4 = ,-14 I- " slwL = �v(. I -)3fp- ,41,9 - A 5Y`j I,913 •l } . 4 ] ti/2 ', cl:g-'l.Y-rfb c.Is" 4VL= .I1`ik,c(ri.)4,116 = 8,95'4 >1.q< flv = -3`fv (6i+3" = 23.1 ok .4L17 (C1 4 1) 34, 0 . t(4-)u) = 8,3 . (cf7/y- = 12•� 4-7 ( G� n 15%7 bark/cr = hJ b=1Z"; d , 61116 As = 0,21 );4 5,2.11, = 131 ok 1 ke- ' , 3 0 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SKEET • SUITE 200 PASAOENA. CALIFORNIA Ell 1 07 /r• (S20] 351 .SSS 1 FAX (3251 351-531 S Ft s,l rnlu46‘ ttRttarutt& •MM p lt'L— of by PC — lob no. dab) rittzArr 1,i., Ce-orD *te$ a. r etp Mrr41 WADI. v'r, paMt$ ✓ *6 Q bu x. y.an scow Koart le e ri"-c TAYLOR& GAINE Heel STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 PASADENA, CALIFORNIA 91 1 O7 (6281 351-B13B 1 FAX (6213) 351-5319 r"timititot 1114g r .hen 131 ) of by lob no. date .01 • 1 {6 LI • st-*5ewac 415' 2 fir • �f66.06-cxjc,kJ N prir P&L ,611 x 31- I" Sr SE t iy 4-6 CC 6"°I c, vtr 415 e, h:bo► c. koai% T TAYLORA& GAINES amp RUCTURL ENGINEERS A T M A D COMPANY VOLUME 2 STRUCTURAL CALCULATIONS FOR PARKING STRUCTURE HOAG MEMORIAL HOSPITAL PRESBYTERIAN NEWPORT BEACH, CALIFORNIA Taylor & Associates Architects dge C. Gaines Structural Engineer 81034 Taylor & Gaines 1395 320 N. Halstead Street, Suite 200, Pasadena, CA 91107 • (626) 351-8881 • Fax (626) 351-5319 • www.taylorgaines.com /'" HOAG PARKING STRUCTURE r TABLE OF CONTENTS VOLUME 1 DESIGN DATA D1 - D2 P.T. SLAB DESIGN S1 - S134 P.T. BEAM DESIGN B1 - B193 VOLUME 2 COLUMN DESIGN C1 - C44 SHEAR WALL DESIGN SW1 - SW18 FOOTING/GRADE BEAM DESIGN F1 - F109 BASEMENT WALL DESIGN W1 - W10 VOLUME 3 LATERAL ANALYSIS L1 - L277 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO STREET • SUITE 200 ^ PASAOENA, CALIFORNIA 91107 / 18181 351.8881 FAX (8181 351-5319 1111 6.4.u04]�I HDk4 ppitIcir14 triuiciukt �-b<p.n) Level. 5 Levet, 1- -RILL4 44 wr � yr Levu. 3 1-4 sties e -rYl PYrk4 a/ arotA sheet G I of by job no. 1315 5 date 1 / 11 0 ISA.1- Lem -ror °i' rtyt nNdi. Saila I IP-11 I r cs1-- To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block information will be printed on each page. Title : Job # Dsgnr: Date: 8:26AM, 8 AUG 99 Description : Scope : Ltie 10r. 51000 User. 19Mm9115, Vet 9.1.3, 224n-1999. N9ni w 1903a0 arenc"1.c scription 4ARKING Concrete Column HOAG PARKING STRUCTURE 1i,C.c.WM4 e Kett L-ErVIK, WJ �6 General Information Calculations are designed to ACI 318-95 1997 UBC Requirements Page 1. Width 24.000 In Depth 24.000 in Rebar 2- # 11 d= 21.500 in 2-# 11 d= 2.500 in Pc 6,000.0 psi Fy 60,000.0psi Seismic Zon 4 LL & ST Loads Act Separately Total Height Unbraad Length Eff. Length Facto Column is BRACED 11.000 ft 8.000 ft 1.000 Loads Axial Loads Applied Moments... Top Bottom summary ' Dead Load Live Load Short Tenn 66.000 k 18.000 k k 60.000 k-ft k-ft k-ft k-ft k-ft k-ft Eccentricity 3.000 in 24.00 x 24.00in Column, Reber: 2-#11 © 21.50in, 2411 CO 2.50in Applied : Pu : Max Factored Allowable : Pn • Phl # Design Ecc. M-critical Combined Eccentricity Magnification Factor Design Eccentricity Magnified Design Moment Po•.80 P : Balanced Ecc: Balanced ACI 9-1 123.00 k 717.25 k 114.75 k-ft 11.195 in 1.00 11.195 in 114.75 k-ft 2,624.14 k 1,016.64 k 10.696 in ACI 9-2 92.40 k 505.04 k 107.10 k-ft 13.909 In 1.00 13.909 in 107.10 k-ft 2,624.14 k 1,016.64 k 10.696 in Column is OK ACI 9-3 59.40 k 505.04 k 68.85 k-ft 13.909 in 1.00 13.909 in 68.85 k-ft 2,624.14 k 1,016.64 k 10.696 in Slendemess per AC1318-a5 Section 10.12 610.13 Actual k Lu / r 13.333 Neutral Axis Distance Phi Max Limit kl/r Beta = M:sustained/M:max Cm El / 1000 Pc : pi"2 E l / (k Lur2 alpha: MaxPu / (.75 Pc) Delta Ecc: Ecc Loads + Moments Design Ecc = Ecc • Delta Elastic Modulus 4,415.2 ksi Beta ACI Eq. 9-1 ACI Eq. 9-2 ACI Eq. 9-3 11.3350 in 8.0350 in 8.0350 in 0.7000 0.7000 0.7000 34.0000 34.0000 34.0000 0.7512 1.0000 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 11.1951 13.9091 13.9091 In 11.1951 13.9091 13.9091 in 0.750 ACI Factors (per ACI, applied internally to entered loads) ACI 9-1 & 9-2 DL ACI 9-1 & 9-2 LL ACI 9-1 & 9-2 ST ....seismic=ST•: 1.400 1.700 1.700 1.100 ACI 9-2 Group Factor ACI 9-3 Dead Load Factor ACI 9-3 Short Term Factor 0.750 UBC 1921.2.7 "1.4" Facer 0.900 UBC 1921.2.7.0.9" Factor 1.300 1.400 0.900 2296.123 bu.1.1u prat 9.11:711.214 l.u211.1 (EA 9-2) : 505.01A Pu,Mu (Eq 9-3) 405.0k 114./k4t 107.0k-ft • 68.824t • 2066.510 1836.898 1607.286 1377.673 1148.061 9111.449 683.636 459.224 229.612 a Axial : Pnaphi 0 • • et 1 M 13E3 34* 5 2 / • 6 341.8 411.0 484.2 56.3 Moment: %Inlaid 0c-ft) 622.5 49 .7 To specify your title block on Tide : Job # these five lines, use the SETTINGS Dsgnr: Date: 8:26AM, 8 AUG 99 selection on the main menu and Description ' enter your title block information Sco a. Will be printed on each page. Page 1 1 p"r14.00 Rectangular Concrete Column 51 ,,R.V..S., r.a.,se.tk=x (d 1N10300 .RCALC escription HOAG PARKING STRUCTURE Thrill.. l ` ..'c CD 1S-r Ltrvls'L , General Information Calculations are designed to ACI 318-95 and 1997 UBC Requirements Width 24.000 In fc 6,000.0 psi Total Hecht 11.000 ft 1 Depth 24.000 in Fy 60,000.0 psi Unbraced Length 8.000 ft Rebar Seismic Zon 4 Eff. Length Facto 1.000 2 - # 11 d = 21.500 in LL 6 ST Loads Act Separately Column is BRACED 2-# 11 d= 2.500 in Loads Axial Loads summary Dead Load Live Load Short Tenn 330.000 k "••- 90.000 k ✓ k Eccentricity 3.000 in 24.00 x 24.00in Column, Rebar. 2411 © 21.50In, 2411 © 2.50in ACI 9-1 ACI 9-2 Applied : Pu : Max Factored 615.00 k 462.00 k Allowable : Pn • Phl @ Design Eee. 1,740.45 k 1,740.45 k Column Is OK ACI 9-3 297.00 k 1,740.46 k M-critical 153.75 k-ft 115.50 k-ft 74.25 k-ft Combined Eccentricity 3.000 in 3.000 in 3.000 In Magnification Factor 1.00 1.00 1.00 Design Eccentricity 3.000 in 3.000 in 3.000 in Magnified Design Moment 153.75 k-ft 115.50 k-ft 74.25 k-ft Po .80 P : Balanced Ecc: Balanced 2,624.14 k 1,016.64 k 10.696 in 2,624.14 k 1,016.64 k 10.696 in 2,624.14 k 1,016.64 k 10.696 in Slenderness perAC1319.05 Section 10.12 a 10.19 Actual k Lu / r 13.333 Elastic Modulus 4,415.2 ksi Beta ACI Ea. 9-1 ACI En. 9-2 ACI Eo. 9-3 Neutral Axis Distance 24.9800 in 24.9800 in 24.9800 in Phi 0.7000 0.7000 0.7000 Max Limit kUr 34.0000 34.0000 34.0000 Beta = M:sustained/M:max 0.7512 1.0000 1.0000 Cm 1.0000 1.0000 1.0000 EI/ 1000 0.00 0.00 0.00 Pc : piA2 E I / (k Lu)"2 0.00 0.00 0.00 alpha: MaxPu / (.75 Pc) 0.0000 0.0000 0.0000 Delta 1.0000 1.0000 1.0000 Ecc: Ecc Loads + Moments 3.0000 3.0000 3.0000 in Design Ecc = Ecc • Della 3.0000 3.0000 3.0000 ill 0.750 ACI Factors (per ACI, applied internally to entered bads) ACI 9-1 & 9-2 DL ACI 9-1 & 9-2 LL ACI 9-1 & 9-2 ST ....seismic = ST • : 1.400 1.700 1.700 1.100 ACI 9-2 Group Factor ACI 9-3 Dead Load Factor ACI 9-3 Short Temi Factor 0.750 UBC 1921.2.7 "1.4" Factor 0.900 UBC 1921.2.7 "0.9" Factor 1.300 1.400 0.900 c5 2296.123 PC,515154154) P.a,Mu 2 1”-0.415 (E4 9-2): 1740.415 .ta,Mu (Fai 9-3): 1 153.rk-6 115.4ka • ,40.4k, 74.2k-6 • 2066.510 1836.1395 111 • • 1607.256 1377.673 114/.061 915.449 6881136 459.224 229.612 OA Mist 2 Ptephi 45.1 (14 13113 20 .6 274.6 34a.5 41t.0 sela ssis olis 69l.7 Moment: Mn•pni lk-ft) 1E3 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 P A S A O E N ACALIFORNIA 8 1 1 0 7 (818) 351-8881 FAX (818) 351-5319 Nrey 1,,ErKk1 N 4 S11&u c.'1U t2E 6rs16v1'r" r 44•Lur1N 5 sheet e" of by John. (315 date 1/11 l�Lu 1N < 2.gx')4' 6021I7 LINE Al-, El - Carl c . 6 cSt N1 12. Kett 4-I,pl Awn. t.V 3D LSVL1l. pt. E nl, Li. LI.L, 111DL t1.1 U. Gd uMN Kelt + HISI e OK GK a'" os- Dk- l,'+" IN. y')" 11" 1,)` — 2t` 11" 'PIN I r,.,,w 11414 51," III .1-1LY. I "' 314 "-lit 51-" ill` 3w" Lv ,,.0tt 414 Fat --it II* 53," 7 L-v - 4,D 55" qd o" = I I r` 51" 1N qteeTill4% L_v. 147Colt Sr k !fit, old' r- • levet- nl t 101- I-L ` 315i" • PU L 4 < I I ix. + 1.1 IA- 4-60K s Na K x 211 "'aWK t►*taus = 1115 lc- W O 01 m co O o * * O • 4.)yl * O al A 4.1 4 u .c >1 o m t CO .0 -r1 'O 4 • • 1 • 1 4 1 + v + --- • • • • 4 * • • * + • • 4 • CO • • ).l 4 • D • • 0 • • u+ 4 4 C.1 • + 0 + * z* • F + • 0 4 rt. • • • • 4 4 + • + 4 4 4 4 4 4 + 4 4 4 P Q, -1 a al b O 0 0 4/1 • UI CO 0 0 0 N r< < 0 O O 0 N H 10 4 O f0 n 11 11 II 11 11 11 O > UI - 4 H 4 01 4.4 w <O UI 44 • 4 < d 0 a+ a44 01 W > N 0 S 4 4 a CO • O 4 U N• 4 w 1n • + 4 4 3 4 Pf 4 AREA OF STL. u m u • 4 4 +• aaw E 4 + x x x RC 4 7 a• ▪ M C 4 • • 4 • CO 0 m • a a a + ,De x•x H • U 4 N ON 0 a + N N' M Su•+ • * C q' q * •d •1 44 4 1 • •a 4 41, 4 N N N • • w 4 H • A4J it COp • 44 44 44 CO * 0 0 0 4 • b N: CO 4 M M b N N M M b N M M M b b N N M M U1 01 U1 U1 N N N 01 N 01 01 r r N M 0 M M N N N V M a a iv a V N N N N N N N N N N N N N N < < < < < < < < < < < < < < 00000000000000 co to 4 N N N 411 4 N 1'4 H M b 10 Ol N b 0 N N UI 414 CO l' CO 0 U1 O1 V N • 1` C H b r< • 01 O1 1O 0 141 b N•• N b N CO • H M r1 b O N M M 411 01 H H H N CJ co H E ((1N.0) * x x x 4 4 0 0 0 * N O a U1 N 4 4 • • • • • 4 • 4 • * • * 4 • • • • • • x x x x x x x x x x 0 0 0 0 0 0 0 0 0 0* 4+ + • 4 • m m m m m m m m m m• a a a a a a a a a a• -d -d -d 41 M -d -d -.1 +l • -I 4 x x x x x x x x x 4 4 b M CO N 14 01 b N 0 0 4 M M C CO N 01 0 0 0 N 4 01 H M U7 CO 0 M b 0 CO 4 rl rl ri rl N N N M M • 4 4 4 CO CO m m m m CO m m m• a a a a a a a a a -Ha + -A 44 •d vl d -el -A •d •d •4 xxxx:uxaexxx4 IA CO N 01 N 1-1H 1001 •p * CO 0 tM CO a H 01 1^ N 01 N N CO 171 r< M 4 10 0 0 ,-1 r< r/ rl rl N • • • 4 4 -d •d .rl •d •d •d 41 -d -d •d • b b 10 10 M M M M a u u u aJ 1.1 44 44 w LLl w 0 0 0 O H N ✓ 1 r< H O O el 411 H ri N N CO CO 0 a a a 4 Y 11 11 11 Y w w w w w 0 0 0 0 0 0 10 l- O 01 rl r< rl r1 rl 4 • • • • • 4 4 4 • • • 4 -TES TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 P A S A D E N A, CALIFORNIA 9 1 1 0 7 (815) 351-8991 FAX (919) 351.5319 Nobel ofrickici N 4 51rat am RE c S&vrrj' C-0LuMN 5 sheet G b of by job no. j A5 date 1111 coLur.N < 21-", " i Ai21to LINE '�1J# P CN c.. 6 "1 N1 rZ Kett 40 K,si I.6VGI. cil i tnl. L-L- LLL IAct. fl1 U. 44urt1-1 KSII If f HIM j a'c. aY 6K air- aK . l,-n+ I.v. b3" ytiK I,.6K -- 63"` .,,•y+L 51M I.Y I414 --5yr` - 63" 'WI).-4t q-1► W. 181" 66K •i aK 6314 y1K 31U'LY 8bk ;oq-"' 4 ' 69" .>5 st 2N!LV '319` II OW" 63D" WC VOL 1NLY. < ren"A? II oK 630 — Dv' 315" at` • -fra rt. 'I' -writ- I.L :� 41-5"4. • I uL = < + 1.1 LA-- � %3G� w 0 01 01 m 0 0 • • + • • • • • • * — • • t W * w 4-1-d 4. 4. m c • as a•d u + D * 0 0 0 a 0) • W+ 0 0 0 N # 1-1f to a O O 4. P • b • H • Ur ♦ • II II 11II Q • CO 4.• x a *4. 0 * u >. *• H + 01 w w o *• 8 + N ♦ a • • W at • • N • �rn m * w P FAs agqm * to 4 co � * pHO) Z R • * 2 W U Y D77 a o szQ * aZ1-1 WW [a• een W * N U OL « t f • * .0 u * 0 0 m • .n rb i I 4 1• V • in 01 rl r1 N el m III 01 111 11) N N N 4. • b b b 10 b 10 N 01 N 01 01 N N N« * •] 0) 4. N N N N N N m N COr1 enN N N« O �- • in r1 rl r1 en en r1 a r1 a a a a a • 0 • • W • • Da H + * W m • 4. I. * a • • N N N N N N N N N N N N N N• • • < < < < < < < < < < < < < < • tn N a al a a % * •.�i •r�elM l •.-I •rr1 -el •1-1 •rr1 M��� •.i •.1 4.1 A • O 4• co b a N N N a a N r- .I rei b (I U Col « b 01 N b O N N to a m r• CO 0 0 Y 0 4 • to 01 a N • N a el 10 rl • 01 01 a 41 0 W m Y 10 O VI b l- • ry 10 •« C.)a a• - N co• .< rl .< too m+ * N r1 en a 01 rl el H N N « • « a 4,« RC * * x <n • * u• 0 0 0 0 0 0 0 0 0 0 0 0 0 0• QW W t + to • • 4 to Clt + « • • « • f.1 W * « W • m m m m m m m m m m m m m m# * N +-daaa • PI as r• -elx exxxaex x « WCO m daddd-.4-daddd+ N m •at- u* o m a In b CO m N I- n b N r o• N HHO10 H (� ♦ a 10 o b en ena co el 01 co co0 In • N .-I [.r Qi • N a b r 01 rl en In co r1 b O en• G r.� O « rl Arl rl el N r1 en• Z a • « *• # 11 II II • m m m m m m m m m m m m m m Y * aaa la. aaaaaaaaa t a a N• x x x x x x x x x x x x x• x� 4 in H • * O U N U i N 01 CO m In CO N T N .< .< b T a« 01 w [� 4 ♦ rl m r• N m o a co a rl 01 I-- r• co • •< fo( a • N N rl a In II m CO r$ r1 a b CO 0 • Z pi ,C W a U • • el H el el el N II. O R O 1 :4 * * W ax a a a a a a a a c a a a a a« 5 K 7 I. N N7 • •d •d *I•d -el•d •d •d •d •d •d •d •d •d • co a E T « s + a a a a b b b b N N N m COm m• W N el N po ; # N N N N en rl en co a a a a a a♦ H O! 1.7 CO f 4« • .1W0 em A 0 RWG N • • U .Z 8 • L 44 IN Y 44 L Y 44 44 .0 L 44 LI i1 « ,Q2 �HC N N a+ w w w w w w w w w w w w w w« H • 11 6 jJ ••-* 0 0 0- 0 0 0 0 0 0 0 0 0 0 W IF-1 rh F * b N O) o el N CO a In b N m Q1 * y W 17 a P7 a + 4. r< .< el ri ri .< .< r< r1 rl « 01 T� TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 r` PASADENA. CALIFORNIA 91 1 07 (818) 351.8881 FAX (818) 351-5319 HM4. NSW 511tuarugt 6tI 4vI1" caLur1N sheet Coo1-D of by lob no. 1315 date 1/11 Aloe LINE d1 , eb I <Sir» GoN , KS' N,IZ Kett 64t. ksi Gt. 7- nL £LL 1.114.41.1u, a utt l I eop woo tut et otc o lc av- - b" 411' Lev. " L 1 K 59" -- II' -›5" 5°w- _Ay- Row. t 4- 'y514 014. An" L W- 15" 33K 14C -a•5't N "` 3w,LY lt7Dii. 4114.-h aw- = 4- LIK 7-9 .24 Ly ht 55%. yi5"- L 1 K -4-5' < Ir1 P1-5 55 15 od ds. • -frt . + trot, LL 4. lb?- ... • FuL= <1,1 -is Ii -A—'151" e 4 'tom TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO STREET • SUITE 200 PASAOENA. CALIFORNIA 91 1 07 (8181 331.8881 FAX 1818) 351-5319 HM4. p, 1ct N 4 'Su ceetu RE l acifrvt'rr CLur1N 5 sheet C 111 of by Job no. 13'35 data 1/11 tiniN <-241><Q-1 ' > Pk 54 crlktP LINE fob, Al Carl 4- , f6 Ks' H, Ketf KSt LS-VEr . t91. i nL 1.1... gilt- 141pL 41.1 U. Gc n lZ AI+ H1614 Far oK �K bK o� oK 4,-04 Lv. , :" l a`` 1, -5" — 604 4 SK 5TM tiev 1'32)4 nw. yip t- 66" I b' 41-1't L.Y. lit 51» t r W' 1bt 3ra9 Lv 'jam" 560/4 A- 4,6' >6t4 lak 214 L•Y 33 lot` b 9. W- Ib' 1N Lvic < terr"iii 330" VC6 + Do- o"' • -few. . ta. - 'f fl4L Li_ i 4° o r` • ruL 4 < I (.+ 1,1 LA- i t b • A-6e" rit.4 AusIS 'b'S w O • • q • r. 0 IV • O 4 U (0 A r• b + • + I } • v • • • k 4 4 4 W • 44 + m a) .W q $ a a a CO Ca -+ a s U * its o 0 o v• u1 w H # 0 0 0 N" N el to • W • 10 .0 0 + I] 4 w H U 4 Pq + } W + 4 • a p0pyy • • • C.) 4• it N 11 N 11 II II O Q • N 4 x a * 0* m° w *• E+* bw 4 • O • Q 4 t < N • W 4 W W C w * 4 (L oL a a 4 } P x Q v1 .r1 CO CO * w H w a Q> N oE. µ +• 04 Z -I w (/W�� O to U • R F U' H p�o .-r1 • H U) Z y a N �aej FOrQ • 4 4. p F a !.. rVW1 • W p4,pq 4 1-. w • F tti P1 4 N wU OE W £p Pai k rq M rr1 01 M 01 01 111 m IA 1l1 N N N • « 10 10 10 10 10 1D NO1 N 01 01 N N N k 0* t ra 0 • N N N N N N 01 N m m r1 n r- r- • O — • N r1 N N 01 M 01 dl 01 d' V' V' d' d' • U # k • • k1 H ♦ 4 W N k • 4 4 a # N N N N N N N N N N N N N N• F >r • < < < < < < < < < < < < < < • tr1 t0 Q• C fl 0 R c 0 c 0 0 0 0 C 0 0 t A4.3 . fr. 3 k •.< -d -d -.< -d •.< •d •d •.< •d •d •.< •d •.< • O K' • co t0 d' I- N N C C N r- H m 10 N• U W + 10 01 N 10 0 N N Ill d' 03 N CO 0 0 • 0 X • 10 01 V' N • N d, e< W rl • N O1 d' 0 go W • b O I0 W t- • • N • • 10 • • U' 0 4 • r co• rl rl HID 0 111 4 N tel 1"1 C O1 eH r1 . N N # • (Y� 4 • ry�[i < # Y • • N • XV$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W 14 # « • °° .i N # 4 # # # 4 a,4 • Ol Ol Ol o m o 01 m o W N o 01 m• • a a a a a a a a a a a a a a• in • -d -d -d 4-4-H-d -d -H -d -H -d -d •d •d • k+ « xaexaexx.xxxxxxxx • q(� * o el V' In 10 r1 CO N (N r- W N t` o * N o fH'1 a« M a b N m rN-1 ta11 Iml1 m O CO Imo O PN'1 + 0 �.j O # r1 H e< rl N N N 01 PI * H �• } • 0t • • i114 t 01 CO 10 CO 01 01 01 01 01 01 01 01 CO 01 • • a a a a a a a a a a a a a a• 04 W • x x x x a x x x x .hex x x x• 40 H • 4 O U• N O1 co01 N co N Ol N H H 1D 01 7• gq 0 4 isQ 4 H co l` l' co0 V' co V' rl 01 W COm • K N N r1 to r V' 10 co00 01 rl O • 'je 4 O 4 rl rl rl rl rl N • O lq • t * a a a 0 0 c c a 0 0 a a a c • 0 N k -d -d -d M M M •d •d •d •d •d •.< •d •d • yH' t((q0q F 7. • • C V' V' V' N W. 10 1p N N N COm COm COm• CO N s t N N N N rl m m N a d' Y d' d• ?• H H • • X * • {[U0{d.)�+1 r1 N • 11 11 41 41 L 11 11 11 4-141 11 41 L 41 4!`1 C7 H d• 4-1 w w 44 w w w 44 w w w w w W• VVV M H • 4 N ��[-J.1 t 0 0 0 0 0 0 0 0 0 0 0 0 0 o 4 N11 • 10 r coO1 O e1 N N IF w co10 t` O1 * VJ WW • ` rl rl rl rl rl r•l rl rl r< .-1 t CO TC TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO STREET • SUITE 200 PASAOENA. CALIFORNIA 91 107 (8181 351-6881 FAX (818) 351-5319 NDAy. P WN4 Sam c.-rURE 6r► ve-rr coLur1N sheet L1 of by lob no. 13415 date 1/11 rtS a1_uNJN < 2t'xn- f LINE AII, Ell t4V& : P. E I.L• LU, I MA-+1.1 u, Gd uriN Ken) klari Silt cK 014- pi` apf` a" b'1" l v. 564 I'-" I eiel''` . 5614 I lige 514 IN 11z" »t w + 56" Ilk 4-Tit Lv. 161` ' lc 30P" 56" I1'` 3rr, Lv «" 4an" _ I 56" , Mit- In" 2Nt'LY 2$O (SDK ilk 5(7" I'')" 1N Lvii < irl el 7 raft (x" 9" 4 pt`' O" • '(-rtL a t 'to -rot U... $ 3Ibr`. • I U L=< 1, tia + 1.1 i- 5 560c- l�— W O m 0 0 0 CO 0 • 4 • 4 .3 4 r ri 4 r A?' O 0 • U m A n o• 1 • I r I * I 4 V • *• CO— — — + N 1.4 J4 �14 +rYi �i .�i Yi Yi Yi yr Yi Yi 4 • * 1 V 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + W • 4 • + . al l Z x * + • * + + 4 CO m m m 01 m m 01 m m m m CO m • W y W -rl -rl •rl M • a a a a a a a a a a a a a a 4 CO 4 m m m FIr m m p 4 -A -el -rl -A -el -d M -el -di -el +i •el -el +i 4 „.1 • a a a -i a s F • R• •fC X ?C X X .Y •SG ?G ?L M• ?C X X« �i�ij + µ 'fU] 4 0 0 0, . al co £ U F o M .0 U1 10 M co N N t t0 N NO* O n 0: * 0 0 0 N ri ri 0 H Q• V' 10 O 10 M M V' CO N m CO CO O to • _` N * W• O O O N 1-1 E 'Z 4 M C l0 N m el M N CO O CO l0 O M t �Til �aj 10 C 0 • H ri H ei N N N M M* H a Gl * • * U E • • • 4 w 4 « 11 N II N II N It # r 01 CO 0) 01 CO 01 al 01 m CO 01 al 01 CO 4 O • * a a a a a a a a a a a a a a « w 04 t O 4 • *4-d M •el Pi •ei 9-1 •el "A -el -Pi M -el 4 0 ''�• a 4 0+* O A N* N N .1C .K X N X .X ?L N ?G X N N t • H* 01 V-I W <0 in0* co co co co in a) N m N H ri W m rr r 010 r E• W • 9 Q i .-4N N CO a co di CO N r• m• o • O • * < ri a * N N to V' in r- co O1 r< M Vl 10 CO 0 • 0 O 4 O « W .0 -1 Q • rl ei el .•1 el N • p N •• w« (Wl�� ([s�� jam' W s U 4 4 Q • r• + 17 ff Q�aj c :I * * W y5 m Cll 1H-1 + W H W w Q> N * g C R q q q C �" q d C. C. C. q+ �µ b. U O • -ei -ri -rl -H -ri -ei -ei -el -rl -ri •ri -el •rt M m • a WE -- w �- pC N •• * °1 H • W A E 'Zi 4 a V' w a 10 10 10 10 N N N CO CO CO r CO N O E Q « • O ai CO Note. # N N N N M M M M V' a d' V' w d' « H H co U 4 H !EO OH Zi O s VJ • * .k ca 6677 # 4 . UMp M Q i M a 0 H O fil lNi i u u u u at at at u 4.1 a+ u aJ 4! a.1 t Cf C9 N 4 O o u r� Z I-1 CO O QI * W w W W W w W w W W W w w W« V H ,.7 z rvNr�; « .] U •may =* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 Q N K * O o W HW w � Ea] 7. y ((-4 + w r co m 0 ri N M a in v n m m *1 VI E M O. • II O 0 Wi W D M W W • ri ri rt r-I el ei r< ri ri rl * CO qi 00 tz • M M M M M M m N 01 10 10 N N N • 4 10 ID 10 10 10 10 N O1 N m 01 N C• N • 1.1 O 4 N N N N N N O M CO M M N C• N t 0 * M M M M M M M d' M C P V' V V' t U 4 it CON • 4 w H • CO CO • 4 4 4 4 • .7 Si• N N N N N N N N N N N N N • dl O Q * < < < < < < < < < < < < < t w w • 4 •ri d -el a r -el ri el •Ci •rrl •rrii •C1 •rl 4 O 4* O t0 VI l- N N V' al N N ri elw N r U W* 10 01 N co O N N U1 V' co N 0 0 0 4 (+' Q * 1(1 01 V' N • N if rl N rl • 01 0 VI 4 o (0 m i t0 0 Uf 10 t- •• • N • • tp • • • * UI W' A,' * t- O • rl M rt t0 O Ut t IS it N M M VI O1 rl rl ri N N 4 * * # * / • 4 < 4 * TC TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO STREET • SUITE 200 P A S A O E N A, CALIFORNIA 8 1 1 0 7 (8115) 351-8881 FAX (8181 351-5319 HM4. prnleN41 y ,uc-ruRt. eacivI'TT coLur1N 5 sheet G.I 5 of by job no. I3`f 5 date 1/` 1 Cetitorl < x yi' > Al2IP LINE II, 17II GONG . 6 HI 1O Kett ea icsi LC-Vert I91. i ►t l,l... £LL MIA- fl1 U. Gcl ur*N RSINF }4I6s1 Iut 61f' aK Ok- bK oK 6i'` lc Imo" 4l` I bw 51.L.v re- 1,14 y — ii" 6i` tot- q-'r'r L.M. �bo'` 3rc Lv e)-56"` 61.`` 440" — I t iger 2N v LY 3'a<7` $o" K it it 6li` 1friLv ta-rific . ls- 20' 6ppK — Ott OK' • tj6l. a- t 1014- LL a • PuL= <L4 +I.1) eat' lc- • f'-T 1,' qtl X U + ttk br4 =1,655 .'L TS TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 Er PASADENA. CALIFORNIA 91107 (8181 351-8881 FAX (818) 351.5319 Hbier 4. pitsmoNi+ 9flcuc.1Ul2E Orl vI1T GoLur1N 5 lob no. 'date sheetC' I of by 13415 G�LurJN < �x( 61k-Ie LINE r$I1-, P Il- GdNc , 6 KS' N1- IKetf LC -Vert.. r2L i a.R..0 • i, 14D1-+1l1 U, Gdurs$ Rett4F �HIm let 0K a K °K bK Or` . 101n+ %v. 91- 614- 14. 92. _ °Ask 4014 514I.v 4 6b1 lyk I4k. — I .4- 9014 eke r W. 1°K It 156L` 3&14 4'` 3r07 Lv 11,14 e>4.fw _ i 4 3d` I"'°" t %N t7 LY 15CS.6K vbo'g. 3Dt' 'joK . 5T LY. < r4 ? 9t ntw IT pig I dK 30I` • 'ere. a- -I- trot, Lt_ 12"1` • IuL = < 1,Ott+ Ii o py ,k-5 AMirrs iS TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO STREET • SUITE 200 P A S A O E N A, CALIFORNIA 8 1 1 0 7 (8181 351-8881 FAX (818) 351-5319 HM4. paiAW N 4 iftKu art' RE acov1-r^( coLur►N 5 sheet G 11 of by lob no. 13'15 date 1/11 atitjf 3.1;1X-4 4t1e-IP LIME E•• Cot,' . 6 "I NI K KeNr. eboicsi 1-s-v6t� t. E pl.. Lt... VA- I IM .+1.1 U. ociAtiN g sfrir Riapi War at'` of bi` d- • 4,fi+ IN. be?' I 1,0`` 1)94- — 66" 1 ti` pley PI)" 36k K ic- 4t- 66" l V 4111 E.Y. lit 5e- 3'j 5" 6b" LPG`' 3iw LY 1'-" ;ot` a- 66" ',,3` I a" 2NoLA/ 3301` l'o,e 6}5" b6" I2* 1yr LV.qarrl. Nii, cib►�- L i5K __ �` b� 3') ow. • '(aL f . a• 'fo-r41- LL_ a VI- • ru L 4 < L 4ta + I.'j t.L) k id K rr' cu,(1' A 1- P Ai i4 _'s" '0 O r tA t— IT b lb10 10 b 10 N 0011 N ON1 0N1 r N f 4 m Or '* « a N* N N N N N N CO en co en en N N N k CO O -- k en el en M el el el d• M d' W V' •N 'C 4 o U at • W * * o kr H * * W V] « + * 4 • .a * N N N N N N N N N N N N N N i 1 * F Y' * < < < < < < < < < < < < < < * *• en L 0) Q• 0 0 0 0 0 0 0 0 0 0 0 0 0 g r JJ IO * 0 O Q. 40 b n• N N N a V' N N .-I el 0)N y �,' I# el C.)W 4 b al N b O N N N d' co r co O O 4.W C)* 0 C. Q 4 Vf 01 V' N • l- 4 ri to r-I • N N a.a) . a .1.1 4 0 0 W 4 b O Vf b N fV • 10 4. 0 A 0 4 * ' — — OI Q • ' ' ' ' lr m • H m H .0 o In * 4.N m r) V' Cr) H H HN N 4 4. t I I P 4.* (I* I +*Q4V 4.#W4 --- 4 k x • N i4. --- 4 X Z X x W* 0 0 0• 0 0 0 0 0 0 0 0 0 0* * f-1 k k * i t W # • • ^� F « CO CO CO CO 01 01 CO CO CO 0 0 0 0 0• D° ;aaa • a a a a a a a a a a• CO * m m 0 q W 0 • .i...,4.-1 -d ri -.I -.l -.I -.1 -.l -.I -.I •.i -r4 -.< • U • a a a -i a s F 0+ x x X X X X X X X X X X* U 4 b t # x 0 * O o O V. • In CO * o ra l. In b en co N r r b N N o 4 y EP+i O O O N r l rl O H p(j* OWCOCO 0 * O O O N H F co * W • 10 dO el .i .l .I N N N e•l een t CFJ FQ 4. rl Vb r m H 01 N m O In b O * 7i 10 7 t 4 z el 4 Q •* 4 #'0 0 i• N 11 II 11 11 II 11 # 0 CO 0 0 0 0 0) CO 0 0 0 CO 0 0* c g o0 * <n* * PI aaa aaaaaaa*o xa * a4, U >, " >• XXx xxxxxxxxxx• N • H * ql 'w W <U to U • N co co co In to N m N ri H W CI d' 4 Nq • Es IM • q(a Q* .i CO P. r CO o a CO V H m N r m 4 0 • p 4 ♦< 4 IN* N N m d' In N CO H el d' l0 CO O• z O 0 * O * • W .i U Q {( * el .l rl rl el N 4 O m eN 4 W * f01 cCr�A •0 W .4 U * i • r * P IC aO v 01 * * AW 6 m m H * w X w 00 0CU x * a a a a� a a a a a a� a a*Rg U CI) i -.1 -.I -./ •.i M M •01 •./ •.-I -A -.i -A •.I M 4. q m • x C7 W Cr. v z 4 = H rj t QI F # p 1. -t* b 10 b b N N N COea COeD COm• N N U' F a * C') N [sill ° t N N N N en el HI el II d1 V� d� C dg t H .l Cf OO k i34 * H N •Fr Va �7 b i • U en .a * H W l:�I Q t W PQi a F •Fi HN # Y 11 43 11 !J 1� 11 11 LI 1� L 11 it • lr C7 0: 4 GI �Oe �ay} H m H d 4 44 W H 44 W 44 44 W lH W 44 4-1 44* VV N �e O UQUJa • H 'jr ^ l" H co4. * O O O O O O O O• O• O O O O+ (!W�� 0 N Q + O 8 W 6. R i� � * 10 t CO• o el 01 m V' Itl 10 N m m 4 .T. f/1 E. en a + m W W a fA WWW t r1 .i .i d ri .i ri .l .i .i * m ai A TC TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 PASADENA. CALIFORNIA 81 107 (818) 351-8881 FAX (818) 351-5319 Nay. p4svi N 4 lino c-1' RE 6rMvl-r r CoLurrr 1 sheet C I \ of by Job no. 13415 date 1/` 1 6jI2I17 LINE E li S Io Ins( H1 tZ Ket4r 6,e, km 1-6—Vert. ICI. ant. I.t. £LI. IJEW-till U. Gt ,ur4N ) e4P4F Him Sat O� DK 0 w OK o V" IN. bb" I$'14 Iti5" — 49' I r St4I.v I'' 726k •,. k 4 &b'` I bk qQW. 11bit .))15" 404 I VI. 59" 'sr Lv "441` 114 5tak I v 66v- .2_wtL•v 33d'` V 0 6s5" It 40- '1tf Lv 1%wrnyc 33DWI' I0Its 4*K dk e)K • ' flL a -I tin— IA_ t 1' ° • PIA L = < 1. + 1.1 I.L. b*I4 El 0 phi l'x 4'^ u *tour 16514 -ES TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 /-., PASADENA, CALIFORNIA 91107 / ` (818) 351-8881 FAX (81B) 351-5319 pf$KINA 4lucut sheet C. %PO of by job no. V315 date '1/41 GoLur1N 14,04: < TerA-L. 3 d G3 . G Liza, c_ wet. viwtis b (Kr?' L SvEst 5 L6vet, q- 6.* I!veivr 1� #q-et 6"sc11i3 t;5vtL 3 • LS-vet 2 I_ rar s N 1 36" I11_1111-54 To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block information will be printed on each page. Lb R« 510300 User KW060110. V"r0.1.3, 22.10.1000, Ne32 kt 1MYN aENG1LC Title : Dsgnr: Description : Scope : Job # Date: 8:38AM, 8 AUG 99 Rectangular Concrete Column escription HOAG PARKING STRUCTURE - ` , W x ,..1:0712 calLU to 4 @, R- ' f LEVEL., i49 IVA rvit C\ General Information Calculations are designed to ACI 318-95 and 1 7 UBC Requirements Page 1 1 Width 24.000 in rc 6,000.0 psi Total Height 11.000 ft Depth 36.000 in Fy 60,000.0 psi Unbraced Length 8.000 ft Reber Seismic Zon 4 Eff. Length Facto 1.000 2 - # 11 d = 33.500 in LL & ST Loads Act Separately Column is BRACED 2 - # 11 d= 18.000 in 2-#11 d= 2.500in Loads Dead Load Live Load Short Tenn Axial Loads 250.000 k 1e- 65.000 k i/ k Applied Moments... to Top 60.000 k-ft ✓ k-ft k-ft Bottom k-ft k-ft k-ft summary Eccentricity 4.000 in 24.00 x 36.00in Column, Rebar. 2-#11 @ 33.50in, 2411 @ 18.00in, 2411 © 2.50in ACI 9-1 ACI 9-2 Applied : Pu : Max Factored 460.60 k 360.00 k Allowable : Pn Phi 62 Design Ecc. 2,276.61 k 2,167.36 k Column Is OK ACI 9-3 226.00 k 2,167.36 k M-critical 237.50 k-ft 200.67 k-ft 129.00 k-ft Combined Eccentricity 6.189 in 6.880 in 6.880 in Magnification Factor 1.00 1.00 1.00 Design Eccentricity 6.189 in 6.880 in 6.880 in Magnified Design Moment 237.50 k-ft 200.67 k-ft 129.00 k-ft Po' .80 P : Balanced Ecc: Balanced 3,936.21 k 1,602.88 k 14.070 in 3,936.21 k 1,602.88 k 14.070 In 3,936.21 k 1,602.88 k 14.070 in Slenderness perAcI 318-95 Section 10.12 810.13 Actual k Lu / r 8.889 Elastic Modulus 4,415.2 ksi Beta ACI Ea. 9-1 ACI Ea. 9-2 ACI Ea. 9-3 Neutral Axis Distance 32.5050 in 30.8950 In 30.8950 in Phi 0.7000 0.7000 0.7000 Max Limit kVr 34.0000 34.0000 34.0000 Beta = M:sustained/M:max 0.7600 1.0000 1.0000 Cm 1.0000 1.0000 1.0000 El/ 1000 0.00 0.00 0.00 Pc:pN2El/ (kLur2 0.00 0.00 0.00 alpha: MaxPu / (.75 Pc) 0.0000 0.0000 0.0000 Delta 1.0000 1.0000 1.0000 Ea: Ecc Loads + Moments 6.1889 6.8800 6.8800 in Design Ecc = Ex' Delta 6.1889 6.8800 6.8800 in 0.750 ACI Factors (per ACI, applied intemally to entered bads) ACI 9-1 & 9-2 DL ACI 9-1 & 9-2 LL ACI 9-1 & 9-2 ST ....seismic = ST : 1.400 1.700 1.700 1.100 ACI 9-2 Group Factor ACI 9-3 Dead Load Factor ACI 9-3 Short Term Factor 0.750 UBC 1921.2.7 "1.4' Factor 0.900 UBC 1921.2.7 "0.9" Factor 1.300 1.400 0.900 3444.154 3099.766 2755.347 2410.929 2066.510 1722.092 1377.673 1033.255 688.836 344.41.11 al Axial : liephi 1.4,PAI 90,31u Pu,Mu 9-1): 2276.bk, (Eq 9-2) : 2197.31c, Mg 9-3): 21187.33, 237. 203.6k-ft 128.90-3 • • • 14.4 (lc) 6 mos 43,1.2 573.6 721.0 114.1 10113.9 Ilt Mb 1444.1 Moment: Wenn Qc4 To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your titre block Information will be printed on each page. Title : Dsgnr: Description: Scope: Job # Date: 8:29AM, 8 AUG 99 C1'3 Lb R« siewo User xw0•O115. M« 5.1.3. 22-Mn11.0. MM32 is 15e311.1 ENEICALC Rectangular Concrete Column escriptlon HOAG PARKING STRUCTURE 21 x 3 6 erg cam...A 0 1Y LCsvet_. General Information Calculations are designed to ACI 318-96 and 1997 UBC Requirements Page 1 Width 24.000 in ft 6,000.0 psi Total Height 11.000 ft Depth 36.000 in Fy 60,000.0 psi Unbraced Length 8.000 ft Reber Seismic Zon 4 Eft. Length Facto 1.000 2 - # 11 d = 33.500 in LL & ST Loads Act Separately Column is BRACED 2-# 11 d= 18.000 in 2-#11 d= 2.500 in Loads Axial Leads Summary Dead • d Live Load Short Term Eccentricity 1,200.000k ✓ 350.000k k 4.000 in Column Is OK 24.00 x 36.00in Column, Reber: 24,11 @ 33.50in, 2411 CO 18.00in, 24111 © 2.50in ACI 9-1 ACI 9-2 ACI 9-3 Applied : Pu : Max Factored 2,276.00 k 1,680.00 k 1,080.00 k Allowable : Pn • Phi € Design Ecc. 2,676.60 k 2,676.60 k 2,676.60 k M-critical 758.33 k-ft 560.00 k-ft 360.00 k-ft Combined Eccentricity 4.000 in 4.000 in 4.000 in Magnification Factor 1.00 1.00 1.00 Design Eccentricity 4.000 in 4.000 in 4.000 in Magnified Design Moment 758.33 k-ft 560.00 k-ft 360.00 k-ft Po • .80 P : Balanced Ecc : Balanced 3,936.21 k 1,602.88 k 14.070 in 3,936.21 k 1,602.88 k 14.070 in 3,936.21 k 1,602.88 k 14.070 in Slenderness per ACI 318.95 Section 10.12 & 10.13 Actual k Lu / r 8.889 Elastic Modulus 4,415.2 ksi Beta ACI Ea. 9-1 ACI Ea. 9-2 ACI Ea. 9-3 Neutral Axis Distance 38.1900 in 38.1900 In 38.1900 in Phi 0.7000 0.7000 0.7000 Max Limit kUr 34.0000 34.0000 34.0000 Beta = M:sustained/M:max 0.7385 1.0000 1.0000 Cm 1.0000 1.0000 1.0000 El/ 1000 0.00 0.00 0.00 Pc : pi"2 E I / (k Lu)A2 0.00 0.00 0.00 alpha: MaxPu / (.75 Pc) 0.0000 0.0000 0.0000 Delta 1.0000 1.0000 1.0000 Ecc: Ecc Loads + Moments 4.0000 4.0000 4.0000 in Design Ecc = Ecc • Delta 4.0000 4.0000 4.0000 in 0.750 ACI Factors (per ACI, applied internally to entered loads) ACI 9-1 & 9-2 DI_ ACI 9-1 & 9-2 LL ACI 9-1 & 9-2 ST ....seismic = ST • : 1.400 1.700 1.700 1.100 ACI 9-2 Group Factor ACI 9-3 Dead Load Factor ACI 9-3 Short Terrn Factor 0.750 UBC 1921.2.7 "1.4" Factor 0.900 UBC 1921.2.7 "0.9" Factor 1.300 1.400 0.900 ttc. 3444.164 Mtau Pu,Mu Pu.Mu Mg 9-1) : (Eq 9-2) : 26 (Eq 9-3) : 26"5-51e. .51t, 7511.3k4t 5-51, 559.9101 359.9k-ft 3099.766 2755.347 2410.929 2066.510 1722.092 1377.673 1033.255 688.1136 344.411 01.0 Axial : Prephi • • • 14.4 ail p4 43 .2 57 ).6 7220 864.4 10 Moment: Mani 6t-ft) 0.9 11911.3 121.7 1414.1 To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block information will be printed on each page. Rev. 610500 User xw010115, w6.1.3. ]I.hm10Y0. veer (p 1066J6 EIENGLC Title : Dsgnr: Description : Scope : Job # Date: 8:39AM, 8 AUG 99 Rectangular Concrete Column Page 1 I escrlption HOAG PARKING STRUCTURE - b ‘' x - -op emu,r..,.N Q ikl gs1/4....t)e,r rri41. General Information Calculations are designed to ACI 318-95 and 1997 CDC Requirements Width 36.000 in rc 6,000.0 psi Total Height 11.000 ft 1 Depth 24.000 in Fy 60,000.0 psi Unbraced Length 8.000 ft Reber Seismic Zon 4 Eft. Length Facto 1.000 3 - # 11 d = 21.500 in LL & ST Loads Act Separately Column is BRACED 3 - # 11 d = 2.500 In Loads 1 Dead _ oad Live Load Short Tenn Eccenbicily Axial Loads 250.000k 65.000k k 3.000 in Applied Moments... sa Top 60.000 k-ft k-ft k-ft Bottom k-ft k-ft k-ft Summary ' Column Is OK 36.00 x 24.00in Column, Rebar: 3411 la 21.50in, 3411 © 2.50in ACI 9-1 ACI 9-2 ACI 9-3 Applied : Pu : Max Factored 480.50 k 350.00 k 225.00 k Allowable : Pn • Phi fa Design Ecc. 2,059.98 k 1,906.55 k 1,905.55 k M-critical 199.12 k-ft 171.50 k-ft 110.25 k-ft Combined Eccentricity 5.189 in 5.880 In 5.880 in Magnification Factor 1.00 1.00 1.00 Design Eccentricity 5.189 in 5.880 in 5.880 in Magnified Design Moment 199.12 k-ft 171.50 k-ft 110.25 k-ft Po • .80 3,936.21 k 3,936.21 k 3,936.21 k P : Balanced 1,524.97 k 1,524.97 k 1,524.97 k Ecc : Balanced 10.696 in 10.696 In 10.696 In Slenderness perAC1318-95 Sean 10.12 a 10.13 Actual k Lu / r 13.333 Elastic Modulus 4,415.2 ksl Beta ACI Eq. 9-1 ACI Ea. 9-2 ACI Et 9-3 Neutral Axis Distance 19.7650 in 18.4100 In 18.4100 in Phi 0.7000 0.7000 0.7000 Max Limit kVr 34.0000 34.0000 34.0000 Beta = M:sustained/M:max 0.7600 1.0000 1.0000 Cm 1.0000 1.0000 1.0000 EI/ 1000 0.00 0.00 0.00 Pc:pi"2EI/(k Luy'2 0.00 0.00 0.00 alpha: MaxPu / (.75 Pc) 0.0000 0.0000 0.0000 Delta 1.0000 1.0000 1.0000 Ecc: Ecc Loads + Moments 5.1889 5.8800 5.8800 in Design Ecc = Ecc • Delta 5.1889 5.8800 5.8800 in 0.750 ACI Factors (per ACI, applied internally to entered loads) ACI 9-1 d 9-2 DI ACI 9-1 & 9-2 LL ACI 9-1 & 9-2 ST ....seismic = ST • : 1.400 1.700 1.700 1.100 ACI 9-2 Group Factor ACI 9-3 Dead Load Factor ACI 9-3 Short Term Factor 0.750 UBC 1921.2.7.1.4" Factor 0.900 UBC 1921.2.7 "0.9• Factor 1.300 1.400 0.900 • 3444.1.4 P9,Mu Pu,Mu Pu,Mu WA 9-1) : 2059.9k. (Eq 9-2) : 1906.3k, (E4 9-31: 19116.5k, 199.1k-ft 171.4k-ft • 110.2k-ft 0 3099.766 2755.347 2410.929 2066.510 1722.092 1377.673 1033a55 684.526 344.416 osi Axial ; Pnaphi • • • 10 6.4 7 20 I 6 31 2 41 A 515.8 622.5 724 3 Moment: Mani Ik-ft) 544 0 93.1.5 W3L6 General Information To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block Information WIII be printed on each page. e "°'°° Rectangular Concrete Column (41 541•Uas, w aw,.w, vanx r4,resw eaeawc Title : Dsgnr. Description : Scope: Job # Date: 8:31AM, 8 AUG 99 3-1 Page 1: escription HOAG PARKING STRUCTURE 3b'^' x - dp ealwA.J e itzer Calculations are designed to ACI 318-95 and 1997 UBC Requirements 11.000 ft 1 8.000 ft 1.000 Width 36.000 in Depth 24.000 in Reber 3-# 11 d= 21.500 in 3-#11d= 2.500in rc 6,000.0 psi Fy 60,000.0 psi Seismic Zon 4 LL & ST Loads Act Separately Total Height Unbraced Length Eff. Length Facto Column Is BRACED �oads Axial Loads summary Dead Load Live Load Short Tenn 1,200.000k1/ 350.000k k Eccentricity 3.000 In 36.00 x 24.00in Column, Reber: Applied : Pu : Max Factored Allowable : Pn • Phi Design Ecc. M-critical Combined Eccentricity Magnification Factor Design Eccentricity Magnified Design Moment Po * .80 P : Balanced Ecc : Balanced 3411 Q 21.50in, 3411 @ 2.50in ACI 9-1 ACI 9-2 2,275.00 k 1,680.00 k 2,610.67 k 2,610.67 k 568.75 k-ft 3.000 in 1.00 3.000 in 568.75 k-ft 3,936.21 k 1,524.97 k 10.696 in 420.00 k-ft 3.000 in 1.00 3.000 In 420.00 k-ft 3,936.21 k 1,524.97 k 10.696 in Column is OK ACI 9-3 1,080.00 k 2,610.67 k 270.00 k-ft 3.000 in 1.00 3.000 in 270.00 k-ft 3,936.21 k 1,524.97 k 10.696 in 1 Slenderness per ACl318-95 Section 10.12 8 10.13 ActualkLu/r 13.333 Neutral Axis Distance Phi Max Limit kl/r Beta = M:sustained/M:max Cm El / 1000 Pc:pP2El/(kLur2 alpha: MaxPu / (.75 Pc) Delta Ecc: Ecc Loads + Moments Design Ecc = Ern • Delta Elastic Modulus ACI Ea. 9-1 24.9800 in 0.7000 34.0000 0.7385 1.0000 0.00 0.00 0.0000 1.0000 3.0000 3.0000 4,415.2 ksi ACI Ea. 9-2 24.9800 in 0.7000 34.0000 1.0000 1.0000 0.00 0.00 0.0000 1.0000 3.0000 3.0000 Beta ACI Ea. 9-3 24.9800 in 0.7000 34.0000 1.0000 1.0000 0.00 0.00 0.0000 1.0000 3.0000 in 3.0000 in 0.750 ACI Factors (per ACI, applied Internally to entered loads) ACI 9-1 & 9-2 DL ACI 9-1 & 9-2 LL ACI 9-1 8.9-2 ST ....seismic = ST • : 1.400 1.700 1.700 1.100 ACI 9-2 Group Factor ACI 9-3 Dead Load Factor ACI 9-3 Short Term Factor 0.750 UBC 1921.2.7 "1.4" Factor 0.900 UBC 1921.2.7 "0.9" Factor 1.300 1.400 0.900 3444.184 RA,Mu Pu,Mu Pu,Mu PA 9.1) : 2610.66. (Eq 9-21: 26 (86 9.31: 26 5611.7Mrt 0.61'. 419.9E41 • 0.6k, 269.9E4 • 3099.766 2755.347 2410.929 2066.510 1722.092 1377.673 1033.256 688.836 344.415 OA Axial : Pephi • • • 103./ 203.5 00 31 .2 41 A 514.4 624.5 124.3 ao 93.1A IA Moment : Mn'pni (6.111 A 1d3 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO STREET • SUITE 200 P A S A O E N A. CALIFORNIA 9 1 1 0 7 (8181 351-8581 FAX (818) 351-5319 H M4. 1414 01N4‘ 4jflz c.1Ut2E 6tlmvl-ri CoLur1N 5 sheet G o1 by lob no. 1315 date 1/11 ,L.uNJN < 21-1)(36" i 61I21t' LINE G3 GoN c . 6 Ks' N112. Kett 6c, lcst L ta- I. ta. Li-- Eli.. l4pL+1.1 U. Gcl urf1 l .e1NP 141614 riegf OK bK' ovc ' OK Win 1.v. Id' 4 ' '- -bk ,4"'Al?' Cf'1H IN alt. 14014 9,gid- Ak- g*14. 1bK Fitt L.Y. trig. •,-jd" I3vs. 1D" -r 31rLv lit - [ SDK .b 1t"- cites. )"'7 LV NrVY's 35d14- -y:boe- 1d` #`i# 15-r Lv. setinNEl% Irt>el' 72511C" .tr)•CK `c Dige Ok ‘r • 1.1tL ' AL LL 4 1550" • 1U L 4 < L 1-oc - I i ) 4. 93•),o$- re7cP3 &V- 11 LD X 111-p ,fi *La TKtc-- . I N sw a -> 1 d k w O 4 • • 4 • • G3o • en rn rn N nl CI 01 W 01 Ln in N N N 4 U1 H. • b b 10 b CO b N 01 N 01 01 C. r r• en 01 4 4 0 b♦ N N N N CI N CO 01 CO M 01 r r r* CO 0 • 01 1+1 rn rn rn rn rn d' rn dl *to W C d1 • o U • • W • • CO P. N • + O W H 4 • W !O • • • 4 a • N NN NN N N N N NN N'N N* E.D. • < < < < < < < < < < < < < < • Wre.3 * .rl .rl •rrll •.rl •rrf rt •.�< rl •.rl •r�l •rrll -.el -.el •rl * O * 0 QQ• M. b d' r N N d1 V N r H n1 b N f L ('. * r♦ 0 W• 1D 01 N b O N N I d' m H. m 0 0 4 N m * 0 (: iC * to O1 VI N • r dl rl b r< • O1 C1 a * m A u* U 0 {Wa� 01 t 0 o u b r N • b • •• A A n b * 1 -- UI rj i*i N 01 rn 1 r co <A• rrl 1-1 01 H rr N N* • 1 • I I # * # I # # * V . i1 M * _—_ < # ► * CO 4 --- • • 4. • I 4,V• 0 0 0 0 0 0 0 0 0 0 0• 0 0 4 # • N rl * x x • • * CO U 4 •4 4 • • • * t t •* _ « CO m m m CO CO m CO m m CO m m CO t CO # 4 •4 •� rl m• * a a a Pi a P. a a a a a• a w* CO * Po < as y # x.ex.wxx. .g.gx.k xx • • # c7 0 • 0 0 0 VI 1• &n m p[] .*e o rn d' N W. N CO N r H. b r 0* co pp + 0 0 0 N H C1 r4 F 4o* 01 a 1O0 r O1 HI 01 1/1 CO Tr .40 o n. O r�rt * O F Vl * W * tO VI 0 a # H r< .-I H tl N MI rn * M # # 0• * Cl • # • • GI# • * (J Hz .Y. k X 4 11 II 11 11 II II 11 # 01 01 CO 01 m 0/ m 01 m m COm m m t o N; * .aaaaaaaaaaad aa* ao • ��.. * x x x x x x x x x x x x x« x a * z* m u w In .4..H• • O� p1 w O 01 0 • N 01 CO CO u1 co N 01 N H .-I • 01 <V • * E* W • Q a• H CO r r CO o a CO a1 H 01 r r of « O # f • < K� PI * N N r1 I. ul r 00 N .-I 01 .0 b CO 0 # z o • * W 0 1Q « r< H 44 H N • 0 N # # fa W .0 w .- UVV0 * « q a• •r k p A 0 a •.1 * * R 6 # « �f(0 Vl H + W F W CO 0 > N O N * -.r4 -.d1 -.�1 -.�i -.�i -el -.< -r�l •.0i •rZl • •r0< .4 • r1 qq O1 + W 0 F '- N. .HCO x jrW * • e W F 'Zi * V' d1 C V' b b b b N N N •• CO 0♦ W N 0 El 4 * • [Q Vl W qo r7: ; * N N N N el rn re. rl V' V d' V' 11 d1 4 H rl CO CJ • ril A * H a O F Z00 14 IN•I * a.t u u at al y u u a 13 a.t a� * OR a « (Q E'4 �s7o u H fO CO a k 4444.44.444444.44.44444444.4 w w•Z I. o [a�lJ * H .07. WM CWV .iti] 'y £? • N* 0 0 0 0 0 0 0 0 0 0 0- 0 0 1*t' fO FM W • 280 fYi 01 P n. W(p y * 40 r CO 01 rl r< rl H ri H r• r< el t CO R -ES TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 fr V A S A D E N A. CALIFORNIA 9 1 1 0 7 (818) 351-8851 FAX (8181 351.5318 ND64. 14Skd N 91I2u c.-r i 6tIke!vI1'( 44Lu0N5 sheet 1 of by job no. 13`i5 date 1/11 lAult-4 < - x 36" t' LNE G1 a GbN 6 I`s► 141 K kett. 1(s1 Iz-v6ta ta. i me. I.L• LLt 114 L f 1.1 U. Gcl ur*l 12EsI►iF ktI6a 1 Sof OV- as' OK M. d 4,1%4 W. 5?" Iry 7r�k 130" ryoK = a ',�50"' 65" 410 LY. 150" 1154 (3o"- K 49 31w Lv I eea'" " I*11>K t ,, 65" .7NLV 1 "' 31-5" -2-30Dr` "5014 651g- .51 < LY. reerir44% t'y5o"' 3'35" -Pio ` Ow- bk. • et- r + tr t. LL :` 1515" • Pu L = < + ) k 13oDK'• o -nNel- 11 Lei si1LX &'-Hk_ Pu Aug e'-610" TsTAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO STREET • SUITE 200 P A S A O E N A. CALIFORNIA 8 1 1 0 7 (818) 351-5881 FAX (818) 351.5319 Nay 'SKIN4 ',muc.'rut2E GMYI1T coLurlrl5 sheet Gal' m by job no. 13`f 5 date `l/` 1 <t t"x%" > Gd-urJN c Kir' LINE G 1A Coh1 C . 6 Ks( mo"f %a Ks' (4V6t- ILL Z. al. I.L. LU, 114DL I'll U. Gd uMN REst►4P RIM let VN L.v. 14°" '2Dk K. .— I4b" 3& 51;4 IN '9- boy" 50oK Wo 1,44* "Ja"L *Iv L.Y. 4142K 9d` 190" KJ- 3dY" 3Kt2 LY %DI hp" tmeK 3o - 1404 2NvLv lee- 150" 1'3'50" 3p14 144- 1N 4 Lv. Valid il, 1 I58` I*Dits h OW' 6 • tr6L Pi.- t 'faT4L UL :` $50`` • rUL= <I,4bC.+I.1LA-` 4- • F'i e.A . -ES TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 PASADENA. CALIFORNIA 91107 / (818) 35143891 FAX (S1S) 351-5319 HMO p $ZKlNA 4tzw'UURt sheet G ; 3 of by Job no. 1315 date 1/91 Golurgr3- el X lbw c! 414.1 b Q Leve . 6 < k'°o LbvtL 5 WO. 1- #IIT tUvel= 3 l Lav -ram °r rcvnr161. Imo" 110 To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block information will be printed on each page. Lb Rev. 31030E UNr. MNp011s, Vet 5.1.3, 22J„R1V911. VM32 (q 1141E0 ENERCJM1.c Tide : Dsgnr: Description : Scope: Job # Date: 8:33AM, 8 AUG 99 c. Rectangular Concrete Column Page 1. I escription HOAG PARKING STRUCTURE x v or c aw►rit4 I(Z tZiohrtrzasT General Information Calculations are designed to ACI 318-96 and 199rUBC Requirements Width 24.000 in it 6,000.0 psi Total Height 11.000 ft Depth 18.000 in Fy 60,000.0 psi Unbraced Length 8.000 ft Reber Seismic Zon 4 Eff. Length Facto 1.000 2 - # 11 d = 15.500 in LL & ST Loads Act Separately Column Is BRACED 2-# 11 d= 2.500 in Loads Lkro Load Short Term Axial Loads 66.000k '�� 18.000k '� k Applied Moments... ali Top 60.000 k-ft ✓ k-ft k-ft Bottom k-ft k-ft k-ft summary cceMA , 2.000 in 24.00 x 18.00in Column, Reber: 2-#11 © 15.50in, 2-11 © 2.50in ACI 9-1 ACI 9-2 Applied : Pu : Max Factored 123.00 k 92.40 k Allowable : Pn • Phi @ Design Ecc. 439.75 k 294.31 k Column Is OK AC19-3 59.40 k 294.31 k Mcritical 104.50 k-ft 99.40 k-ft 63.90 k-ft Combined Eccentricity 10.195 in 12.909 in 12.909 in Magnification Factor 1.00 1.00 1.00 Design Eccentricity 10.195 in 12.909 in 12.909 in Magnified Design Moment 104.50 k-ft 99.40 k-ft 63.90 k-ft Po• .80 P : Balanced Ecc : Balanced 2,036.62 k 729.01 k 8.880 in 2,036.62 k 729.01 k 8.880 in 2,036.62 k 729.01 k 8.880 in Slenderness perAC/ 31945 Setaon 10.12 6 10.19 Actual k Lu / r 17.778 Elastic Modulus 4,415.2 ksl Beta ACI Eq. 9-1 ACI Eq. 9-2 ACI Eq. 9-3 Neutral Axis Distance 7.1350 in 5.2450 in 5.2450 in Phi 0.7000 0.7000 0.7000 Max Limit kUr 34.0000 34.0000 34.0000 Beta = M:sustained/M:max 0.7512 1.0000 1.0000 Cm 1.0000 1.0000 1.0000 El/ 1000 0.00 0.00 0.00 Pc : pi"2 E 1 / (k Lur2 0.00 0.00 0.00 alpha: MaxPu / (.75 Pc) 0.0000 0.0000 0.0000 Delta 1.0000 1.0000 1.0000 Eec: Eec Loads + Moments 10.1951 12.9091 12.9091 in Design Ecc = Ecc • Delta 10.1951 12.9091 12.9091 in 0.750 ACI Factors (per ACI, applied iMemaly to entered loads) ACI 9-1 & 9.2 DL ACI 9-1 6 9-2 LL ACI 9-1 & 9-2 ST ....seismic = ST • : 1.400 1.700 1.700 1.100 ACI 9-2 Group Factor ACI 9-3 Dead Load Factor ACI 9-3 Short Term Factor 0.750 UBC 1921.2.7.1.4• Factor 0.900 UBC 1921.2.7 "o.9" Factor 1.300 1.400 0.900 c. 5 1782.043 1603431 6uAtu (Eq 9-1) : 4.9.71, Pu,Mu (1619-2) :194-316 Pu,Mu (Eq 9-3) : .694.31t, 104.4k-It 99.31e4t 63.81elt 1425.634 1247.430 1069.225 891.021 712.517 534.612 356.408 178.204 al Axial : Plitt • • • 44.6 pc) 51.3 12 .9 161.6 20i2 24.9 24.5 32t2 34.8 406.5 Moment : Moto' (loft) To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block information will be printed on each page. Roc 61020E Uu,: x5Ve55115. Ve 5.13. 22Ja).11115. ViM32 (q 1161e6 BeRCKC Title : Dsgnr: Description : Scope : Job 5 Date: 9:12AM, 8 AUG 99 c36 Rectangular Concrete Column Page 1 escription HOAG ARKING STRUCTURE 0-tit x (2::. or Ge ta-1N Gam, 'Z N LV• General Information Calculadons are designed to AC1318-95 and 1997 UBC Requirements II Width 24.000 in Fe 6,000.0 psi total Height 11.000 ft Depth 18.000 in Fy 60,000.0 psi Unbraced Length 8.000 ft Rebar Seismic Zon 4 Efl. Length Facto 1.000 2 - a 11 d = 15.500 in LL & ST Loads Act Separately Column Is BRACED 2-011 d= 2.500 in Loads Axial Loads Summary Dead Load Live Load Short Term 330.000 k ✓ 90.000 k ✓ Ecce 2.000 in 24.00 x 18.00in Column, Reber. 2411 ©15.50in, 2411 @ 2.50in ACI 9-1 ACI 9-2 Applied : Pu : Max Factored 615.00 k 462.00 k Allowable : Pn • Phl fit Design Ecc. 1,389.28 k 1,389.28 k Column is OK ACI 93 297.00 k 1,389.28 k M-critical 102.50 k-ft 77.00 k-ft 49.50 k-ft Combined Eccentricity 2.000 in 2.000 in 2.000 in Magnification Factor 1.00 1.00 1.00 Design Eccentricity 2.000 In 2.000 in 2.000 In Magnified Design Moment 102.50 k-ft 77.00 k-ft 49.50 k-ft Po • .80 P : Balanced Ex: Balanced 2,036.62 k 729.01 k 8.880 in 2,036.62 k 729.01 k 8.880 In 2,038.62 k 729.01 k 8.880 in Slenderness per AC 31845 Section 10.12 & 10.13 Actual k Lu / r 17.778 Elastic Modulus 4,415.2 ksl Beta ACI Ea. 9-1 ACI Eq. 9-2 ACI Eq. 9-3 Neutral Axis Distance 19.3400 in 19.3400 in 19.3400 in Phi 0.7000 0.7000 0.7000 Max Limit klr 34.0000 34.0000 34.0000 Beta = M:sustained/M:max 0.7512 1.0000 1.0000 Cm 1.0000 1.0000 1.0000 El/ 1000 0.00 0.00 0.00 Pc : piA2 E I / (k Lu)A2 0.00 0.00 0.00 alpha: MaxPu / (.75 Pc) 0.0000 0.0000 0.0000 Delta 1.0000 1.0000 1.0000 Ecc: Ecc Loads + Moments 2.0000 2.0000 2.0000 in Design Ecc = Ecc • Dela 2.0000 2.0000 2.0000 in 0.750 ACI Factors (per ACI, applied internally to entered loads) ACI 9-1 & 9-2 DL ACI 9-1 & 9-2 LL ACI 9-1 & 9-2 ST ....seismic = ST • : 1.400 1.700 1.700 1.100 ACI 9-2 Group Factor ACI 9-3 Dead Load Factor ACI 9-3 Short Term Factor 0.750 UBC 1921.2.7 1.4• Factor 0.900 UBC 1921.2.7.0.9• Factor 1.300 1.400 0.900 G37 1782.043 P;Mu (Eq 9.1) : 1389.2k, tu,Mu 1E99-2): 1 'u,Mu (PA 9-3) : 1189.2k. 102.4k-ft )89.2k, 76.9k-ft 49.4k-ft 1603.638 1425.634 • • • 1247.430 1069.225 891.021 712.817 534.612 356.408 173.204 081 AXial: Pn•phi 4i.6 8f.3 121.9 169.6 20a.2 241.9 284.E 32l.2 36...6 44.5 09 Moment : Mn'Pni (k-M TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 PASADENA. CALIFORNIA 81 1 07 1818) 351-8881 FAX (818) 351-5318 Noterofp.kAr4 'Su an Re 6TMwry coLur1N sheet b of by job no. I315 date 1/11 GoLu+JN -4°x 1 bP 60Q-1 0 LINE G9'G55 < a1-' , G 5" �jlth carte . 6 Kst N,rL Ket 0ksi IX-WK. P. i Pl. ►,t, £l.l. I,IDL tI.1 U. Mur9N KEsiif kti6la S OM' 011••• OK' Gk DK Wm `v. bit I aK G 1 ,, ,� GK — lbw- W' 9.1N L•Y I, " 9At -)-50` — a bb" IV` 4111 W. tip`` W. 315K. 1 1204 I a`` W ,In-" 5 di - 1 aK 6 4 47Lv 33014 ID'`K I bK (2b'` 1tr w. I arrilit? 'Ykr 1 4- {/ 2,,yr"JK _ b� to,‘to,‘q • tot- CAL t loth- • ruL= <i, +1.1LA-) 6*-5"- • rutent4k. It>' < Izs 3b -etc , p" pu,a = ( lC W 0 O1 ON CO 0 CO CO O « k • I" ai Au+ m A -n id 4 4 4 4 4 4 + 4 4 + k ]4 4 4 y 4 4 U 4 + • C7 Aa4 * �� a « • « O 4 O 4 N 4 * « • N Y F o 4 rl 4 jzaj rl # N 4 H C9 E. a CO U 4 • z94 O !) 4 hci en a * U w U a a a-i a CO 10 0 0 0 a • N 0 0 0 N ri e<o O O 0 N el 0 a 0 11 1 II H 11 II 11 U 4 W a u1 t a ic •] 01 # U W * w CO 4 4 Y m s 0 0.' M « K W 4 " 4 « • 4 4 U + # •Z� N U k # * H" x " E � * s* 4 • H U # + Y • « • CJ CO H v) " [y 7 4 + 4 « 4 4 N 4 • 4 3 !i co a r t tr- 7 0- c43 1 eel el N eel eel en 01 N 01 N N N N CV 4; 10 10 10 10 eO N O1 N O1 01 r r r « # N N N N N N CO N CO in N t- r r 4 el el el eel el eel el a el a a a a a Y 4 4 Y 4 4 N N N N N N N N N N N N N N < < < < < < < < < < < < < < 4 -el -eel -yell -el -A -el -rri -e1 -.1 -ri -el -el -el •r1 4 CO 10 a I N N a a N N .-I eel 10 N+ 10 O1 N r0 O N N U1 co co N co 0 0 4 N 01 a N • N a e/ to ei • 01 Or a 4 w 0 N 10 r N 1D « r CO • el eel el 10 0 ul 4 N el el a Or r-I el el N N + « k 4 4 AC .till Sfl AG AC Ali 2,4 A4 X A4 SG AG AL Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 • # 4 « + 4 4 a aaaala aaaaaaa* -el -el el el A -el M A -et 44 -A -e1 -ri x .4x 4444.1444 4 o eel a 1f1 10 fel 0 N N r t0 N No * a 10 0 10 CO In a co N 01 CO 0 0 UN 4 eel a 10 N ON H (h ul CO 0 M 10 0 el * H el e< e< N N N CO eel 4 • Y W W W W W W W W W W W W W W« a a a a a a a r1 a a a el a 4 x x x x x x x x x x x x x x« N O1 0 CO Ul CO el O r r CO 0 N N N a N N 00 -el •eel r< -AM 4 04 4 01 N ri Oel N N a 0 a el Ol r r 01 4 O1 el l a 10 COO 4.e e< i H e< ei N Y 4 4 4 •el -el -AO •r1 b •.1 *4 Y a a a a 10 1D l0 10 N N N CO CO CO N N N N eel eel 1e1 eel a a a a a a a, a 43 43 4) J 4-1 44 4J 44 W 44 44 44 W W 44 W 44 W W 0 0 0 0 0 0 0 0 0 0 0 0 10 N 0 01 0 e< N eel a Ul 1C r ei e< H ei H ei e< ei 4 « « # 4 i) « W 44 W 4 0 0 * CO ON * e< el 4 TG TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO STREET • SUITE 200 P A S A O E N A. CALIFORNIA 9 1 1 0 7 ,- (818) 351-8881 FAX (8181 351-5319 Nbey rotfP*INI4 5?Izu c ru t Gt yr i coLurlrl5 sheet C. of by job no. 13615 date 1/11 ��oLutJN `9414A I b"> 601.4P LINE 4-1 >4 < ��s Stri CoN c . 6 KS' Nt 12. 1Z6if %a kst IS/Gt-> Pl. i t21.. Lt... tU. I14tt1-nIn1 U, Mn' Kett k!bta tzar op. old. Di- DI` dK b' test _ 'TP Lv I31-14 IA/4'` -_ ti- 66" I V` 't W. Ilf< 51-14. -2,15" 66" t" 3rWLv evil` gook- _ a- c,6" - 4, I Sic 2" v Lv 35Dva V K 1 b*I`I 470. 194 V 1ST W 116I% ICE = tt' Pic 31>ds Or- %nt • -f rfl. ILL 'F trT4L I,L "` • rut. = < Ala + 61-9" • PotenNk I -i (zl x 31,5f( ep4K FU frtsas -. I t5t1 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO STREET • SUITE 200 P A S A O E N A. CALIFORNIA 9 1 1 0 7 �►� (818I 351-5881 FAX (8181 351-5319 Nett' 1,16$KI W Yflzu cru tzE 6riciviert caLur1N 5 sheet G 41 of by lob no. 13`15 date 1/ ` 1 Ale., LINE At CoN C . 6 KSI HR. KeN f 6,0 kSI ILL -Nett r Z. I.L. W.. IkPLtI.1it- Gdurti KEstr1F {4l6l4 !u lim'W- L6K 0 I,56g. — tow (2". S114I.v 13'' 3b" -,9,- fi- b 1 bt` kill W. Ilvt` 541` 31 5` L bit* 66' 3rikt7Lv ,, C tit- 91016' d- Iasi- 66" 2Nt' LY 330"• 1b" 64" I ir 6614' dit c Lv. IN�> 330f` It6�j " A A— c ok � • I l� UL = < I,1- .+ Ii LA-)# G'-5 • -11 N y )346151J -TEE TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 P A S A D E N A, CALIFORNIA 8 1 1 0 7 (8181 351.8881 FAX (8181 351-5318 Nay p4s.k)W 'yr uc.iu RE Moir coLurity 5 sheet G CIA° of by job no. 113'15 date 1/1/ dutMN c kIt7 LINE Al car C , b KS' H1 rL Ke f West Lc-v61. n1- i nl, L.L. g.LI- 114tpt- ti l L.L. Gc4,uriN RZE*4P Rim tut dK 0,4 OK 014 . b fi+ Lev, Wt. l 9 I 1-5K bit I ri 5IP 1.v 13'? %I ` " Il 66" I e 4-Pt LW. I12'` 5er 1 5K (,6" It 3w be -'r to" 5tic'` AT 1 a" bet- .7_NvLY ')Dt. 1D11- ei)51 ' he- I b"` 1st Lv it 47 lit ',� &at t r ow-27 OK L r • lerat. t t 1014L I.L. 40-:- • ru L. = < I I tote + 11 LA— 3 k '$ ' o -rtot Q 4RA'IDIS- erstan TC' TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 P A S A O E N A, CALIFORNIA 9 1 1 0 7 - (818) 351-8991 FAX (8181 351-5319 N(44. p -Kkiw 911214c.-r t 6tMvI1T C 1,14Orl5 sheet G4� of by Job no. PA5 date 1/11 card 4 < e)-411A w(1 > ' 4` cjkIe LINIE E* GoN . 6 1%1 µ, K Kett 6,0ksl I. &LJ. PI- i I,l. LA-- £Lt I MA- t Il1 U. Gc4,utN REF HI6pi r et o'e ow OK V" C.V. 604 I r 11.5" — 66" lr 51P IN 1.1-16 36" ` t- b6" tes * iv LY. Iles- 914` 3154 b4,1` re- 31wo Lv •,, fix 19- 551)14" tr- lw (26" 2N7 LY 33de" 1 bK 444. LV. “Ve 1N' LM < tic 3' `' id` 60•5" i .4r- a's • PIA L = < i, i-Ix. + 1.1 I.L.. 5 # 6.' w 0 rei e. 60 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO STREET • SUITE 200 P A S A D E N A, CALIFORNIA 8 1 1 0 7 • - (818) 351-8881 FAX (818) 351-5318 H DU sheet Orrisof 'Skirl 9n4.uc.1Ut2E by Jodi!: 13.15 aI caLur1r� 5 1/9/ arIP LINE b CoNc , 6I`s' HIK Ket4r. 601CM I.t;V6t. Gt. i PL. LL ESL. l 1DL 4.l.1 U. Gfsl uriN Keit-IF kl6i1 let et oK et 6" !3f` V" VI 66k. IV` 1''5'4 — l 5" 66" '104 Lv (3�I` 361' -2,50 Al - 66" I Vc 'V" LY. 3rr Lv `i` eia yam`- le` b6" 2Nt'LA, 33D" 1°t` 61-5`4 ism- be"' 4.5114, 4 ►HE1, 'tit cide 115 CC hi- Pis r" • Bret- -s Intt- L-L 14t • rU L = < L 4eL + 1,1 iAL.) tr 6as5 sw l W U G re W I -IX CO W O O M Z YO reU Q N d Q 6 111 ▪ Z m } CO J W Z a O • y d w c O J = J J Q g3 wx 20 Sg a O NNNN mm O (0 (0 (O CO CO 40 40 (0 N N N N N N N N N N N N N N N n n n n r 0 0 0 0 0 0 CO 0 CO 0 0 0 CO CO CO n n r n n n n n n r r n n N 0 0 0 40 0 0 0 0 0 0 0 0 CO 0 0 0 0 0 CO 0 CO m CO N - r v. Y P 0 40 m • N. r m CO ^ (r0 ▪ VI • m Y a 001 Y • O ny • 0� 0 0 N N N m Y Y N m m m N Y (0 Y Ca 0 an 0 ♦ m♦ 0 a ▪ O O N Y O� m m N N m N T 0 r Y O( O( m f S m 0 0 S 0 0 0 O O O N m o O 8 O S 04,1 O O W Q O S O O O O O O O O O S S • S S O S O S S S O S O O W R' O O O O O 9 0 0 0 0 O O O O O Q 0 0 0 0 9 0 0 0 0 mp m m m m Y a m m m m m m Y m m 0) ♦ 0) 0) 0) m m > y 40 (Y(1 40 ▪ N ▪ N W T N N CO N (Y(1 40 40 (0 N N YI N 3 3 N IYO (Y(1 N N N N N N N N N N N NN N N N N N N 0 z w o` m m m m m m m m m m m CO m m m CO m m m m m m m m m 0 0 J Q ` y m O O N 0< g M O - c0 CV CO 01 LC)N m r A 0 0 OI 0 N O C ( Op O - W:2 n N (Ny g (Np a 0 O.l 0 NN 0 O 0 0 0 CO 0 n N Om 1- CO ADDRIONAL ce N ¢ w Q 0 0 0 LL ) m O � u e S (0 m N CO 0 (O 0en N O0) 0) 0 O O O O CD sr n 0 (LC)0 (00 Y CO O (a') N 0 ▪ CO ` m la( N O 0 N m n 0 CO 01 N CO tO Y 0 0 NCON Ma 00 bm N A O Y N 0 0 • Y - N 0 0 sLL a o o c o 0 0 0 N O YO 0 0 N 0'0 0O O 0 N 0 1 N Y 0 10 • - Y " N Y CO0 1- O 2- 222 co o W' a a a e a J O O O Q COAAA" CO N 0 Y O n N a 3 m V 0 ✓ CO N (0) N CO N N Y) m a Y O o c 0)�0-m N Y 0 N 0 0 N (O N 0 2 2 N '0 0 0 W Z C a Y Y Y Y a Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y a Y Y N N N N N NNNNN N N N N N N N N N N N N N N N 0 F J J J J J J J J .. J J J J J J J W W W W 111 w W W W W W W W W W W W W W W ' jW W > > > > > > LI >> W W W W W W W W J J J J J J J J J J J J J J J J J J J J J J J J f K 2 22200 I -I- F- K 2 F 22200 N F O 2 1- 1- 1- K 2 s O O (O N Y N r0 YI Y (O Y N (O in Y 0 ni 0 (O - 1 m N N W m U J O J 0 J 3 �? 3 (2 3 �? Y < J O— O 0 CO O b CO n O N M O m 0 M M m m 0 a m 0 m m m 0 n n r n C N b Ltt Of 0 0 0 0 0 N 03 O T N m N StN y r N to 0 0 P 0 0- ODCCC 0 M V.O P N 0 n b N b b CC 0 N • n b M n 0 b ..' O ▪ ▪ N < O b N W Q S O • 0 S 0 0 0 0 0 0 iX 0 0 0 0 O O O O O ADDITIONAL QK N C W U = O CO LL P_ n S O 9 O O N b 0 0 0 O O O O N N N N N N N N N O n A A r N. mmo bm• m mmmm0 NNNNN Y P Y P P Y P P P Y Y Y Y P P 0 n 10 r Y N N m Le CO 0 m N N 0 Y YY O N Y m N 0 P Y 0 0 eV 0 0 CO 0 0 - N 0 S P r 0 n Q N 0 O 0 0 N N O S y1. 0 gCOM O 0 0 0 n 0 0 CO v- N 0 m N M Y Y P 0 N N 0 0 b N a) sr N O Y 0 a 0 • 0 ' O n O .a.0 N le 0 0-0 0 N Y 0- 0 0 0 0 N h or Y O O O O O O O O O O b N 0 ♦y♦y 0 0 N 0 P O O N 0m <♦R♦ O O ,- N P 0 m — N P 10 0 — N' 0 0 W S • 0 0 0 0 0 N N N N N el CO el CO CIO 000 o0 CO 2 N Le)N N 0 P VVVV P CO O Y Y W N CO W St St St st P P P Y Y • N N N N N O O O O O Z M b 0 0 0 NNNNN U jE 4TH LEVEL 3RD LEVEL 112 C0111W ▪ J W W J J J J J O Xrr 00 N 0 - N ▪ Y - Cr) N J J tl b b O J 0 J O 3 0 3 N 0 0 1' P J g 0 0 N 5 W3 a ) N N 0 * < n N lm+Nl N N 0, ry AP.' dry $ S $$ o S$ CO CO 01 N INS) M Y N N N N N Cl 1I O 9 N N N C N Nco co N m a v ch n n 0 0) Of 01 ics01 `uMi N '1`Ni A PI 14 N N a F. r ♦ N M Y N Y 10 01 r CO 0 n n O CNI0 6 N N C) - N N ed 0, A A l A A A N N A AA A A' A A A t r A A A A S CO CO 0 0 N ICI r 1` m m n n .£ N 1) Y f N A ASA A N 11 7 Y 4 N N AA f N A A A• N N A A S W N W El i gg m n W CC I-- (d 9 z0 ay0104001 aagga 0A0a0 0s0sx004 010S.0t re04ggI en Y n a3 m�sss xo �a Z Z d d o o d o d o d 0 d d 0 0 g d d g 0 g d e o d d 0 0 0 re g iiiii w O 2 W W 2 S 0 M M M el M 0) M M M Co) el en en en en en en en en en in re to enY Y Y♦ V U0. _ 0 u W F o om �s Y+ m m 8 p y 't OZ a Ci N N N M M m^^ N m^ N N M m' N N A n.- N N A O 17 W N Cl xW J w o>- wo A A M n r M r N Y N "' N n m O n ry n$ 2 14 CI r Y 3 om ors sma�m• g$rs_ AAAAA xx••• xxx•x x•••§ to N N N N N CINNNN NNNNN NNNNN NNNNN NNOINN ww 0 • N Y M N J J22200 J J J CO (0 r 101 2 EEEEE S S S 0 0 m 111 f (0 N M 0 a O a u 0 0 J J p J J J J J D 0 N S S a S Fr- g A 0 • C1 m • !') N 9 §[[§ §§||| §§!!| «_■A■ !!?R■ §!§§! !!¥!I 22278 .4444;444 ■!|!!!!!! )!|!!|0-0 �A.,..1.1 dacici0000 §|!!;y|§\ <!!!¥ea§! 2\ ■7!|; j■r■,¥m3! \ 28888 ;§; )5l55!|!! § §o§§'- dddok !|!!|§! } [[[[[ ;;;;E |kk P. k|k( 0 !§;§§ nE§§§ > ||§I! §;|■! A )41 ;,,_ a a 444#aa =n28888AR 4 FF !!; 10 !|! :#$$$$$$# =.,.n,■■. %k%k( kkk_j( |&||2 §E|k| & 0 0 -Li -1dd d 3 3 3 3 3 3 3 TAYLOR & GAINES --Es STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 PASAOENA. CALIFORNIA 91 1 07 (9291 351 -9991 FAX (6261 351-5319 Hem+ 'bR JHec( 'yfluc1uRE sheets t4 5 of by job no. I3 1 5 date 1 /91 6 IAA -Lc, < 'Tk K> x 3 th" LaNF{ G„MG 61(sI HI R. k6Nr 6o ' Ott �g. t .SWF axle a W`.. c. EF vet-flat. E.F. -gyp. Holut N4 — > i1ac er 51'1w 4 0Lv 3R° Lv "nw • T TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PAS AOEN A. CALIFORNIA 91 1 07 (BM 351-99B1 FAX (929] 351-5319 - Nam+ pbRVJH'k datinucTuRe sheet 7 W of by job no. I ' 15 date 1 /91 4I1101 WAR-- < '�-�•II 'Tk K) x 3 Psia" l or te4 . G G�i b e <µa- L4 e pitIstou-r> Nam , 614SI His. 1keit eater I LI a'9 ,ILtI# "fl FA Too role • S6LonVocts. 4—� fep c 15"II -0 St e l ifo.c 4-- , IP LY 3S° LY nI I -� e EA, 51+0 efl"o•c Er- '1`� Lv L • T TAYLOR & GAINES Nb�[j IOC STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 PASADENA. CALIFORNIA 91 107 (818) 351.8981 FAX (818) 351-5319 12/1104HelatucruKE. sheet w 1 of by job no. 13 415 date 1/11 r 61tIZ NAB. -1 1HK. e Gtzte Q <►4 vnT. PiantrF tat%. cretSwA Trust+a it- 4, I.evr✓l- 11 Z • M • L • 1 • • V , • • 1 • a>5NRPSwe 1 t5 C e et" ,,c vrnT N.L,-r'T I I \ T TT. < 3 palai 5) LEvtL- 3 To 34P r TEuTAYLOR& GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOE NA. CALIFORNIA 91 1 07 (0261 351-0681 FAX (5261 351-531 S Nam+ d/P‘UcTIA RE sheet / 'i b of by job no. 3 15 date 1 /19 6 1A1ti < "Arn 111K> x 2 {1-D" tarkie4 G. 412.10 © < 144k+1. ®e ?r la t1'r Got -lc , 0-6 er 11-#II F5A, EIS 1 471451 HRL. C ket 6o 1 -- K0$It. 4°6 a 1znrkc3 • E-- b € 14-'ac• 4 --) veanaec. an— *bele EF 1Yp. * e11'e,c.F - .(--i - ehhcet H W W 41n Lv 3g°Lv Lv 'lam Lv TE TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO STREET • SUITE 200 PASAOENA. CALIFORNIA 91 107 03181 351 -8881 FAX (alai 351 -531 9 bQ4 124104N61 einktIcaitake. sheet J W\ of by fob no. l'3 9 5 date -1 /11 6H' WAR. •-1-11?HK. Get p ®- 4 Wise) 5 e6"oc pi i • •._, ti *5 H s'y S + G_0 Q 4" P.C. + 1-1' 5 G e '- c vegn- r' - I-rT . j S a" II v'6RCc • r • LgvLL'(o TSTAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 P A S A 0 E N A. C A L I F O R N I A 9 1 1 0 7 [525) 351 .5991 FAX [9261 351 -5319 Nca pop-w0►6r dinctuc.siRe sheet S W 0 of by job no. 1 ' 95 date 1 /II 61003 P WAR- < y9' 111K> x 3561-0" Ltaci. G° G 121 b ® < j.lAt l.. ¢ ['RINI'AuT GoMG, )(Si6HI R. kGeeit 601 Hotta , — Ar6erac.cE,f- 4-4 Vent ..-1t'6 e$'L'ac c.F111 4%el�'ac- 4'04 e I11ac 51%iW 4sPi Lev 3$O LY lb :II 3#II--� EA.EHo TAYLOR & GAINES TsSTRUCTURAL ENGINEERS 320 NORTH HALSTEAD SKEET• SUITE 200 PASADEN A. CALIFORNIA B 1 1 07 (B2B) 351.BB01 FAX 032B1 351 .531 S Nam+ dffrtuclet4 Re sheet $ w 11 of by q lob no. 13 15 date 1 /11 60412 W,AR- < - 111K> x 3bit" e G R.1 o A (Iram-®e IR-ratc ) GoNG1 67144I HIR. sou I a Pp it•Lo I2EIN� 6,1451 ($b 31.1v' e'Vac E.F- *6 e H 18�I1 3#11 a trio 406 t! W'aLl 51vW 41-'I'N Lv 3RO Ls, ,d] a It:'e.Cs �►1 eiy'Jc 61- 119T LV 4N--nt..iq TsTAYLOR & GAINES U b^Q Anti �Il'o1 STRUCTURAL ENGINEERS 1''� 11 �1d� 320 NORTH HALSTEAD STREET • SUITE 200 `✓JwN� y�I4$ . by I��� PASAOENA. CALIFORNIA 91107 /J'` (8181 351-8881 FAX (818) 351.5318 lob no. date 1 M1 6ntts - PM- '-1 ' 1lfK. eCl4ltp <Wtt 4-> ct &KID Q < wAvu.,5) & G 0"o. Ci 1' I W • of • leSv6 - 1 T9 #5 H s+ s't C e 4'°,cc -r 5* 5 C e voi c- � 'et • • y A • Min r 0\I r� Level- ID ef 320 NORTH HALSTEAO SREET • SUITE 200 PASADEN A. CALI FORN IA 91 1 07 �'•', (6261 351-6661 FAX (6261 351 -5319 -r-G TAYLOR& GAINES STRUCTURAL ENGINEERS "rS"1 PA Ricuseit liTKuclu leE sheets W 11 of by cl lob no. 13 I S dote 1 /11 6I)60PC LJMA - < 3vIliK> X 341d' � 6 /CI o fly < WALL. Gotic 30""11 C*11 c54. WV 6Ksi HS. rki row > IkeH. I`" 114" © 11.,�„ •�"OI G 12 6ee1 '�IIGL?F'. <-4 nee #vel,.N..cep H *be 1b11o1G tp H ss8&' LEf H lot" LY 51"W 41cre Lev 3R°ly -7-r'Lv #$eVac. eF .1NLv ;an—nt.ary_ -Es TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 P A S A D E N A. CALIFORNIA 9 1 1 0 7 (818) 351.8881 FAX (818) 351-5318 Ringi rAwN4 &142 c1t4RE sheet4 Wl+-of by job no. 1315 date 1 /11 r 614f2I1z d'ioPfl CG GP-1 b < 1-161-tr i 1 Z it is Ls -vet- 1To2 •'5 rIDDp$ 4 'Are, G_.' 't° 0 C fi I o ls. 5 C e q1 c vtn, °wN, Wr. 34191 v6RT TAYLOR & GAINES -Es STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 PASAO ENA, CALIFORN I A S 1 1 O7 (028) 351-SSS t FAX IS251 351-531 S N p f Rkt14 irrsuc.sitte sheet 15 of by Job no. I'315 date 1 111 4 I2 tJb L < 2-q 1kK> e A Ize1 e 0 < iAu- {o. Q eatirea pf.I►tietrri GoNc, 61451 NIIZ. 19)-4'1I pi fat k H• 601441 Keytt� m6 IMI-1 6 1r- s W"s-C BI- (—> ht"LV 51"W L-v 3R°iv IR.#I�- 60'11� 6No aPAe,z:Io.c c—i '15rLV bn-11 - TC TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 r P A S A O E N A. CALIFORNIA 9 1 1 0 7 (818) 351-8881 FAX (818) 351-5319 b•44 pkn2W N tf c!ff ucflul't sheet'134 t of by lob no. 1 n? 5 date 1 /c c 6N'&tI- PAtA., E -1 ' 1HK. ec P a Q <W,e+it- eb`' 1N(FLTI 1 eve-L 7. To v *5 ti -5 rs t AP 6 c_' G 4%' pi C- + 6+ 5 C e 4 Ac vsart, pug Het* 11-14. II vewtt. jrail • fL LSvtIL '3 '(e 4- TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PA SAOENA. CALIFORN IA 91 1 O7 (62S) 351-SCS 1 FAX (62S] 351 -5319 bN sheet5W11 o1 I C I I C,( df(1eUG?u Re by lob no. 13c15 date 1 itj au < - IRK> G 4p2.10 © <e pRIInotT) GinMG, %145I HI R. kept ,o it }fort • 6 e wax. q- •--> ISyII ro 611 -t are einv.,cdiser- H 1 1eI 5IH LA, 3R12 O8e 1s(o,c.I J 18,11 d*fi 474,11 SSG 8"aic.6f- 41.nLv dit:-at.411_ TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 /^' P ASADE N A, CALIFORNIA 91 1 07 (S18) 351-8881 FAX (918) 351-5319 ehee6 V4 lb of by fob no. 13 9 55 dote 1 /11 N'tPt IPAIA.--1-'I11iK, 612-1 e O. < WAS \Irtir ?Sat ran. "are 6-Is u1 114 W- wittA - LkVfrr L tl -t #5 H'tiQs—i $b C.. 4"o,c._ a 5 u C 'a,c. VS %T rum..wr 5c I1 vepT. .C- • • Are 4 0 LEvtL Oj '(o'I T^'� TAYLOR & GAINES V STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 PASAO EN A, CALI F OR N I A 21 1 07 (6261 3S1 -6661 FAX (826) 331-331 S Ftwakel fitlect4y sliest of by c Oho. '3dl5 acts (Al awe .0., 4 +- IJ c law 4-0 ,„,tbocd4, cis(4 r lie 1 c- 4 N taa (11 WALL FORCES AT LEVEL 1ST-06 IN FRAME /THREE DIMENSIONAL WALL OUTPUT OUTPUT ID ID POINT 1 CASE 1 TOP BOTTOM 1 CASE 2 TOP BOTTOM 1 CASE 3 TOP BOTTOM 1 CASE 4 TOP BOTTOM 1 CASE 5 TOP BOTTOM • 2 CASE 2 CASE 2 CASE 2 CASE 2 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 1 TOP BOTTOM 2 TOP BOTTOM 3 TOP BOTTOM 4 TOP BOTTOM 5 TOP BOTTOM 1 TOP BOTTOM 2 TOP BOTTOM 3 TOP BOTTOM 4 TOP BOTTOM 5 TOP BOTTOM 14 CASE 1 TOP BOTTOM 4 CASE 2 TOP BOTTOM 4 CASE 3 TOP BOTTOM MAJOR MOMENT 638.25 1232.14 2063.50 2915.95 5916.40 7605.03 316611 224 p�2 ✓ 149196 153844 - 2458.60 - 3210.42 -5589.89 - 6673.71 1669.53 1941.29 161383 163323 r/ 32043.50 32755.49 19496.69 19591.77 26191.46 26367.25 5689.83 6193.48 460746 466396 ✓ 13093.30 15638.66 - 3579.11 - 4151.82 - 5552.15 - 6511.01 4181.58 5614.55 MAJOR MINOR SHEAR MOMENT 52.40 -1512.49 -1887.45 75.22 -2281.90 -2847.33 149.00 1502.24 1925.31 740 194 213 419 987 1070 MINOR AXIAL TORSIONAL SHEAR FORCE MOMENT - 33.09 -1271.74 476.12 - 49.89 -1585.89 684.26 37.33 -52.78 260.60 2 406 237 7 211 324 -66.34 -614.46 -10.20 -850.72 -677.09 -730.06 -95.63 -925.39 -15.36 -1044.33 -1032.80 -1099.52 23.98,y 83.19 0.83 -22.13 -45.84 92.55 1791 61 3 814 188 53 70.58 1059.57 14.29 467.97 2138.23 1221.02 8.39-157.02 -13.00 -1409.04 -2610.37 -304.37 15.51 -236.08 -19.56 -1776.17 -3930.69 -457.74 44.441 -131.46 -5.50 -23.72 -64.47 -193.83 516./ 109 1 358 1356 106 232.29 387.61 36.66 51.83 394.31 189.81 - 50.53 1510.19 1955.02 - 84.61 2275.87 2946.67 126.44V -829.47 -1096.50 39.25 -1248.95 294.95 59.19 -1559.37 496.54 -23.56 -50.64 1125.99 T YLOR & GAINES PAGE 1420 PROGRAM:ETABS/FILE:\parking\parking2.FRM HaAG MEMORIAL HOSPITAL, UNIT: KIPS -INCHES S EAR WALL STRUCTURE DESIGNED BY UBC-97 FILE NAME: PARKING.DAT W'LL FORCES AT LEVEL 1ST-06 IN W•LL OUTPUT OUTPUT ID ID POINT 4 CASE 4 TOP BOTTOM 4 CASE 5 TOP MAJOR MOMENT 309265 314856 ✓ 104318 FRAME /THREE DIMENSIONAL MAJOR MINOR SHEAR MOMENT 503✓ 100 101 179 906 MINOR SHEAR 1 8 AXIAL TORSIONAL FORCE MOMENT 496 74 195 525 BOTTOM 106211 993 5 CASE 1 TOP 29497.02 -116.27 1231.67 50.44 -1587.61 -4916.34 BOTTOM' 28179.37 1803.35 5 CASE 2 TOP 40026.45 -170.93 1866.88 76.56 -2007.16 -7428.27 BOTTOM 38089.29 2734.57 4© 5 CASE 3 TOP 3472.39 -2.53 ✓-161.46 -0.88 -7.36 493.46 BOTTOM 3443.67-171.38 5 CASE 4 TOP 509709 410 I 42 3 614 288 BOTTOM 514244 ✓ 14 5 CASE 5 TOP 55982.25 161.43 275.94 5.54 52.00 608.27 BOTTOM 55387.91 215.10 6 CASE 1 TOP -399.31 BOTTOM -493.65 6 CASE 2 TOP -690.30 BOTTOM -820.31 6 CASE 3 TOP 917.22 BOTTOM 910.96 6 CASE 4 TOP 11836.74 BOTTOM 13610.72 6 CASE 5 TOP 19061.12 BOTTOM 18662.30 -8.33 -11.47 -0.55 157.07 50.04 1.39 -9.29 1.80 -13.37 -65.49 -127.37 8.22 6.37 22.93 30.57 13 CASE 1 TOP -241.03 0.36-646.57 BOTTOM -236.93 -616.12 13 CASE 2 TOP -283.69 -0.17-779.60 BOTTOM -285.64 -739.89 13 CASE 3 TOP 88.83 0.31 407.12 BOTTOM 92.31 375.27 13 CASE 4 TOP 1779.54 36.03 7090.15 BOTTOM 2186.62 6571.31 13 CASE 5 TOP 3232.65 8.81 15807.05 BOTTOM 3308.03 14686.83 7 CASE 1 TOP -194.37 BOTTOM -227.33 7 CASE 2 TOP -237.65 BOTTOM -290.29 7 CASE 3 TOP 86.49 BOTTOM 101.31 7 CASE 4 TOP 4969.58 BOTTOM 5957.38 7 CASE 5 TOP 1190.66 BOTTOM 1374.96 - 2.91 - 4.65 1.31 88.10 17.51 -1.70 9.65 -2.56 10.40 3.30 3.89 3.72 6.49 21.98 62.36 -0.94 -1.34 -5.46 0.29 4.71 2.69 3.50 -2.81 45.79 98.85 -185.55 -209.70 13.98 396.58 279.02 -161.54 -179.65 5.36 341.38 141.11 1.00-138.31 1.14-148.25 0.05 0.33 7.43 -7.27 36.35 481.22 89.45 126.03 -720.23 67.34 675.83 -69.35 -60.29 5.99 766.60 546.41 0.77 1.18 0.94 6.35 9.36 TAYLOR & GAINES PAGE 1421 PROGRAM:ETABS/FILE:\parking\parking2.FRM HOAG MEMORIAL HOSPITAL, UNIT: KIPS -INCHES SHEAR WALL STRUCTURE DESIGNED BY UBC-97 FILE NAME: PARKING.DAT WALL FORCES AT LEVEL 1ST-06 IN FRAME /THREE DIMENSIONAL WALL OUTPUT OUTPUT MAJOR MAJOR MINOR MINOR AXIAL TORSIONAL -' ID ID POINT MOMENT SHEAR MOMENT SHEAR FORCE MOMENT 15 CASE 1 TOP -175.18 5.30 279.06 0.37-138.72 219.68 BOTTOM -115.14 283.23 15 CASE 2 TOP -183.37 7.29 173.19 1.46-150.52 285.82 BOTTOM -100.69 189.73 15 CASE 3 TOP 50.85 -1.13-234.35 1.48 -5.95 -45.28 BOTTOM 38.09 -217.60 15 CASE 4 TOP 1638.03 27.20 5452.46 39.16 444.42 444.38 BOTTOM 1944.90 5008.72 15 CASE 5 TOP 2335.93 9.88 11592.52 72.78 84.49 830.16 BOTTOM 2249.22 10767.83 8 CASE 1 TOP -1517.80 -8.56 0.46 -1.60-283.23 0.58 BOTTOM -1614.78 -17.63 8 CASE 2 TOP -2195.26 -13.07 0.53 -1.74 -307.41 -2.86 BOTTOM -2343.41 -19.23 8 CASE 3 TOP 741.16 2.95 -1.89 -0.42 15.07 -4.79 BOTTOM 774.56 -6.62 8 CASE 4 TOP 51413.62 187.38 1.79 0.65 38.34 91.98 BOTTOM 53525.02 5.57 8 CASE 5 TOP 16426.46 39.55 25.81 11.70 1149.48 32.03 BOTTOM 16769.90 106.84 9 CASE 1 TOP 1049.96 BOTTOM 968.34 9 CASE 2 TOP 1469.41 BOTTOM 1354.21 9 CASE 3 TOP -907.93 BOTTOM -906.60 9 CASE 4 TOP 2770.83 BOTTOM 3045.58 9 CASE 5 TOP 33062.54 BOTTOM 35733.36 -7.20 0.90 1.54-204.16 53.51 18.32 -10.17 1.19 1.98 -230.75 72.13 23.66 0.12-416.94 -19.60 52.94 969.10 -639.11 25.86 35.26 13.22 423.25 57.63 185.04 237.32 5.86 1.07 32.84 123.21 12.65 10 CASE 1 TOP 28493.54 -51.63 767.85 16.47 -1173.17 3694.32 BOTTOM 27908.41 954.50 10 CASE 2 TOP 40308.35 -71.61 1091.37 24.36 -1388.35 5327.08 BOTTOM 39496.77 1367.47 10 CASE 3 TOP 16197.03 20.82 r-809.85 -26.25 -54.96 -1059.79 BOTTOM 16432.99 -1107.40 10 CASE 4 TOP 120097 142 1905 56 145 423 BOTTOM 121250 2539 10 CASE 5 TOP 440493 1438 ✓ 248 5 714 3201 BOTTOM 456579 1 290 I12 CASE 1 TOP 12850.13 BOTTOM 13219.50 12 CASE 2 TOP 19525.82 BOTTOM 20088.31 TAYLOR & GAINES 32.59 -188.98 -5.69-1816.48 -99.07 - 253.49 49.63 -288.39 -9.08-2287.38 -155.25 - 391.26 PAGE 1422 PROGRAM:ETABS/FILE:\parking\parking2.FRM HOAG MEMORIAL HOSPITAL, UNIT: KIPS -INCHES SHEAR WALL STRUCTURE DESIGNED BY UBC-97 FILE NAME: PARKING.DAT WALL FORCES AT LEVEL 1ST-06 IN FRAME /THREE DIMENSIONAL WALL OUTPUT OUTPUT MAJOR MAJOR MINOR MINOR AXIAL TORSIONAL ID ID POINT MOMENT SHEAR MOMENT SHEAR FORCE MOMENT 12 CASE 3 TOP 2862.09-14.51d -73.92 -3.88 9.02 -0.88 BOTTOM 2697.65 -117.94 12 CASE 4 TOP` 58180.25 205.18 1423.08 26.43 40.97 131.18 BOTTOM 60263.71 1708.68 12 CASE 5 TOP 1030210 822 ✓ 389 20 16 66 BOTTOM 1039119/ 621 14 CASE 1 TOP -118.68 0.89 -0.01 0.17-112.94 -1.40 BOTTOM -108.64 1.87 14 CASE 2 TOP -147.15 1.14 -0.02 0.25-121.43 -2.50 BOTTOM -134.22 2.84 14 CASE 3 TOP 77.26 -1.19 -0.01 -0.06 -1.17 -0.32 BOTTOM 63.76 -0.64 14 CASE 4 TOP 311.85 3.11 4.24 2.92 11.12 12.73 BOTTOM 285.92 37.14 14 CASE 5 TOP 8877.51 95.10 2.34 0.67 53.56 17.33 BOTTOM 7799.77 7.64 17 CASE 1 TOP -2173.04 BOTTOM -1948.06 17 CASE 2 TOP -2801.51 BOTTOM -2517.26 17 CASE 3 TOP -94.22 BOTTOM -204.75 17 CASE 4 TOP 977.48 BOTTOM 1357.58 17 CASE 5 TOP 13983.03 BOTTOM 17220.96 19.85 -0.56 1.56 -163.89 -6.91 17.14 25.08 -0.78 2.08 -192.73 -17.97 22.74 -9.75 -8.69 -4.83 60.80 24.67 -63.41 42.59 0.98 10.61 348.08 168.75 119.28 286.06 2.73 4.84 339.60 463.38 52.19 18 CASE 1 TOP -2481.65 27.10 -1.11 BOTTOM -2174.48 0.91 18 CASE 2 TOP -3554.27 39.22 -1.65 BOTTOM -3109.80 2.22 18 CASE 3 TOP -960.60 -10.21 9.37 BOTTOM -1076.27 -11.11 18 CASE 4 TOP 5376.53 73.55 2.49 BOTTOM 4634.63 87.44 18 CASE 5 TOP 15393.95 261.83 1.96 BOTTOM 18356.27 23.15 19 CASE 1 TOP 1287.96 BOTTOM 1038.46 19 CASE 2 TOP 1723.98 BOTTOM 1396.47 19 CASE 3 TOP 697.93 BOTTOM 1658.26 19 CASE 4 TOP 4257.29 BOTTOM 7249.31 0.18 0.34 -1.81 7.50 1.88 - 236.76 - 299.27 -29.76 122.13 78.02 28.44 31.12 30.70 115.22 64.99 - 22.02 -2.27 1.79 -138.81 3.74 18.03 - 28.90 -3.40 2.36 -162.00 17.80 23.30 84.74 -8.02 -1.66 31.81 30.92 -26.78 264.81 1.56 1.20 179.31 269.90 14.65 TAYLOR & GAINES PAGE 1423 PROGRAM:ETABS/FILE:\parking\parking2.FRM HOAG MEMORIAL HOSPITAL, UNIT: KIPS -INCHES SHEAR WALL STRUCTURE DESIGNED BY UBC-97 FILE NAME: PARKING.DAT WALL FORCES AT LEVEL 1ST-06 IN FRAME /THREE DIMENSIONAL Nt. 12 CASE 2 TOP 15596.07 45.75 817.87 -30.81 -2097.51 -192.62 BOTTOM 16114.60 468.71 12 CASE 3 TOP 4672.82 -25.46 -8.62 -0.41 -6.65 -7.33 BOTTOM 4384.31 -13.23 12 CASE 4 TOP 44649.64 195.77 721.23 20.22 6.83 97.92 BOTTOM 46444.47 948.71 12 CASE 5 TOP 973371 735 35 3 25 50 BOTTOM 981130 70 14 CASE 1 TOP -92.14 BOTTOM -130.49 14 CASE 2 TOP -106.10 BOTTOM -170.27 14 CASE 3 TOP -48.84 BOTTOM 162.19 14 CASE 4 TOP 295.91 BOTTOM 387.54 14 CASE 5 TOP 9521.03 BOTTOM 9600.04 16 16 16 16 - 3.38 0.89 -0.06-103.47 -1.16 0.26 - 5.66 1.31 -0.08-111.74 -1.43 0.40 18.62 0.17 -0.11 -1.10 3.23 -1.05 22.69 14.69 0.56 12.65 95.79 16.16 26.33 7.17 0.45 28.20 5.63 3.55 CASE 1 TOP 3620.51 67.54 -226.08 -6.63-1103.96 -37.96 BOTTOM 4385.98 -301.16 CASE 2 TOP 6123.49 101.24 -314.78 -9.37-1273.50 -53.62 BOTTOM 7270.82 -420.95 CASE 3 TOP 3863.50 16.30/ 1844.91 60.67 -4.58 -5.15 BOTTOM 4048.19 2532.49 CASE 4 TOP 156411 235 717 2 113 270 BOTTOM 158943 739 YLOR & GAINES PAGE 1311 PROGRAM: ETABS/FILE:\parking\parking2. FRM AG MEMORIAL HOSPITAL, UNIT: KIPS -INCHES EAR WALL STRUCTURE DESIGNED BY UBC-97 FILE NAME: PARKING.DAT LL FORCES AT LEVEL 2ND-12 IN FRAME /THREE DIMENSIONAL LL OUTPUT OUTPUT MAJOR MAJOR MINOR MINOR AXIAL TORSIONAL ID POINT MOMENT SHEAR MOMENT SHEAR FORCE MOMENT 16 CASE 5 TOP 1343126 574 ✓ 106 2 3 86 BOTTOM 1349442 ✓ 123 17 CASE 1 TOP -2486.53 BOTTOM -2272.57 17 CASE 2 TOP -3121.10 BOTTOM -2849.83 17 CASE 3 TOP -56.18 BOTTOM 218.26 17 CASE 4 TOP 496.97 BOTTOM 830.38 17 CASE 5 TOP 7491.85 BOTTOM 10922.60 18 CASE 1 TOP -3250.64 BOTTOM -2859.59 18 CASE 2 TOP -4707.15 BOTTOM -4141.87 18.88 23.94 24.22 46.32 303.32 - 3.59 -2.04 - 4.94 - 2.72 5.04 57.93 2.95 8.57 0.72 4.45 0.14-136.05 -11.78 0.20-161.19 -17.72 4.67 19.57 -151.35 1.02 237.19 62.13 0.38 289.68 14.46 34.51 1.70 -0.05 -227.51 21.28 1.19 49.88 2.30 -0.07 -294.05 30.42 1.47 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SKEET • SOITF 200 PASADENA. CALIFORNIA 91 1 07 (626) 351 -6661 FAX (6261 351 .5319 Hoek p4tzKiNG zirtztlettffte sheet t of by lob no. 11)2 1 5 G/cii date K I�� Ai✓) e G R► r7 a $1° 11 1/i9 ca3T. ► .05 e -2''•• � 9j �I. 7C1-3 t g at 11 AbD1%G.w EA.END 1 11 Ib 12 Pe tote 36' pe Co00tit.v '30b1' qvK PC'r 1-40-r/1_ 1$i5t"114n 3%! ) 2 9'K'11 rl'tali 324a1'62+71269/ji)+CiY9k+74019k6J/;H 236atk' t.... see pale P1 4.4?+4 )x0,15jx&&1° tbxt,F __K._________ W PTA= C I°' µx 4P) X 0•15 z 6k/Pr 5LK:ff.. $ Sp,b X4I4rL l oKPv- v.�.. ft TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SKEET • SUITE 200 P A S A O E N A. CALIFORNIA 9 1 1 07 16291 351-9991 FAX [626) 351-5319 1446-(31 rten ISA 611zUcThRC sheet i of by ci Job no. �', 15 date W,4►'t. Gyre ss-,e ri e G$i0 ® <GoNr W A LA-4 Hl s . _ .6 KS F x 133 g ksF ps-R pa s- 6R t6 Mr) �) ni = 4451 w- As 34, 1.I u-• I 'I -9 UN ^ g, a 5e11, R.Sroittr) t%ri x 56' Larsen ,Au.oL4= 4Ere 1', b c v1 Di C trn INPUT fy (ksi) 60 b (in) 120.00 fc (ksi) 5 d (in) 44.00 fy (ksi stir.) 60 Bar size #11 Max As = 132.8 In2 (0.75 balanced condition) Min As = 17.60 in2 (200bd/f7) As balanced = .85p1fc87000bd/fy(87000+fy) Mu=$Mn=KnF=4fau(1-.59w)F WHEN w=pfy/fc AND p=As/bd F= bd2/12000= 19.36 $=0.9 for Mu; 0.85 for Vu M„ REDUCED by 33% when p<200/fy. Mu Tabulated up to Max. As=0.75 balanced Mu(max) = 21613 K' = 634.7 M„(for min. p=200/fy) = 3402.56 K' VH (max) = 3173.5 IE TAYLOR 8. GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET STE 200 PASADENA, CALIFOfWA 01107 (015) 351 - 0051 FAX (016) 3514310 HOAG sht: PARKING by: El STRUCTURE Job No: Date: 6/26/99 CONCRETE BEAM CAPACITY NOTE: This program is limited to tension steel only & balanced condition. Based on fc<=5000asi Ref. ACI318-83 SEC.8.9 & 11 b Stirrup k `•\ • • • • • d MOMENT LM(,) CAPACITY FOR DIFFERENT STEEL AREAS As(inA2) Mu(Kft) As(inA2) Mu(Kft) As(inA2) Mu(Kft) As(in"2) Mu(Kft) 7.66 1128.6 53.62 9853.4 99.58 17084 145.54 0 15.32 2233.9 61.28 11136.4 107.24 18180 153.20 0 22.98 4409.8 68.94 12388.3 114.90 19245 160.86 0 30.64 5817.5 76.60 13609.0 122.56 20279 168.52 0 38.30 7193.9 84.26 14798.5 130.22 21281 176.18 0 45.96 8539.3 91.92 15956.9 137.88 0 183.84 0 When V <=1/24Vc=.5`.85*2*fc"`"bd = Shear Reinforcement is required When 1/2$Vc= 317.3 <_VU < 34VC = 1904.1 Kips Min Spac'g of s =A fy/50b or d/2 OR 24inches; Whichever controls. Max. Spac'g for #6,#5,#4 & #3 (in) = o.00 o.00 o.00 o.00 When 3$Vc<Vu<5$Vc (Max.Spac'g NOT to exceed d/4 OR 12 inches) Max. Spac'g for #6 , #5, #4 & #3 (in) = o.00 o.00 0.00 0.00 STIRRUP Spac'g for strength req. = s =4Avf, d/(Vu-$Vc) 317.3 Kips ULTIMATE SHEAR (V„ )CAPACITY FOR DIFFERENT STIRRUP SPACING INPUT Spac'g (in) #6 BAR #5 BAR #4 BAR #3 BAR 18.00 0 0 0 0 16.00 0 0 0 0 14.00 0 0 0 0 12.00 • 0 0 0 0 10.00 0 0 0 0 8.00 0 0 0 0 6.00 0 0 0 0 4.00 0 0 0 0 TAYLOR AND GAINES PARKING STRUCTURE sheet rt of STRUCTURAL ENGINEERS By: SC 320 N.HALSTEAD ST. #200 Job No: 1395 PASADENA, CA. 91107 HOAG Date: 02/29/00 GRADE BEAM LINEEBTWN3TO5 I = 1.5 Beam L => 59 SEIS. DIR OT factor ------> +1 +1 -1 => -1 Ductile Y(1)N(0)=> 0 Ldg. Soil Bearing KLF Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 39.87 45.79 76.38 82.30 35.01 42.14 0.87 5.63 59 59 57.76434 59 DL RM/OTM 2.9283 Pldno. a> Pdi> PII> Pot> Mot> 1 2 3 13 31 49 Soie.- t74 450 300 300 /5541.41'N/4 &;oTfi 135 90 90 c• = e2.3/.6 La t Sx/oc))x/33 2 /q, = 8,8 3' a-r4 W Id no. c > d > W dl > W II > Wtr of > FTG. WT WALL FLR WT 0 12 0 59 48 59 6.00 22.50 1.10 98.06925 TAYLORANDGAINES PARKING STRUCTURE sheet'// of x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 2.81 91.89 16.56 189.59 206.14 254.62 156.80 5.62 183.45 32.96 369.07 402.03 494.98 312.86 8.43 274.68 49.20 538.46 587.66 721_10 . 468.20 11.24 365.58 65.29 697.74 763.03 932.97 622.80 14.05 -39.93 -53.77 161.47 107.69 252.06 -147.32 16.86 -12.91 -38.00 14.65 -23.35 27.79 -82.67 19.67 13.77 -22.37 -99.26 -121.64 -18.75 -172.60 22.48 40.12 -6.91 -180.27 -187.18 44.43 -279.05 25.29 66.15 8.41 -228.38 -219.97 106.89 -361.63 28.10 91.84 23.56 -243.58 -220.02 168.62 -396.99 30.90 117.19 38.56 -225.87 -187.31 229.62 -385.11 33.71 -157.78 -36.59 -475.26 -511.86 -283.11 -657.60 36.52 -133.09 -21.91 -391.75 -413.66 -223.57 -530.45 39.33 -108.73 -7.37 -275.34 -282.71 -164.75 -357.23 42.14 -84.70 7.00 -126.02 -119.01 -106.67 -137.95 44.95 -61.00 21.23 56.21 77.43 127.40 -49.32 47.76 -37.64 35.29 271.33 306.63 438.81 7.30 50.57 -256.75 -40.80 7.03 -33.77 146.13 -428.80 53.38 -170.83 -27.04 14.79 -12.25 111.69 -285.14 56.19 -85.25 -13.44 12.45 -1.00 62.98 -142.20 59.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.81 129.16 23.29 268.69 291.99 361.01 5.62 516.03 92.89 1055.84 1148.73 1417.35 8.43 1159.68 208.34 2333.08 2541.42 3128.99 11.24 2059.16 369.21 4072.01 4441.23 5455.89 14.05 2694.96 433.64 5527.88 5961.52 7355.77 16.86 2620.80 304.77 5767.57 6072.34 75 53.77 19.67 2622.08 220.00 5641.01 5861.01 7267.73 22.48 2697.87 178.91 5240.63 5419.53 6627.08 25.29 2847.23 181.05 4658.87 4839.92 5761.25 28.10 3069.24 225.99 3988.19 4214.18 4799.66 30.90 3362.95 313.29 3321.02 3634.31 5240.73 33.71 2913.15 198.24 1935.53 2133.76 4415.41 36.52 2504.62 116.09 709.87 825.96 3703.83 -312.34 39.33 2165.00 75.00 -234.94 -159.94 3158.50 -1483.41 42.14 . 1893.36 74.52 -806.45 -731.93 2777.38 -2156.71 44.95 1688.76 114.21 -912.23 -798.01 2558.42 -2199.52 47.76 1550.27 193.64 -459.82 -266.17 2499.57 -1479.18 50.57 1079.91 170.95 -93.49 77.46 1802.49 -706.04 53.38 479.34 75.69 -60.47 15.21 799.74 -340.52 56.19 119.68 18.85 -19.85 -1.00 199.59 -91.81 59.00 0.00 0.00 0.00 0.00 0.00 0.00 2 TAYLOR AND GAINES PARKING STRUCTURE sheet/Zof SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 13.00 399.91 75.30 674.63 749.94 901.22 687.89 13.01 -49.99 -59.64 224.01 164.37 346.83 -171.38 31.00 118.05 39.07 -224.70 -185.63 231.68 -383.88 31.01 -181.86 -50.88 -524.57 -575.45 -341.11 -736.47 49.00 -4.95 41.44 298.29 339.73 472.93 63.52 49.01 -304.64 -48.51 -1.65 -50.16 159.10 -508.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 13.00 2742.11 493.08 5326.03 5819.11 J]1,8Z 0.00 13.01 2741.61 492.48 5328.28 5820.76 7134.41 31.00 3374.15 316.99 3299.56 3616.55 5262.69 31.01 3372.33 316.48 3294.32 3610.80 5259.28 49.00 1521.23 241.15 -98.08 143.07 2539.68 -946.51 49.01 1518.18 240.66 -98.10 142.57 2534.59 -944.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 proawre,wai perimped dead bed has been multiplied by a factor of .85 when NOTES #1. For calculating waling sci combined with seismic overturning as required by UBCICAC 2312(h)• 1/2. Far calculating maximum and minimum ultimate sharers and moments the billowing combinations have been used: A. 1.40L+1.7LL B..75(1,4DL+1.7LL+1.57E) C..90L+1.43E D. 1.4(OL+LL+E) E..75OL+1.4E and .75DL-1.4E A TAYLOR AND GAINES PARKING STRUCTURE sheet f/3 of STRUCTURAL ENGINEERS By: SC 320 N.HALSTEAD ST. #200 Job No: 1395 PASADENA, CA. 91107 HOAG Date: 02/29/00 GRADE BEAM LINE E BTWN 3 TO 5 1=1.5 Beam L => 59 SEIS. DIR OT factor ------> +1 +1 -1 => 1 Ductile Y(1)N(0)=> 0 Ldg. Soil Bearing KLF Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 36.91 45.79 0.39 9.28 37.38 42.14 73.90 78.65 59 59 59 59 DL RM/OTM 2.980346 Pldno. a> Pdl> PII> Pot> Mot> 1 2 3 13 31 49 450 300 300 135 90 90 W Id no. c > d > W dl > W II > Wtr of > FTG. WT WALL FLR WT 0 12 0 59 48 59 6.00 22.50 1.10 98.06925 TAYLOR AND GAINES PARKING STRUCTURE sheet Mof x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 2.81 91.89 16.56 -5.80 10.75 156.80 -57.00 5.62 183.45 32.96 -2.17 30.79 312.86 -100.33 8.43 274.68 49.20 10.90 60.10 468.20 -129.99 11.24 365.58 65.29 33.41 98.70 622.80 -145.98 14.05 -39.93 -53.77 -241.33 -295.10 -147.32 -392.95 16.86 -12.91 -38.00 -40.48 -78.47 -51.04 -100.66 19.67 13.77 -22.37 126.81 104.43 174.03 -18.75 22.48 40.12 -6.91 260.52 253.61 351.28 44.43 25.29 66.15 8.41 360.67 369.07 493.24 106.89 28.10 91.84 23.56 427.25 450.81 596.88 168.62 30.90 117.19 38.56 460.26 498.82 653.37 229.62 33.71 -157.78 -36.59 159.70 123.10 312.00 -283.11 36.52 -133.09 -21.91 125.57 103.67 250.11 -223.57 39.33 -108.73 -7.37 57.88 50.51 140.39 -164.75 42.14 -84.70 7.00 -43.38 -36.38 -17.14 -106.67 44.95 -61.00 21.23 -178.21 -156.99 -49.32 -222.51 47.76 -37.64 35.29 -346.61 -311.32 7.30 -475.70 50.57 -256.75 -40.80 -520.53 -561.33 -428.80 -691.55 53.38 -170.83 -27.04 -356.46 -383.50 -285.14 -474.19 56.19 -85.25 -13.44 -182.95 -196.39 -142.20 -243.67 59.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.81 129.16 23.29 -10.36 12.93 220.43 -83.28 5.62 516.03 92.89 -23.77 69.11 880.36 -307.50 8.43 1159.68 208.34 -13.72 194.62 1977.73 -634.25 11.24 2059.16 369.21 46.31 415.53 3510.49 -1025.13 14.05 2694.96 433.64 -137.96 295.69 4510.14 -1625.61 16.86 2620.80 304.77 -525.97 -221.20 4187.23 -2141.16 19.67 2622.08 220.00 -396.84 -176.84 4044.92 -1957.19 22.48 2697.87 178.91 155.12 334.02 4081.16 -1208.05 25.29 2847.23 181.05 1035.60 1216.65 4293.91 -28.13 28.10 3069.24 225.99 2150.29 2376.28 4681.12 30.90 3362.95 313.29 3404.88 3718.17 5240.73 33.71 2913.15 198.24 3890.77 4089.01 4682.67 36.52 2504.62 116.09 4299.37 4415.46 5295.01 39.33 2165.00 75.00 4564.94 4639.94 5734.79 42.14 1893.36 74.52 4593.17 4667.68 5869.52 44.95 1688.76 114.21 4289.74 4403.95 5566.69 47.76 1550.27 193.64 3560.35 3753.99 4693.82 50.57 1079.91 170.95 2253.31 2424.26 2997.56 53.38 479.34 75.69 1019.15 1094.83 1356.89 56.19 119.68 18.85 259 21 278.05 345.38 59.00 0.00 0.00 0.00 0.00 0.00 0.00 TAYLOR AND GAINES PARKING STRUCTURE sheet FAS of SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 13.00 399.91 75.30 125.18 200.49 687.89 -32.94 13.01 -49.99 -59.64 -324.00 -383.64 -171.38 -512.82 31.00 118.05 39.07 460.79 499.85 654.45 231.68 31.01 -181.86 -50.88 160.84 109.96 326.39 -341.11 49.00 -4.95 41.44 -308.18 -266.74 63.52 -438.08 49.01 -304.64 -48.51 -607.63 -656.14 -508.96 -806.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M 11 M dl+ot M tl+ot +Mu max -Mu max 13.00 2742.11 493.08 158.19 651.27 4677.19 -1227.11 13.01 2741.61 492.48 154.94 647.43 4675.48 -1231.49 31.00 3374.15 316.99 3448.74 3765.73 5262.69 31.01 3372.33 316.48 3450.34 3766.83 5259.28 49.00 1521.23 241.15 3140.54 3381.69 4175.84 49.01 1518.18 240.66 3134.46 3375.13 4167.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES 01. For calculating working soil preawre,wpeAmponad dead bad has bean multiplied by a factor of .85 when combined with selaeYc overturning as required by UBC/CAC 2312(h). 42. For calculating maximum and minimum ultimate shears and moments the billowing combinations have been used: A 1.401+1.7LL B..75(1.40L+1.7LL+1.87E) C..9DL+1.43E 0. 1.4(DL+LL+E) E..750L+1.4E and .750L-1.4E TC TAYLOR S. GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOENA. CALIFORNIA 91 1 0 7 (626) 351 -6661 FAX (6261 351 5319 Hoek p,9tzv.IN4 1-AZuc7UFtE sheet N-b of by job no. I' A5 date G! /11 tZ km.. 60 Ka') c G W o g+f If ADD t" ptpv 12/ II T// eret?. t,}4-1 -t/� 5 Pe eaL-Q U.- 129 pd. Go 0 t2L 3&' log` Par ri/L.xL3�4v�"'�t-4)e15�-l`4 1' Ii�1 Ctcozei-m444Zjf;( t-4_ jX�i /1.40707 lax k ) X .ISO = µ; tr. 600re ibetti XW X 9-' 0 x'. I_ TC TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOE N A, CA LI FOR N IA 91 1 O7 (S2S) 351-9591 FAX (6213) 351-5319 14 pmzkirk 6-mu( fi,,Re N W4 1kGrier M 6 ri ' G$io ® Sat- ,6PtrY pt26ssu4te htiw: eK6r >. 1133 = bkSF < moss = 4bItioW a ?vs psl"T 6O kte ea 11 q = 331 & is 1 ceittex4) X &inn 50g11 sheet Nilset of by job no. 1 .2,15 date 4° 11 5eIL RssfbRrr) Mp1)1 X ¢210" LoN6f As zO INPUT fy (ksi) 60 b (in) 72.00 fc (ksi) 4 d (in) 42.00 fy (ksi stir.) 60 Bar size #11 Max As = 64.7 in2 (0.75 balanced condition) Min As = 10.08 in2 (200bd/ff) As balanced = .851Vc87000bd/fy(87000+fy) Mu=4Mn=KnF=4fau(1-.590)F WHEN cu=pfy/fcAND p=As/bd F= bd2/12000= 10.58 4)=0.9 for Mu; 0.85 for Vu Mu REDUCED by 33% when p<200/fy. Mu Tabulated up to Max. As=0.75 balanced Mu(max) = 9907 K' 4Vc = 325.1 Mu(for min. p=200/fy) = 1848.92 K' V (max) = 1625.7 TC TAYLOR 8 GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET STE 200 PASADENA, CA UFORNIA 91107 (S10 351 - 8551 FAX (HS) 351.5319 HOAG sht: h Z� PARKING by: �" STRUCTURE Job No: Date: 6/26/99 CONCRETE BEAM CAPACITY NOTE This program is limited to tension steel only & balanced condition. Based on fc<=5000psi Ref. AC1318-83 SEC.8.9 & 11 b Stirrup `•� • • • • • d MOMENT (Mu) CAPACITY FOR DIFFERENT STEEL AREAS As(in^2) Mu(Kft) As(in^2) Mu(Kft) As(in^2) Mu(Kft) As(in^2) Mu(Kft) 7.66 1064.1 53.62 8543.9 99.58 0 145.54 0 15.32 2765.7 61.28 9504.8 107.24 0 153.20 0 22.98 4051.1 68.94 0.0 114.90 0 160.86 0 30.64 5271.7 76.60 0.0 122.56 0 168.52 0 38.30 6427.3 84.26 0.0 130.22 0 176.18 0 45.96 7518.1 91.92 0.0 137.88 0 183.84 0 When V <=1/24Vc=.5*.85*2*fc"`*bd = Shear Reinforcement is required When 1 /20Vc= 162.6 <_Vu < 34Vc = 975.4 Kips Min Spac'g of s=Avfy/50b or d/2 OR 24inches; Whichever controls. Max. Spac'g for #6,#5,#4 & #3 (in) = o.00 o.00 o.00 o.00 When 34Vc<Vu<54Vc (Max.Spac'g NOT to exceed d/4 OR 12 inches) Max. Spac'g for #6 , #5, #4 & #3 (in) = 0.00 0.00 o.00 o.00 STIRRUP Spac'g for strength req. = s =4A„ fy d/(Vu-4)Vc) 162.6 Kips ULTIMATE SHEAR (V„ )CAPACITY FOR DIFFERENT STIRRUP SPACING INPUT Specs(' (in) #6 BAR #5 BAR #4 BAR #3 BAR 18.00 0 0 0 0 16.00 0 0 0 0 14.00 0 0 0 0 12.00' 0 0 0 0 10.00 0 0 0 0 8.00 0 0 0 0 6.00 0 0 0 0 4.00 0 0 0 0 TAYLOR AND GAINES PARKING STRUCTURE sheet P:aof STRUCTURAL ENGINEERS By: SC 320 N.HALSTEAD ST. #200 Job No: 1395 PASADENA, CA. 91107 HOAG Date: 03/01/00 GRADE BEAM LINE E BTWN 7 TO 8 1 = 1.50 Beam L => 64 SEIS. DIR OT factor ------> +1 +1 -1 => 1 Ductile Y(1)N(0)=> 0 Ldg. Soil Bearing KLF Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 24.20 33.59 8.52 17.90 34.68 40.42 50.37 56.10 64 64 64 64 DL RM/OTM 5.119866 Pldno. a> Pdl> PII> Pot> Mot> 1 2 3 4 5 23 41 59 300 220 300 300 FTC? 90 135 90 90 14Pa77 - 5C'Mt ` t8 6- 37r Wldno. c> d> Wdl> WII> Wtrot> FTG. WT WALL FLR WT 0 22 0 64 50 64 4.20 18.00 1.10 81.94133 TAYLOR AND GAINES PARKING STRUCTURE sheet of x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 3.05 65.70 21.01 20.18 41.19 127.69 -5.97 6.10 -167.44 -48.16 -253.93 -302.09 -274.38 -358.51 9.14 -99.41 -27.49 -222.32 -249.81 -185.91 -311.82 12.19 -30.22 -7.00 -185.00 -192.00 -54.21 -257.73 15.24 40.14 13.32 -141.96 -128.64 78.83 -224.27 18.29 111.65 33.46 -93.20 -59.74 213.20 -192.45 21.33 184.33 53.44 -38.73 14.71 348.91 -153.08 24.38 -4.68 -61.76 -62.89 -124.65 -87.45 -165.30 27.43 15.47 -42.13 128.23 86.10 175.17 -49.96 30.48 36.78 -22.67 270.70 248.03 367.61 12.95 33.52 59.26 -3.39 364.53 361.14 489.87 77.20 36.57 82.90 15.73 409.71 425.43 565.45 142.79 39.62 107.70 34.67 406.24 440.91 575.99 209.72 42.67 -166.33 -36.56 54.13 17.57 165.56 -295.02 45.71 -139.20 -17.97 -46.63 -64.60 7.09 -225.43 48.76 -110.91 0.46 -196.04 -195.58 -154.50 -235.26 51.81 -48.88 18.71 -203.66 -184.95 -36.63 -265.33 54.86 36.59 36.79 -86.32 -49.53 113.78 -142.83 57.90 123.23 54.70 36.74 91.44 265.51 -12.78 60.95 -88.97 -17.56 -134.49 -152.05 -145.17 -179.65 64.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.05 99.82 32.06 29.30 61.35 194.24 -11.01 ' 6.10 73.07 29.30 -199.78 -170.48 152.11 -324.41 9.14 -333.84 -85.93 -926.94 -1012.87 -1291.92 12.19 -531.66 -138.45 -1549.07 -1687.52 -2161.68 15.24 -516.84 -128.79 -2048.73 -2177.52 -2855.36 18.29 -285.84 -57.46 -2408.51 -2465.98 -3350.45 21.33 164.89 75.00 -2611.00 -2536.00 358.34 -3821.12-4 - 24.38 484.06 81.65 -2774.51 -2692.86 816.49 -4224.10 27.43 500.21 -76.62 -2662.59 -2739.21 570.04 -4072.62 30.48 579.54 -175.32 -2042.34 -2217.66 513.31 -3292.21 33.52 725.59 -214.99 -1062.02 -1277.01 650.35 -2019.36 36.57 941.91 -196.14 130.12 -66.02 985.24 -399.60 _i.- 39.62 1232.05 -119.30 1385.83 1266.53 1522.06 42.67 1099.56 -135.00 2056.84 1921.84 3358.51 45.71 . 633.68 -218.05 2080.62 1862.57 2639.43 48.76 252.26 -244.68 1723.19 1478.51 2330.46 -62.80 51.81 -11.70 -215.42 1005.70 790.28 1444.35 -382.60 54.86 -30.73 -130.80 562.37 431.57 820.48 -265.38 57.90 212.52 8.66 485.36 494.02 616.85 60.95 135.86 26.72 206.39 233.11 275.63 64.00 0.00 0.00 0.00 0.00 0.00 0.00 !o i/ 6 per/` TAYLOR AND GAINES PARKING STRUCTURE sheet of SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 5.00 108.40 34.38 36.11 70.48 210.20 -5.82 5.01 -191.38 -55.56 -263.80 -319.36 -275.81 -373.36 23.00 206.57 64.29 54.49 118.78 398.49 -31.56 23.01 -13.37 -70.65 -164.73 -235.38 -138.81 -316.40 41.00 119.32 43.19 388.65 431.85 558.10 240.48 41.01 -180.59 -46.74 88.49 41.75 222.26 -332.29 59.00 154.65 61.09 82.36 143.45 320.37 35.81 59.01 -145.06 -28.85 -217.22 -246.07 -233.75 -290.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 5.00 269.70 86.13 83.86 169.99 524.00 -23.02 5.01 267.78 85.58 81.22 166.80 520.38 -25.78 23.00 496.60 173.11 -2617.95 -2444.84 989.52 -4006.87 23.01 496.46 172.41 -2619.60 -2447.20 988.13 -4009.16 41.00 1388.78 -65.53 1935.83 1870.30 2141.90 /p6///'_P Jr. 41.01 1386.97 -66.00 1936.72 1870.72 2143.19 59.00 364.68 72.07 550.52 622.59 735.44 59.01 363.22 71.78 548.34 620.12 732.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ‘ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES 81. For calculating working ad pessure.superlmposed dead bad has been multiplied by a factor of .85 when combined with seismic overturning as required by UBCICAC 2312 h). 82. For calculating maximum and minimum Amato shears and moments the billowing combinations have been used: A. 1.40L+1.7LL B..75(1.4DL+1.7LL+1.87E) C..QDL+1.43E D. 1.4(DL+LL+E) E..750L+1.4E and .75DL-1.4E /Z Q S N O O O O O O O 0 CO (D V N 0 SdIN NI bV3HS O O O O O O O O O N 0 N O O Mu DIAGRAM O O O O O O O O O O O O N l� IN3WO141 O O O O O 0 O O 0 O O O O O O O O 0 O DISTANCE FT CCI tg- TAYLOR AND GAINES PARKING STRUCTURE STRUCTURAL ENGINEERS 320 N.HALSTEAD ST. #200 PASADENA, CA. 91107 HOAG sheet Pled By: SC Job No: 1395 Date: 03/01/00 GRADE BEAM LINE E BTWN 7 TO 8 1 = 1.50 Beam L => 64 SETS. DIR OT factor ----> +1 +1 -1 => -1 Ductile Y(1)N(0)=> 0 Ldg. Soil Bearing KLF Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 26.67 33.59 42.35 49.27 31.90 40.42 19.00 24.73 64 64 64 64 DL RM/OTM 5.610759 Pldno. a> Pdl> PII> Pot> Mot> 1 2 3 4 5 23 41 59 300 220 300 300 90 135 90 90 Wldno. c> d> Wdl> WII> Wtrot> FTG. WT WALL FLR WT 0 22 0 64 50 64 4.20 18.00 1.10 81.94133 TAYLOR AND GAINES PARKING STRUCTURE sheet aq of x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 3.05 65.70 21.01 111.22 132.23 159.62 124.23 6.10 -167.44 -48.16 -80.94 -129.10 -27.01 -316.28 9.14 -99.41 -27.49 23.50 -3.99 86.30 -185.91 12.19 -30.22 -7.00 124.56 117.56 194.14 -54.21 15.24 40.14 13.32 222.23 235.54 314.50 78 83 18.29 111.65 33.46 316.51 349.97 447.21 213.20 21.33 184.33 53.44 407.40 460.83 574.53 348.91 24.38 -4.68 -61.76 53.53 -8.23 79.03 -111.54 27.43 15.47 -42.13 -97.29 -139.42 -49.96 -195.62 30.48 36.78 -22.67 -197.14 -219.81 12.95 -318.36 33.52 59.26 -3.39 -246.01 -249.40 77.20 -383.20 36.57 82.90 15.73 -243.91 -228.18 142.79 -392.73 39.62 107.70 34.67 -190.84 -156.17 209.72 -329.98 42.67 -166.33 -36.56 -386.79 -423.36 -295.02 -530.46 45.71 -139.20 -17.97 -231.78 -249.74 -225.43 -298.90 48.76 -110.91 0.46 -25.78 -25.33 21.91 -154.50 51.81 -48.88 18.71 105.89 124.61 189.61 -36.63 54.86 36.59 36.79 159.50 196.30 257.72 113.78 57.90 123.23 54.70 209.72 264.43 320.44 234.59 60.95 -88.97 -17.56 -43.44 -61.01 -14.97 -154.41 64.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.05 99.82 32.06 170.34 202.40 244.59 6.10 73.07 29.30 345.92 375.22 496.75 9.14 -333.84 -85.93 259.26 173.32 547.67 -613.47 12.19 -531.66 -138.45 485.74 347.28 976.39 -979.70 15.24 -516.84 -128.79 1015.04 886.25 1725.43 -942.53 18.29 -285.84 -57.46 1836.83 1779.36 2778.16 -497.87 _ 21.33 164.89 75.00 2940.78 3015.78 4161.94 I 24.38 484.06 81.65 3742.64 3824.28 5182.52 27.43 500.21 -76.62 3663.01 3586.39 4972.99 579.54 -175.32 3201.42 3026.10 4270.87 I30.48 33.52 725.59 -214.99 2513.20 2298.21 3209.31 36.57 941.91 -196.14 1753.70 1557.57 2008.58 JI- 39.62 1232.05 -119.30 1078.28 958.98 1522.06 42.67 1099.56 -135.00 142.27 7.27 1309.88 -379.31 45.71 633.68 -218.05 -813.26 -1031.30 516.47 -1641.97 48.76 252.26 -244.68 -1218.68 -1463.36 -2110.08 51.81 -11.70 -215.42 -1029.10 -1244.53 -1713.86 54.86 -30.73 -130.80 -623.83 -754.63 -1030.86 57.90 212.52 8.66 -60.33 -51.67 312.24 -198.91 60.95 135.86 26.72 65.34 92.06 235.63 64.00 0.00 0.00 0.00 0.00 0.00 0.00 TAYLOR AND GAINES PARKING STRUCTURE sheet SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V, dl V II V dl+ot V tl+ot +Vu max -Vu max 5.00 108.40 34.38 180.70 215.07 259.04 200.94 5.01 -191.38 -55.56 -118.95 -174.51 -68.67 -362.38 23.00 206.57 64.29 358.65 422.94 512.16 398.49 23.01 -13.37 -70.65 138.00 67.35 204.42 -138.81 41.00 119.32 43.19 -150.01 -106.82 240.48 -277.75 41.01 -180.59 -46.74 -449.68 -496.42 -332.29 -626.61 59.00 154.65 61.09 226.95 288.04 341.67 242.57 59.01 -145.06 -28.85 -72.90 -101.75 -27.36 -252.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M di M II M dl+ot M tl+ot +Mu max -Mu max 5.00 269.70 86.13 455.54 541.67 653.64 0.00 5.01 267.78 85.58 454.35 539.92 651.94 ill 23.00 496.60 173.11 3611.14 3784.25 5110.30 6 / L 23.01 496.46 172.41 3612.53 3784.93 5111.38 41.00 1388.78 -65.53 841.73 776.19 1832.88 - ij i/ 41.01 1386.97 -66.00 837.23 771.23 1829.56 59.00 364.68 72.07 178.84 250.91 633.07 59.01 363.22 71.78 178.11 249.89 630.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES d1. For alleviating working soil p essure,supe lmpoud dead load has been multiplied by a factor of .55 when combined with seismic overturning as required by UBC/CAC 2312(h). a2. For calculating maximum and minimum ultimate shears and moments the billowing combinations have been used: A 1.40L+1.7LL B..75(1.4DL+1.7LL+1.57E) C..901+1.43E D. 1.453E+1L+E) E..750L+1.4E and .750E-1.4E / 5 � Vu DIAGRAM Shc>I NI 21V3HS J�- 0 E Mu DIAGRAM O O O O O O O O O O CO 1f) 0 0 CO O O O O O O N-Id IN3WOW O O 0 0 0 O 0 O 0 0 0 0 O 0 0 0 0 0 O 0 CO 0 0 0 N 0 O 0 DISTANCE FT IS TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 P A S A O E N A. C A L I r O R N I A 9 1 1 0 7 1626) 351 -6661 FAX (6261 351 5319 lithet p,9iz14IN4 Wucti tE sheet 51 of by G1 lob no. I �J 5 6 /11 date RAD 30" 17,1_0 (1), 12,Lo '$-'II T/p corer .*a u..c ►ct a Li*-- II GIN- rwk _ 6' Jr V44 4 pe401.Q Pe ego 0 re Go 3bl I I I51 WV-.yk — ya$1I A hl.1.1"4- 14 e 0-115t 4)g Id- 514. 1211' Imo" rat tfrr/_ = C 4861'` /C 361 ) = Ib o Mpe(' Li44VG3g6 "K+ 6i93/0+ 6.4.5K+S16k)x (0J�i: 3o535k W Phi=g -9;(1) x o,153 x H : 11P=. KIC FITAZb1sX it°) X atG a 4,8 KA-F Giutef to 14x 412x 51-I... lasTAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOENA. CALIFORNIA 91 1 07 1 261 35146661 FAX (6261 351.5319 RweI pI*kitiA StrIeuctuRe sheetI of by Job 13=1 S /4 64tt1Z PA .- KAI7 4 G Got to (.9 <cool: ) PA-U-- 6'o1L- i61R.IrXq rt. Ai4,04= .6 h'iL 13&,etzrV4. _ 5$ ?es pgIra( 6Rent i3.6411 11 = .1.112-IK As� 153 1133 i ksF < psic Ssll. Rsrltr') "1.5" e li4er it 4 ci *e4 0000 4L&' Mr x 541-0" LoNGt 4 ara lXI I(4c l4"i1 wr la`' -ES TAYLOR 8 GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET STE 200 PASADENA, CA l2FORNIA (919) 951 . 9991 FAX (919) 351-5319 PARKING STRUC1 sht: by: sc HOAG HOSPITAL Job No: 1395 Date: 3/1/00 CONCRETE BEAM CAPACITY NOTE: This program is limited to tension steel only & balanced condition. Based on fc<=5000asi Ref. ACI318-83 SEC.8.9 & 11 b INPUT fy (ksi) 60 b (in) 120.00 BEAM LOCATION fc (ksi) fy. (ksi stir.) 5 60 d (in) Bar # 44.00 11 Max As = 132.8 in2 (0.75 balanced condition) Min As = 17.60 in2 (200bd/fy) As balanced = .85p,rc87000bd/fy(87000+fy) Mu=$Mn=KnF=4fc o(1-.59w)F WHEN w=pfy/fc AND p=As/bd F= bd2/12000= 19.36 4)=0.9 for Mu; 0.85 for Vu Mu REDUCED by 33% when p<200/fy. Mu Tabulated up to Max. As=0.75 balanced Mu(max) = 21613 K' 4V, = 634.7 M„(for min. p=200/fy) = 3402.56 K' V„ (max) = 3173.5 Stirrup 1' •\ • • • • • d MOMENT (Mu) CAPACITY FOR DIFFERENT STEEL AREAS As(in"2) Mu(Kft) As(inA2) Mu(Kft) As(in"2) Mu(Kft) As(in^2) Mu(Kft) 3.12 462.5 21.84 4197.7 40.56 7594 59.28 10804 6.24 921.2 24.96 4776.7 43.68 8142 62.40 11321 9.36 1376.0 28.08 5350.5 46.80 8685 65.52 11833 12.48 1826.8 31.20 5919.2 49.92 9223 68.64 12340 15.60 2273.8 34.32 6482.6 53.04 9755 71.76 12841 18.72 3613.5 37.44 7041.0 56.16 10282 74.88 13338 When V„<=1/24Vc=.5".85"2"fc `bd = Shear Reinforcement is required When 1/24Vc= 317.3 <_Vu < 34Vc = Min Spac'g of s=A„fy/50b or d/2 OR 24inches; Whichever controls. Max. Spac'g for #6,#5,#4 & #3 (in) = 8.80 6.20 4.00 2.20 When 34Vc<Vu<54Vc (Max.Spac'g NOT to exceed d/4 OR 12 inches) 317.3 Kips 1904.1 Kips Max. Spac'g for #6 , #5, #4 & #3 (in) = 8.80 6.20 4.00 2.20 STIRRUP Spac'g for strength req. = s=4A„fy'd/(Vu-4Vc) ULTIMATE SHEAR (VD)CAPACITY FOR DIFFERENT STIRRUP SPACING INPUT Spac'g (in) #6 BAR #5 BAR #4 BAR #3 BAR 18.00 0 0 0 0 16.00 0 0 0 0 14.00 0 0 0 0 12.00 0 0 0 0 10.00 0 0 0 0 8.00 882 0 0 0 6.00 964 867 0 0 4.00 1128 983 859 0 E.. TAYLORANDGAINES PARKING STRUCTURE sheet of STRUCTURAL ENGINEERS By: SC 320 N.HALSTEAD ST. #200 Job No: 1395 PASADENA, CA. 91107 HOAG Date: 03/01/00 GRADE BEAM LINECBTWN6TO8 I =1.5 Beam L => 82 SEIS. DIR OT factor -----> +1 +1 -1 => 1 Ductile Y(1)N(0)=> 0 Soil Bearing KLF Ldg. Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 38.99 51.63 11.74 24.38 44.64 53.49 71.89 80.74 82 82 82 82 DL RM/OTM 4.332792 Pldno. a> Pdl> PII> Pot> Mot> 1 2 3 4 5 23 59 77 pro use 660 540 580 660 OO;Dr,,/ /o'xi' 180 162 180 180 = 64074,6 r4 - 9,/ W ld no. c > d > W dl > W II > Wtr of > FTG. WT WALL FLR WT 0 22 0 82 60 82 4.80 18.00 1.10 126.8767 /& TAYLOR AND GAINES PARKING STRUCTURE sheet f37of x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 3.90 146.37 32.35 45.05 77.40 259.92 -13.16 7.81 -367.02 -115.19 -559.54 -674.72 -605.62 -802.24 11.71 -220.17 -82.62 -493.75 -576.37 -448.68 -720.21 15.62 -73.08 -49.94 -417.59 -467.53 -187.21 -623.58 19.52 74.25 -17.16 -331.06 -348.21 74.79 -512.77 23.43 -343.89 -146.27 -625.43 -771.70 -712.10 -942.43 27.33 -266.37 -113.27 -181.17 -294.44 -117.90 -565.48 31.24 -188.61 -80.16 171.64 91.47 345.41 -400.34 35.14 -110.62 -46.95 433.00 386.05 677.82 -234.68 39.05 -32.38 -13.63 602.92 589.29 879.34 -68.50 42.95 46.10 19.80 681.40 701.20 964.66 98.20 46.86 124.81 53.34 668.43 721.77 961.48 265.41 50.76 203.77 86.98 564.02 651.00 830.11 433.14 54.67 282.96 120.73 368.16 488.89 601.39 376.50 58.57 362.39 154.59 80.86 235.45 770.15 -76.44 62.48 -93.37 8.56 -498.68 -490.12 -116.17 -663.62 66.38 56.83 42.63 -287.68 -245.05 152.03 -441.51 70.29 207.26 76.81 -66.32 10.49 420.75 -204.69 74.19 357.94 111.10 165.41 276.51 689.98 46.84 78.10 -151.15 -34.50 -252.48 -286.98 -270.27 -344.81 82.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.90 285.70 63.13 84.57 147.70 507.30 -30.48 7.81 -710.87 -252.91 -1489.00 -1741.91 -2160.20 11.71 -1857.35 -639.13 -3548.80 -4187.93 -5137.36 15.62 -2429.95 -897.97 -5331.45 -6229.42 -7765.71 19.52 -2427.73 -1029.01 -6796.47 -7825.48 -9988.26 23.43 -2099.56 -1101.25 -8026.92 -9128.18 -11921.76 27.33 -3291.11 -1608.00 -9571.96 -11179.96 -14314.76 31.24 -4179.50 -1985.69 -9560.83 -11546.51 -14467.54 35.14 -4763.79 -2233.89 -8350.59 -10584.48 -12880.68 39.05 -5043.05 -2352.19 -6298.32 -8650.51 -11059.00 42.95 -5016.34 -2340.17 -3761.08 -6101.25 -11001.18 46.86 -4682.74 -2197.42 -1095.94 -3293.36 914.66 -10291.45 50.76 -4041.31 -1923.50 1340.02 -583.48 4058.12 -8927.78 54.67 -3091.11 -1518.00 3189.74 1671.74 6199.62 -6908.16 58.57 -1831.22 -980.50 4096.15 3115.64 6828.03 -4230.56 62.48 -2221.70 -936.30 2147.03 1210.74 4247.76 -4702.09 66.38 -2293.12 -836.40 608.38 -228.01 2085.34 -4632.24 70.29 -1777.59 -603.24 -86.14 -689.38 818.94 -3514.12 74.19 -674.18 -236.40 103.95 -132.44 505.97 -1345.72 78.10 295.18 67.40 496.31 563.71 677.96 82.00 0.00 0.00 0.00 0.00 0.00 0.00 TAYLOR AND GAINES PARKING STRUCTURE sheet F.jebf SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V,dl V II V dl+ot V tl+ot +Vu max -Vu max 5.00 187.47 41.45 59.54 100.99 332.92 -14.21 5.01 -472.15 -138.47 -600.32 -738.79 -608.22 -896.41 23.00 187.61 12.12 -139.76 -127.64 283.26 -299.29 23.01 -352.19 -149.80 -678.48 -828.28 -747.72 -1018.41 59.00 371.12 158.31 43.75 202.07 788.71 -134.13 59.01 -208.67 -21.60 -537.12 -558.72 -328.86 -707.30 77.00 466.50 135.84 338.57 474.40 884.02 236.91 77.01 -193.12 -44.07 -320.81 -364.88 -345.29 -438.05 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.37 0.08 0.10 0.18 0.66 -0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M di M II M dl+ot M tl+ot +Mu max -Mu max 5.00 468.52 103.55 141.77 245.32 831.95 -45.58 5.01 463.79 102.16 135.77 237.93 822.98 -51.66 23.00 -1950.35 -1037.79 -7747.28 -8785.07 -11501.24 23.01 -1953.88 -1039.29 -7754.07 -8793.36 -11511.44 59.00 -1674.04 -913.45 4122.89 3209.44 6782.97. -3896.52 59.01 -1676.12 -913.67 4117.52 3203.85 6776.40 -3899.81 77.00 483.92 110.48 810.67 921.15 1107.24 - .------ 77.01 77.01 481.99 110.04 807.46 917.50 1102.86 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES a1. For calculating waking ecu pressure:supermposed dead bad has been multiplied by a factor of .55 when combined with seismic overturning as moulted by UBCICAC 2312 h). M2. For calculating maximum and minimum ultimate shears and moments the folltowkW combinations have been used: A. 1.40L+1.7LL B..75(1.4DL+1.7LL+1.37E) C..VDL+1.43E D. 1.4(DL+LL+E) E..75DL+1.4E and .7513L-1.4E 11 Vu DIAGRAM O 0 O O O O SdIN NI JV33HS 0 O 0 O 10 CD O 03 O O CD 0 0 0 CO 0 0 O DISTANCE FT CL 2 0 2 0 0 O 0 O 0 O 0 O 0 O N 0 0 O N-lJ ±N3INOW O O O O O 0 0 O O 0 0 O O 0 0 O O 0 O 0 0 1.0 O 0 0 0 O 0 O O O DISTANCE FT CU a TAYLOR AND GAINES PARKING STRUCTURE sheet Joys of STRUCTURAL ENGINEERS By: SC 320 N.HALSTEAD ST. #200 Job No: 1395 PASADENA, CA. 91107 HOAG Date: 03/01/00 GRADE BEAM LINE CBTWN6TO8 1 = 1.5 Beam L => 82 SEIS. DIR OT factor ------> +1 +1 -1 => -1 Ductile Y(1)N(0)=> 0 Ldg. Soil Bearing KLF Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 43.36 51.63 70.60 78.87 40.08 53.49 17.39 26.24 82 82 82 82 DL RM/OTM 4.372877 Pldno. a> Pdl> PII> Pot> Mot> 1 2 3 4 5 23 59 77 660 540 580 660 180 162 180 180 W Id no. c > d > W dl > W II > Wtr of > FTG. WT WALL FLR WT 0 22 0 82 60 82 4.80 18.00 1.10 126.8767 i TAYLOR AND GAINES PARKING STRUCTURE sheet figittit x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 3.90 146.37 32.35 247.70 280.05 337.05 259.92 7.81 -367.02 -115.19 -174.49 -289.68 -55.01 -709.64 11.71 -220.17 -82.62 53.42 -29.20 193.08 -448.68 15.62 -73.08 -49.94 271.44 221.50 426.89 -187.21 19.52 74.25 -17.16 479.56 462.40 646.42 74.79 23.43 -343.89 -146.27 -62.36 -208.63 93.09 -730.11 27.33 -266.37 -113.27 -351.57 -464.84 -361.57 -565.48 31.24 -188.61 -80.16 -548.87 -629.03 -400.34 -805.50 35.14 -110.62 -46.95 -654.23 -701.18 -234.68 -938.43 39.05 -32.38 -13.63 -667.68 -681.31 -68.50 -942.38 42.95 46.10 19.80 -589.20 -569.40 98.20 -866.99 46.86 124.81 53.34 -418.81 -365.47 265.41 -665.04 50.76 203.77 86.98 -156.48 -69.50 433.14 -331.77 54.67 282.96 120.73 197.76 318.49 601.39 132.83 58.57 362.39 154.59 643.93 798.52 972.47 728.75 62.48 -93.37 8.56 311.94 320.50 495.56 -116.17 66.38 56.83 42.63 401.34 443.97 597.20 152.03 70.29 207.26 76.81 480.85 557.66 699.26 420.75 74.19 357.94 111.10 550.46 661.56 787.50 597.45 78.10 -151.15 -34.50 -49.82 -84.33 8.86 -270.27 82.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.90 285.70 63.13 486.82 549.96 662.55 7.81 -710.87 -252.91 67.26 -185.65 472.94 -1425.17 11.71 -1857.35 -639.13 -165.91 -805.04 747.15 -3686.82 15.62 -2429.95 -897.97 471.55 -426.42 1962.19 -4 19.52 -2427.73 -1029.01 1941.01 912.00 4062.34 Ji48yi 23.43 -2099.56 -1101.25 3827.81 2726.55 6586.53 -4811.51 27.33 -3291.11 -1608.00 2989.74 1381.74 6019.62 -7341.16 31.24 -4179.50 -1985.69 1201.83 -783.86 3933.75 -9226.96 35.14 -4763.79 -2233.89 -1176.99 -3410.88 841.71 -10466.92 39.05 -5043.05 -2352.19 -3787.78 -6139.97 -11059.00 42.95 -5016.34 -2340.17 -6271.61 -8611.79 -11001.18 46.86 -4682.74 -2197.42 -8269.54 -10466.96 -12749.07 50.76 -4041.31 -1923.50 -9422.64 -11346.14 -14243.15 54.67 -3091.11 -1518.00 -9371.96 -10889.96 -13990.01 58.57 , -1831.22 -980.50 -7758.58 -8739.08 -11486.05 62.48 -2221.70 -936.30 -6590.44 -7526.74 -9653.72 66.38 -2293.12 -836.40 -5194.62 -6031.01 -7543.53 70.29 -1777.59 -603.24 -3469.03 -4072.27 -5007.84 74.19 -674.18 -236.40 -1452.31 -1688.70 -2100.62 78.10 295.18 67.40 94.06 161.46 527.83 -21.95 82.00 0.00 0.00 0.00 0.00 0.00 0.00 As 40 AV! TAYLOR AND GAINES PARKING STRUCTURE sheet SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 5.00 187.47 41.45 315.40 356.85 429.11 332.92 5.01 -472.15 -138.47 -343.99 -482.45 -241.66 -896.41 23.00 187.61 12.12 514.98 527.10 671.58 283.26 23.01 -352.19 -149.80 -25.90 -175.70 149.62 -747.72 59.00 371.12 158.31 698.49 856.81 1050.67 788.71 59.01 -208.67 -21.60 119.78 98.18 281.88 -328.86 77.00 466.50 135.84 594.42 730.26 884.02 602.78 77.01 -193.12 -44.07 -65.43 -109.50 8.79 -345.29 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.37 0.08 0.65 0.73 0.88 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 5.00 468.52 103.55 795.26 898.80 1082.22 0.00 5.01 463.79 102.16 791.82 893.98 1077.29 23.00 -1950.35 -1037.79 3846.57 2808.78 6534.28f -4494.74 23.01 -1953.88 -1039.29 3846.32 2807.03 6535.79 -4502.22 59.00 -1674.04 -913.45 -7470.96 -8384.41 -11052.58 59.01 -1676.12 -913.67 -7469.77 -8383.44 -11050.44 77.00 483.92 110.48 157.18 267.66 865.31 -31.71 77.01 481.99 110.04 156.52 266.56 861.85 -31.63 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES #1. For calculating woddng 3oi pressure superimposed deed load has been multiplied by a factor of .55 when combined with seismic overturning as required by UBC/CAC 2312(h). #2. For calculating maximum and minimum ultimate shears and moments the following combinations have been used: A. 1.4DL+1.7LL B..75(1.4DL+1.7LL+1.87E) C..9DL+1.43E D. 1.4(DL+LL+E) E..75DL+1.4E and .750L-1.4E 0 Mi 0 O O O O O SdIN NI ilV3HS O O O O O O O N 0 0) O co 0 ti 0 0 LO O 0 CO 0 O O DISTANCE FT cn a 0 F 0 O O O O O N-ld 1N3WOW O O 0 rn 0 O O 0 0 o O 0 0 LID o �• o 0 a) o m v a 0 0 O m 0 0 O N 0 0 O C TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 PASADENA. CALIF ORNIA 91 1 O7 (6261 351 -6661 FAX 1626] 351-5319 pao-14iiiguefUlte sheet F4r L of by lob no. PJ I55 date 6 /11 -.E4t€oK ktAt , CcReet& Karl @ GW, 20+110 Aviv gt� ® 1$I-a ® ►5' 4 5 e g 1n,c, ce+rr 150+1 GIN. ea coLQ k%1= 450" Li.-- 1 35k 7.0 por(- ri`r/L = I'>b '"n 3& > D,4I!`11• ritiol'-f g5ck+s�rG/Ot 0,26K15a3lk)Xb ,ir= 2.1771s Wkustc'C\`)`:4)x0,153X 6o.Ft+1 I p'r =C toPA4") x o, 46 s 6 KLP 6Rave e9M I oux 4°x 561— h)tr of : 21111 X y L z q o'¢6 3�? � TAYLOR & GAINES -TEE STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PAS AO E NA, CALIFORNIA 91 1 07 (6251 351 -6661 FAX (626) 351-5319 pt12k0-34 s'fkuctutC sheet r-4-1 of by job no. I 9 5 date arstK. WbtL 6 K6 4 ri c Grin J c0141: -6otpmssuke I,Iasa A F u 1,33 gj < PVCsnlL Rer rr% p pit 6no-06 E3tAti I)ri4=4o�v> U,t• Il '" I rt4, • 6 e 1Vo1 c. citt tempi i x 5 h Lariat 4 = celiftx 1-) x6 /y„r h° : 150 TE TAYLOR 2. GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET STE 100 PASADENA, G LIFORNIA 91107 (515) 351 - 051 FAX (919) 351-3319 PARKING STRUC1 HOAG HOSPITAL sht: by: sc Job No: 1395 Date: 3/1/00 CONCRETE BEAM CAPACITY NOTE: This program is limited to tension steel only & balanced condition. Based on fc<=5000osi Ref. AC1318-83 SEC.8.9 & 11 b INPUT fy (ksi) 60 b (in) 108.00 BEAM LOCATION fc (ksi) fy (ksi stir.) 5 60 d (in) Bar # 44.00 11 Max As = 119.5 in2 (0.75 balanced condition) Min As = 15.84 in2 (200bd/fy) As balanced = .8513,fc87000bd/fy(87000+fy) Mu=4Mn=KnF=4fco(1-.59o)F WHEN o=pfy/fc AND p=As/bd F= bd2/12000= 17.42 4)=0.9 for Mu; 0.85 for Vu M„ REDUCED by 33% when p<200/fy. Mu Tabulated up to Max. As=0.75 balanced Mu(max) = 19452 K' 4)Vc = 571.2 Mu(for min. p=200/fy) = 3062.30 K' V„ (max) = 2856.1 Stirrup ,i' II\ • • • • • d MOMENT (Mu) CAPACITY FOR DIFFERENT STEEL AREAS As(inA2) Mu(Kft) As(in^2) Mu(Kft) As(inA2) Mu(Kft) As(inA2) Mu(Kft) 3.12 462.3 21.84 4183.6 40.56 7546 59.28 10701 6.24 920.3 24.96 4758.3 43.68 8086 62.40 11207 9.36 1374.0 28.08 5327.2 46.80 8620 65.52 11707 12.48 1823.4 31.20 5890.4 49.92 9149 68.64 12201 15.60 2268.4 34.32 6447.9 53.04 9672 71.76 12689 18.72 3603.2 37.44 6999.6 56.16 10189 74.88 13172 When V„<=1/24Vc=.5*.85*2*fc"`*bd = Shear Reinforcement is required When 1/24Vc= 285.6 <VU <_ 34Vc = 1713.7 Kips Min Spac'g of s =A fy/50b or d/2 OR 24inches; Whichever controls. Max. Spac'g for #6,#5,#4 & #3 (in) = 9.78 6.89 4.44 When 34Vc<Vu<54Vc (Max.Spac'g NOT to exceed d/4 OR 12 inches) 285.6 Kips Max. Spac'g for #6 , #5, #4 & #3 (in) = 9.78 6.89 STIRRUP Spacg for strength req. = s=1)A„fyd/(Vu-4Vc) 4.44 2.44 2.44 ULTIMATE SHEAR (VN)CAPACITY FOR DIFFERENT STIRRUP SPACING INPUT Spac'g (in) #6 BAR #5 BAR #4 BAR #3 BAR 18.00 0 0 0 0 16.00 0 0 0 0 14.00 0 0 0 0 12.00' 0 0 0 0 10.00 0 0 0 0 8.00 818 0 0 0 6.00 900 803 0 0 4.00 1065 919 796 0 /L TAYLOR AND GAINES PARKING STRUCTURE shee STRUCTURAL ENGINEERS 320 N.HALSTEAD ST. #200 PASADENA, CA. 91107 HOAG MEMORIAL f By: SC Job No: 1395 Date: 03/01/00 GRADE BEAM LINEABTWN3TO5 I = 1.5 Beam L => 60 SEIS. DIR OT factor > +1 +1 -1 => -1 Ductile Y(1)N(0)=> 0 Ldg. Soil Bearing KLF Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 38.62 44.17 74.91 80.46 34.04 41.33 0.09 5.05 60 60 58.05628 60 DL RM/OTM 2.848009 Pldno. a> Pdl> PII> Pot> Mot> 1 2 3 14 32 50 540 300 300 fly 135 90 90 ,s,'gt % x 4 , W Id no. c > d > W dl > W II > Wtr of > FTG. WT WALL FLR WT 0 13 0 60 51 60 6.00 18.00 1.10 90.46122 /Z- TAYLOR AND GAINES PARKING STRUCTURE sheet,t x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 ' 0 0 0 0 0 0 2.86 89.90 15.82 188.64 204.46 253.04 152.75 5.71 179.50 31.55 367.10 398.65 491.81 304.94 8.57 268.80 47.20 535.38 582.59 716.31 456.57 11.43 357.79 62.78 693.49 756.26 926.54 607.63 14.29 -116.67 -56.73 165.90 109.17 299.07 -259.78 17.14 -79.71 -41.33 30.68 -10.64 86.12 -181.86 20.00 -43.07 -26.00 -75.85 -101.85 -85.64 -124.35 22.86 -6.72 -10.76 -153.69 -164.44 -27.70 -226.89 25.71 29.31 4.41 -202.84 -198.44 48.53 -305.60 28.57 65.05 19.49 -223.31 -203.82 124.20 -353.81 31.43 100.48 34.49 -215.09 -180.60 199.30 -360.83 34.29 -164.40 -40.59 -478.18 -518.77 -299.17 -664.45 37.14 -129.58 -25.76 -412.58 -438.33 -225.20 -565.80 40.00 -95.07 -11.00 -318.29 -329.29 -151.79 -426.92 42.86 -60.86 3.67 -195.32 -191.64 -78.96 -247.80 45.71 -26.95 18.27 -43.66 -25.39 -6.68 -48.14 48.57 6.65 32.78 136.69 169.47 231.16 65.03 51.43 -252.34 -42.80 14.24 -28.56 154.11 -426.03 54.29 -167.92 -28.45 19.67 -8.78 117.13 -283.46 57.14 -83.81 -14.18 14.93 0.74 65.76 -141.45 60.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 128.51 22.61 271.91 294.52 364.89 5.71 513.45 90.30 1068.25 1158.55 1432.36 8.57 1153.96 202.83 2359.93 2562.76 3161.64 11.43 2049.16 359.96 4117.89 4477.85 5511.96 14.29 3029.02 522.90 6070.78 6593.68 8113.24 17.14 2748.55 382.83 6344.79 6727.61 8417.80 20.00 2573.22 286.67 6273.43 6560.10 8256.93 22.86 2502.17 234.18 5938.69 6172.87 7745.58 25.71 2534.51 225.13 , 5422.53 5647.66 6998.72 28.57 2669.39 259.29 4806.91 5066.20 6131.32 31.43 2905.92 336.42 4173.80 4510.22 5258.35 34.29 2557.53 250.58 2919.44 3170.03 4006.53 37.14 2137.63 155.82 1640.11 1795.93 3257.58 40.00 1816.78 103.33 589.17 692.51 2719.16 -120.37 42.86 . 1594.10 92.89 -151.39 -58.50 2389.65 -1061.36 45.71 1468.73 124.25 -499.61 -375.36 2267.45 -1492.87 48.57 1439.80 197.18 -373.53 -176.34 2350.93 -1297.24 51.43 1079.51 182.89 -126.46 56.42 1822.22 -752.98 54.29 479.20 81.13 -75.59 5.53 808.80 -362.08 57.14 119.66 20.24 -23.75 -3.50 201.93 -97.37 60.00 0.00 0.00 0.00 0.00 0.00 0.00 tin TAYLOR AND GAINES PARKING STRUCTURE sheetft5f of SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 14.00 419.62 76.72 721.00 797.72 961.10 717.89 14.01 -120.25 -58.23 180.47 122.24 321.80 -267.33 32.00 107.53 37.48 -210.00 -172.52 214.25 -357.29 32.01 -192.35 -52.47 -509.90 -562.37 -358.49 -714.23 50.00 23.33 40.00 237.63 277.63 376.05 100.67 50.01 -276.55 -49.95 -61.64 -111.59 58.43 -472.08 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.32 0.06 0.68 0.73 0.91 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.32 0.06 0.68 0.73 0.91 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 14.00 3062.89 539.33 6021.23 6560.56 8052.76 0.00 14.01 3061.68 538.74 6023.04 6561.79 8054.97 32.00 2965.35 356.99 4052.29 4409.27 5093.21 32.01 2963.43 356.46 4047.19 4403.65 5086.06 ____ -.. 50.00 1461.22 249.17 -107.01 142.16 2469.29 - - -927.47 50.01 1458.46 248.67 -107.63 141.04 2464.57 -926.89 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES a1. For calculating working sol prossure,superimposed dead bad has teen multiplied by a factor of .85 when combined with seismic overturning as required by UBC/CAC 2312 h). a2. For calculating maximum and minimum ultimate shears and moments the Miaowing combinations have been used: A. 1.40L+1.7LL B..75(1.4OL+1.7LL+1.87E) C. .9DL+1.43E D. 1.4(DL+LL+E) E..75DL+1.4E and .750L-1.4E -28014, i 0 Q rin 0 O O N O O O O O 0 0 O O 0 0 CO CO V N O SdIN NI 21`d3HS 0 0 O O pS2 O O O O CO O 0 0 CO 0 N O O DISTANCE FT 1 cn a Q O f Mu DIAGRAM .,..., fd u 'I.^W f r +4.'✓ i �5s ,gNfi^`.',5. te�i S,"W.,.t„ -w{f � �? {s ,[ :" ✓ ° 1_, ••a.' y n ` z '� i^ r F ✓ 2P yM .iyy+.)`e2:i .:' �t a AWW } •- 4 M _..,+r p.��rvdd'f"' µd ' n ?y+s. Taf4"! .'N.0 3 } 4 O 0 O O 9 O 0 O N-11 1N3WOW 0 O O O 0 N O 0 O 0 0 O O 0 O 0 0 O O rn O O O V 0 O O 0 0 O N DISTANCE FT v a 2 TAYLOR AND GAINES PARKING STRUCTURE sbeetfSl of STRUCTURAL ENGINEERS By: SC 320 N.HALSTEAD ST. #200 Job No: 1395 PASADENA, CA. 91107 HOAG MEMORIAL Date: 03/01/00 GRADE BEAM LINEABTWN3TO5 1=1.5 Beam L => 60 SEIS. DIR OT factor ------> +1 +1 -1 => 1 Ductile Y(1)N(0)=> 0 Ldg. Soil Bearing KLF Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 35.26 44.17 0.00 7.88 36.38 41.33 72.67 77.62 60 60 -59.11255 60 DL RM/OTM 2.881632 Pldno. a> Pdl> PII> Pot> Mot> 1 2 3 14 32 50 540 300 300 135 90 90 W ld no. c> d > W dl > W II > Wtr of > FTG. WT WALL FLR WT 0 13 0 60 51 60 6.00 18.00 1.10 90.46122 TAYLOR AND GAINES PARKING STRUCTURE sheetfl6Cf x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 2.86 89.90 15.82 -8.83 6.99 152.75 -60.28 5.71 179.50 31.55 -8.09 23.46 304.94 -106.71 8.57 268.80 47.20 2.22 49.42 456.57 -139.29 11.43 357.79 62.78 22.09 84.87 607.63 -158.04 14.29 -116.67 -56.73 -399.23 -455.97 -259.78 -591.14 17.14 -79.71 -41.33 -190.11 -231.44 -181.86 -291.22 20.00 -43.07 -26.00 -10.29 -36.29 8.12 -104.49 22.86 -6.72 -10.76 140.24 129.49 204.11 -27.70 25.71 29.31 4.41 261.47 265.88 362.00 48.53 28.57 65.05 19.49 353.40 372.89 497.57 124.20 31.43 100.48 34.49 416.04 450.53 592.05 199.30 34.29 -164.40 -40.59 149.38 108.79 300.74 -299.17 37.14 -129.58 -25.76 153.42 127.66 288.06 -225.20 40.00 -95.07 -11.00 128.16 117.16 233.65 -151.79 42.86 -60.86 3.67 73.60 77.28 137.51 -78.96 45.71 -26.95 18.27 -10.25 8.02 18.41 -6.68 48.57 6.65 32.78 -123.40 -90.62 65.03 -179.98 51.43 -252.34 -42.80 -518.93 -561.72 -426.03 -693.41 54.29 -167.92 -28.45 -355.52 -383.97 -283.46 -475.70 57.14 -83.81 -14.18 -182.54 -196.73 -141.45 -244.56 60.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 128.51 22.61 -14.89 7.72 218.36 -89.41 5.71 513.45 90.30 -41.34 48.96 872.34 -331.25 8.57 1153.96 202.83 -52.01 150.81 1960.35 -685.98 11.43 2049.16 359.96 -19.57 340.40 3480.76 -1114.03 14.29 3029.02 522.90 -12.74 510.16 5129.55 -1623.60 17.14 2748.55 382.83 -847.68 -464.86 4498.78 -2668.92 20.00 2573.22 286.67 -1126.99 -840.32 4089.84 -2975.40 22.86 2502.17 234.18 -934.36 -700.18 3901.14 -2662.28 25.71 2534.51 225.13 -353.51 -128.38 3931.04 -1848.81 28.57 2669.39 259.29 531.86 791.15 4177.93 -654.21 31.43 2905.92 336.42 1638.05 1974.47 4640.21 34.29 2557.53 250.58 2195.62 2446.20 4006.53 37.14 2137.63 155.82 2635.15 2790.98 3257.58 40.00 1816.78 103.33 3044.38 3147.72 3761.08 42.86 1594.10 92.89 3339.59 3432.48 4240.28 45.71 1468.73 124.25 3437.07 3561.32 4461.18 48.57 1439.80 197.18 3253.12 3450.30 4306.38 51.43 1079.51 182.89 2285.48 2468.37 3058.04 54.29 479.20 81.13 1034.00 1115.12 1384.70 57.14 119.66 20.24 263.06 283.30 352.57 60.00 0.00 0.00 0.00 0.00 0.00 0.00 1Z TAYLOR AND GAINES PARKING STRUCTURE sheetf of SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V,dl V II V dl+ot V tl+ot +Vu max -Vu max 14.00 419.62 76.72 118.24 194.96 717.89 -53.31 14.01 -120.25 -58.23 -420.96 -479.19 -267.33 -622.25 32.00 107.53 37.48 425.05 462.53 606.02 214.25 32.01 -192.35 -52.47 125.20 72.73 280.98 -358.49 50.00 23.33 40.00 -190.96 -150.96 100.67 -285.44 50.01 -276.55 -49.95 -491.46 -541.41 -472.08 -655.47 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.32 0.06 -0.05 0.01 0.54 -0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.32 0.06 -0.05 0.01 0.54 -0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 14.00 3062.89 539.33 104.54 643.86 5204.90 -1473.84 14.01 3061.68 538.74 100.32 639.07 5202.22 -1479.23 32.00 2965.35 356.99 1878.41 2235.40 4758.37 32.01 2963.43 356.46 1879.66 2236.13 4754.78 50.00 1461.22 249.17 3029.45 3278.62 4051.41 •"' 50.01 1458.46 248.67 3024.54 3273.21 4044.86 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES M1. For calailating working soil pressure,supedmposed dead bad has been multiplied by a factor of .85 when combined with seismic oveduming as required by LBCICAC 2312(h). 112. For calculating maximum and minimum ultimate shears and moments the folllowing combinations have been used: A. 1.4DL+1.7LL B..75(1.4DL+1.7LL+1.87E) C..9DL+1.43E D. 1.4(DL+LL+E) E..7SDL+1.4E and .750L-1.4E oil T Nowato L CO Vu DIAGRAM o o O O 0 0 CO CO a CAN SdIN NI HVEHS 0 0 O 0 0 0 0 0 O LO 0 0 m 0 N O 0 DISTANCE FT cn ro J z Mu DIAGRAM n• � $ ._(Kc ��s .5.. e.._ yi .i� m TA 5r 4 A � K35�;y;� .S`Mem. _ f =. i r L ) 1 k� rA C HI 7.1 a. k+ N O O 0 O O O o o O o o O O o O R CO N O O 0 0 O 0 0 O LID O 0 O 0 O O O O O 0 0 O O O O O O O O O O O O O O O O O O >I -id 1N3WO1A1 TsTAYLOR S.GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SHEET • SUITE 200 PASAOE NA. CALIF ORNIA 91 1 0 i (6261 351 -6661 FAX 16263 351 -5319 Nbeet r#) 1N4 zinzuczuRe sheet P-' \ of by Q job no. I" 5 date 6 /cri !JAC 6%1 - Kai e G w t' — Ia WfI'r/t3 est< 177 05 a $'Is.c r 20 It MP GIN t pa bt 13' eg4t I\ ADS _ 2,41t li AW rt - 3pt`' u; le" ri-' 49)$- LV I35 ' 9, par Z t l t."` // 36' ) 4 1 1'`1J, Met .ak F. mere-us'� !i4- t 3gt3/i +(3k4-to J4)X6.Vi = 32585k' 1) Net-, C(14=; 0 xo05J x 1..►K = 15, 6+4f I,) dr- x to) ,‘o,05 - 6 keF alcove Kosri "lox 142x 5 21_ TS TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOENA. CALIFORNIA 61 1 07 (6261 351-5821 FAX (6261 351-5319 14v1 by rIQI4k iti4 SerKUc TUt2E Job no. 1'9 5 date -6 / 9 / sheet 6,1161312. 1-14-lk• P4p€ W • boil. p66 P.l rctssS r4 ri bKSFxI133= 271 F k tit #b c Ig;I,, c 11171° CoN*At) x6m/5ox96 5DIL R,'fsrogfr) 1:261,111 x 51-1-0 Loricir cimi tbsN -FEE TAYLOR 8 GAINES STRUCTURAL ENGINEERS 320 NORTH NMSTFAD STREET STE 200 PASADENA, CA LIFORNIA 91107 (515) 351 -5981 FAX (515) 351-5319 PARKING STRUC HOAG HOSPITAL sht: f GI by: sc Job No: 1395 Date: 4/5/00 CONCRETE BEAM CAPACITY NOTE: This program is limited to tension steel only & balanced condition. Based on fc<=5000asi Ref. AC1318-83 SEC.8.9 & 11 k b INPUT fy (ksi) 60 b (in) 132.00 BEAM LOCATION fc (ksi) 5 d (in) 44.00 fy (ksi stir.) 60 Bar # 11 Max As = 146.1 in2 (0.75 balanced condition) Min As = 19.36 in2 (200bd/fy) As balanced = .85p,Pc87000bd/fy(87000+fy) Mu=4Mn=KnF=4fc(o(1-.59(u)F WHEN 1m=pfy/fc AND p=As/bd F= bd2/12000= 21.30 S=0.9 for Mu; 0.85 for Vu M„ REDUCED by 33% when p<200/fy. Mu Tabulated up to Max. As=0.75 balanced Mu(max) = 23774 K' 4Vc = 698.2 M„(for min. p=200/fy) = 3742.81 K' V„ (max) = 3490.8 Stirrup -► IPA • • • • • d MOMENT (Mu) CAPACITY FOR DIFFERENT STEEL AREAS As(in"2) Mu(Kft) As(inA2) Mu(Kft) As(in"2) Mu(Kft) As(in"2) Mu(Kft) 1.56 231.8 10.92 1604.0 20.28 3916 29.64 5657 3.12 462.7 12.48 1829.7 21.84 4209 31.20 5943 4.68 692.7 14.04 2054.4 23.40 4501 32.76 6227 6.24 921.9 15.60 2278.2 24.96 4792 34.32 6511 7.80 1150.2 17.16 2501.2 26.52 5081 35.88 6794 9.36 1377.5 18.72 2723.3 28.08 5370 37.44 7075 When V„<=1/24Vc=.5*.85*2*fc"`*bd = Shear Reinforcement is required When 1/24Vc= 349.1 <_Vu S 34Vc = 2094.5 Kips Min Spac'g of s=Avfy/50b or d/2 OR 24inches; Whichever controls. Max. Spac'g for #6,#5,#4 & #3 (in) = 8.00 5.64 3.64 2.00 When 34Vc<Vu<54Vc (Max.Spac'g NOT to exceed d/4 OR 12 inches) Max. Spac'g for #6 , #5, #4 & #3 (in) = 8.00 5.64 3.64 2.00 STIRRUP Spac'g for strength req. = s =4Ayfy d/(Vu-4Vc) 349.1 Kips ULTIMATE SHEAR (11,)CAPACITY FOR DIFFERENT STIRRUP SPACING INPUT Spac'g (in) #6 BAR #5 BAR #4 BAR #3 BAR 18.00 0 0 0 0 16.00 0 0 0 0 14.00 0 0 0 0 12.00 0 0 0 0 10.00 0 0 0 0 8.00 945 0 0 0 6.00 1027 0 0 0 4.00 1192 1046 0 0 /Z TAYLOR AND GAINES PARKING STRUCTURE STRUCTURAL ENGINEERS 320 N.HALSTEAD ST. #200 PASADENA, CA. 91107 HOAG MEMORIAL sheet f 'aof By: SC Job No: 1395 Date: 03/01/00 GRADE BEAM LINE A BTWN 8 TO 10 I = 1.5 Beam L => 60 SEIS. DIR OT factor ------> +1 +1 -1 => 1 Ductile Y(1)N(0)=> 0 Ldg. Soil Bearing KLF Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 32.98 40.41 0.00 0.00 33.50 39.05 94.91 96.31 60 60 -43.59716 -49.50239 DL RM/OTM 1.780408 Pldno. a> Pdl> PII> Pot> Mot> 1 2 3 10 28 46 300 300 450 fro 90 90 135 M077i 96.3/Z //' = f. W Id no. c> d> W dl > W II > Wtr of > FTG. WT WALL FLR WT 0 9 0 60 47 60 6.00 15.60 1.10 135.3947 TAYLORAND GAINES PARKING STRUCTURE sheet3of x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 2.86 80.88 14.18 -20.29 -20.29 137.35 -71.88 5.71 161.50 28.45 -40.57 -40.57 274.47 -143.61 8.57 241.86 42.80 -60.86 -60.86 411.35 -215.21 11.43 -15.94 -32.78 -111.23 -200.38 -78.04 -271.24 14.29 19.31 -18.27 132.23 56.19 178.85 -4.02 17.14 54.29 -3.67 318.10 270.46 426.11 69.77 20.00 89.01 11.00 458.70 442.45 608.76 143.32 22.86 123.47 25.76 558.90 572.16 755.64 216.64 25.71 157.66 40.59 618.69 659.57 864.29 289.72 28.57 -108.42 -34.49 338.08 314.69 540.92 -210.42 31.43 -74.76 -19.49 317.08 317.52 493.04 -137.80 34.29 -41.37 -4.41 255.67 278.06 405.13 -65.42 37.14 -8.25 10.76 153.86 196.32 276.87 6.74 40.00 24.61 26.00 11.64 72.28 89.38 3.61 42.86 57.21 41.33 -170.97 -94.05 150.35 -274.81 45.71 89.54 56.73 -393.99 -302.66 221.80 -610.85 48.57 -303.88 -62.78 -861.33 -892.49 -532.16 -1136.60 51.43 -227.52 -47.20 -672.65 -693.19 -398.77 -885.98 54.29 -151.41 -31.55 -466.20 -478.01 -265.61 -613.01 57.14 -75.57 -15.82 -241.99 -246.95 -132.69 -317.69 60.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 115.61 20.24 -28.98 -28.98 196.27 -102.72 5.71 461.94 81.13 -115.92 -115.92 784.64 -410.59 8.57 1038.23 182.89 -260.82 -260.82 1764.43 -923.23 11.43 1369.15 197.18 -555.98 -684.29 2252.02 -1520.71 14.29 1374.02 124.25 -512.14 -880.22 2134.85 -1734.70 17.14 1479.23 92.89 144.34 -403.51 2228.83 -1099.20 20.00 1684.02 103.33 1263.68 625.01 2533.30 22.86 1987.63 155.82 2727.01 2084.53 3047.58 25.71 2389.30 250.58 4418.89 3854.20 5052.69 28.57 2716.84 336.42 6052.48 5590.35 7215.12 31.43 2455.20 259.29 6998.04 6503.57 8705.94 34.29 2289.36 225.13 7825.87 7364.47 9977.63 37.14 2218.53 234.18 8420.52 8052.23 10865.52 40.00 2241.98 286.67 8666.56 8446.00 11204.94C 42.86 2358.93 382.83 8448.57 8424.98 10935.70 45.71 2568.63 522.90 7651.11 7868.32 10063.21 48.57 1732.44 359.96 5192.65 5341.96 6835.52 51.43 973.36 202.83 2997.02 3072.92 3940.80 54.29 432.10 90.30 1365.86 1395.99 1794.05 57.14 107.90 22.61 349.93 356.56 45916 60.00 0.00 0.00 0.00 0.00 0.00 0.00 poitfr A-- TAYLOR AND GAINES PARKING STRUCTURE sheet I'l`of SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 10.00 266.33 50.00 45.23 45.23 457.87 -76.48 10.01 -33.54 -39.95 -253.71 -343.71 -114.87 -465.14 28.00 184.81 52.52 637.44 699.05 908.57 348.02 28.01 -115.07 -37.43 337.46 309.16 543.56 -224.72 46.00 92.76 58.28 -418.51 -325.85 228.93 -647.63 46.01 -357.13 -76.67 -869.37 -911.67 -630.32 -1142.95 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.28 0.05 -0.07 -0.07 0.48 -0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.28 0.05 -0.07 -0.07 0.48 -0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu maxmax- 10.00 1404.58 249.17 -296.29 -296.29 2389.99 -1' 168.12 10.01 1404.24 248.77 -298.83 -299.73 2388.84 -1171.58 28.00 2780.72 356.99 5859.39 5412.05 6905.15 28.01 2779.57 356.61 5862.77 5415.15 6910.59 46.00 2594.67 539.33 7535.05 7778.54 9926.02 a- 46.01 2591.10 538.56 7526.36 7769.43 9914.60 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES E. For calculating working aol pressure.superimposed dead bad has been muitiplbd by a factor of .85 when combined With seismic overturning as required by USG/CAC 2312(h). #2. For calculating maximum and minimum ultimate shears and moments the killer/Inc combinations have been used: A. 1.40L+1.7LL B..75(1.4DL+1.7LL+1.87E) C..913L+1.43E D. 1.4(DL+LL+E) E..75DL+1.4E and .75DL-1.4E Arn 5- . Vu DIAGRAM j aiW K � '^""'t "^ :... . a•. 4 u�" � b -Y�y*S" Q Y.F '�,w �'rf+.1 '"xrct $ I J <.5 {-,� �4„ , �qy Y ♦4iTM'+ayyq } :r. :,i «'.^f^x "^t 4•'(".At v3 P t. }{ "i "M�'C ti':� .. tirv�`a{ ;.�xi-. 11�� • RS'ei'Y^ N L .'" iT.4 Pr� 'Y LL A yt,� ix"nr°�Y.KiM°n: .t 0 O 0 O O O O O O SdIN NI 2!V HS 0 0 O 0 O to O CO O 0 O CO O N O 0 DISTANCE FT v a Mu DIAGRAM ""'• x � .„.'w4Tti -rcr-'.4 'S..Ii.A . .f^+♦ :+a w �'SY F' 11 hUN ygTYHE R O. eYk^^i i5'm A'F �, h w 4E.'Y..a�'S'r 3'-iY xm xe F r.-r„ k� � ..�• yY'� .w � d.a 'i. ,� ' .,.a�t:+o-TS`#Y' 'Si S;✓+ e`er .., .�la' ti �&` '[s sr II n Li sbsa " - O O 0 O O O 1D O O O O O N-±d 1N3WOW O 0 O O O O O O O O O O O 0 CID O 0 O O 0 CO O O O N O O DISTANCE FT '-1 v 0- TAYLOR AND GAINES PARKING STRUCTURE sheet L 3 �f STRUCTURAL ENGINEERS By: SC 320 N.HALSTEAD ST. #200 Job No: 1395 PASADENA, CA. 91107 HOAG MEMORIAL Date: 03/01/00 GRADE BEAM LINE A BTWN 8 TO 10 1 = 1.5 Beam L => 60 SEIS. DIR OT factor ------> +1 +1 -1 => -1 Ductile Y(1)N(0)=> 0 Ldg. Soil Bearing KLF Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 35.46 40.41 101.14 98.34 30.73 39.05 0.00 0.00 60 60 37.79375 48.4815 DL RM/OTM 1.738941 Pldno. a> Pdl> PII> Pot> Mot> 1 2 3 10 28 46 300 300 450 90 90 135 Wldno. c> d> Wdl> WII> Wtrot> FTG. WT WALL FLR WT 0 9 0 60 47 60 6.00 15.60 1.10 135.3947 /L TAYLOR AND GAINES PARKING STRUCTURE sheet5aof x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 2.86 80.88 14.18 252.24 252.40 323.67 137.35 5.71 161.50 28.45 485.25 488.25 624.21 274.47 8.57 241.86 42.80 699.01 707.53 901.60 411.35 11.43 -15.94 -32.78 247.85 174.57 362.87 -78.04 14.29 19.31 -18.27 70.25 7.86 90.22 -4.02 17.14 54.29 -3.67 -68.42 -117.24 69.77 -183.09 20.00 89.01 11.00 -168.16 -200.72 143.32 -314.29 22.86 123.47 25.76 -228.96 -242.59 216.64 -392.85 25.71 157.66 40.59 -250.83 -242.85 289.72 -442.25 28.57 -108.42 -34.49 -533.77 -591.49 -210.42 -786.95 31.43 -74.76 -19.49 -477.78 -508.52 -137.80 -684.36 34.29 -41.37 -4.41 -382.86 -383.94 -65.42 -525.57 37.14 -8.25 10.76 -249.01 -217.74 6.74 -351.71 40.00 24.61 26.00 -76.22 -9.93 78.66 -122.05 42.86 57.21 41.33 136.57 239.49 310.45 150.35 45.71 89.54 56.73 403.30 530.53 705.27 221.80 48.57 -303.88 -62.78 81.14 81.14 277.09 -532.16 51.43 -227.52 -47.20 60.86 60.86 207.61 -398.77 54.29 -151.41 -31.55 40.57 40.57 138.27 -265.61 57.14 -75.57 -15.82 20.29 20.29 69.06 -132.69 60.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 115.61 20.24 364.93 364.52 467.90 5.71 461.94 81.13 1423.07 1426.53 1827.53 8.57 1038.23 182.89 3119.44 3138.73 4012.77 11.43 1369.15 197.18 4542.25 4468.39 5769.76 14.29 1374.02 124.25 4987.40 4719.11 6403.74 17.14 1479.23 92.89 4980.74 4552.95 6338.46 20.00 1684.02 103.33 4633.50 4088.82 5733.37 22.86 1987.63 155.82 4056.92 3445.61 4747.95 25.71 2389.30 250.58 3362.23 2742.22 3771.01 28.57 2716.84 336.42 2489.24 1874.68 4375.49 31.43 2455.20 259.29 1034.88 293.32 3878.08 -487.14 34.29 2289.36 225.13 -203.88 -991.53 3587.82 -2226.33 37.14 2218.53 234.18 -1115.82 -1860.98 3504.05 -3421.92 40.00 2241.98 286.67 -1589.71 -2196.14 3626.10 -3906.94 42.86 2358.93 382.83 -1513.97 -1878.10 3953.31 -3514.37 45.71 2568.63 522.90 -756.57 -787.98 4485.00 -2443.27, 48.57 1732.44 359.96 -463.67 -463.67 3037.35 -1581.24 51.43 973.36 202.83 -260.82 -260.82 1707.51 -888.85 54.29 432.10 90.30 -115.92 -115.92 758.45 -394.77 57.14 107.90 22.61 -28.98 -28.98 189.50 -98.63 60.00 0.00 0.00 0.00 0.00 0.00 0.00 TAYLOR AND GAINES PARKING STRUCTURE sheet SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 10.00 266.33 50.00 651.24 663.54 830.35 457.87 10.01 -33.54 -39.95 350.49 272.81 518.97 -114.87 28.00 184.81 52.52 -240.30 -213.09 348.02 -441.58 28.01 -115.07 -37.43 -540.20 -602.90 -224.72 -800.24 46.00 92.76 58.28 433.17 561.92 747.97 228.93 46.01 -357.13 -76.67 -15.78 -21.97 166.72 -630.32 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.28 0.05 0.92 0.91 1.17 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.28 0.05 0.92 0.91 1.17 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 10.00 1404.58 249.17 4115.48 4149.56 5292.87 es-e0.00 10.01 1404.24 248.77 4118.99 4152.29 5296.87 28.00 2780.72 356.99 2796.19 2216.07 4499.89 28.01 2779.57 356.61 2790.79 2210.04 4497.64 46.00 2594.67 539.33 -637.09 -631.92 4549.39 -2286.21 46.01 2591.10 538.56 -637.25 -632.15 4543.09 -2284.55 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES i71. For calculating woddng sal pressure:superimposed dead load has been multiplied by a factor of .85 when combined with seismic overturning as required by UBCICAC 2312(h). 02. For calculating maximum and minimum ultimate shears and moments the billowing combinations have been used: A 1.40E+1.71.1 B..75(1.401+1.7LL+1.37E) C..901+1.43E D. 1.4(D1+LL+E) E..75DL+1.4E and .750L-1.4E Vu DIAGRAM 11 N + '� nor, £2. _ a .'t;. .µt .0 !,,_yy 'x""S ..!,Yi"'"�t '*. hi x' .3^•' kY .'.• dew .�MsiMw�i i mn 7`3'_�. �y�P '�y �b S' '�3M�' y ,+pi�yY•#Y"i� _f•' � .a.w- 1A mt%** LI Xf O O t0 0 O V 0 SdIN NI 2JV3HS 0 O 0 O O O 0 O 0 O fh 0 O DISTANCE FT 0 Mu DIAGRAM JF, i'"�"R.Y '- 3">mmwv.xec" L .f.11 O' ry�i�d'+.-•F' wt ,r '"RYw+Y.�EiE 4 % k..n .i Suva rah" 3 r " E' .�g4 +`- ♦ . , .. _ _ c r E;E� ���,�n+: ..',gyp ay„. .. AFxTi,.i t t Q- x +,*}�`'4'' 'i �:•� '" � i "..—r o Xmha.rx% e eM, s `.•,- ~ .' :sAl: �j4 . �"i"" .:, o �r "'°'• 2a "%. 3, fmN R il .m.wss- wa �ey: S�-,5+'�j i5pr to vk x,S�yt"� t*i'4'gF•s +t 'd Y�y(7A / 2 yP.` li X KS 11 n.i- fi'd`^' y..x y�.-twW�•` s^�' k'; t y*`yt"' }'*' k of a. 41 m O O O O O 10 O O O O 0 tt 0 O O O 0 O O O O O O O O CD 0 O 0 O O O 0 0 0 O O O O O DISTANCE FT TAYLOR S. GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SKEET • SUITE 200 PASAOENA, CALIFORNIA 91 1 07 (S2S] 351 -SSS 1 FAX (3281 351-531 S Rbifrei plitticirA iientuC 1uFte sheet `� a by lob fts 13 15 date 6/11 6R1951 PALG► pert e A.Iv 45er1/414e+k.. �" t2II14, cat4 r 46b sTI63 ®8 rtZTAve (I 4? :-ox$'D _ rL11a k i-=31K Pe 4wt ® PvL ice`' pu,r 3� rbtiiitiel < Wux_612)X6445=IO.4 kt,Ws"j(�-)xoil 56 11c Ib 1.1PlAt4;f1-) X O%15X 2511 : isWSf w� bLP i51/1-xa 15) X & %} 514» .2kr-r III Ids ,,o461 t4L` Cd%05 x (L AoJ c 5ws 1,3 ktf W tem. - PI,t [( - oI15) x (I8 :gX).Lv 1I1-) k'"r Wl� Li% (Ot•5X CIai4),] X 1 Lv s p,1 KT' 4011. P_ . 4; Clai ta,)4,) X v1 I X _ )vim Ott- ? N 304 I O . tettalpip. Irnpr —ES TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAO SREET • SUITE 200 PASAOEN A. CA LI F ORN IA 91 1 O7 (6261 351-6661 FAX (6261 351 -5319 rigesi p4Rksr4 61Kw:rr t i kA t:6-4r1 G (') RIH4 risEissu2t bK4r x 133 t blcsr Jy = Job no. sheet 1 1 s of by 9 l3 15 date -6 /4 5bI1, le'EsltArr, KSr. . 4443/4. Gt g4t* tarats t1 l l �' • It x) -' C p6pa x otitis L.4.144 I) 114 W2, 1 t lit• 11 t thou. ,5 tr») = 4bb•.,otK.• &c! 1111J c. (9,41-'4-)xb Mtn' 9w 2 it J at I ¢. t a''- •5 31- * II -Vs As Mtn% . < ritA,44Aas 15ovo Ci03 roultlet 5.IN') iE TAYLOR 8 GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET STE 200 PASADENA, CA UFORNIA 91107 (815) 351 - 5881 FAX (919) 351-5319 PARKING STRUC HOAG HOSPITAL sht: by: sc Job No: 1395 Date: 4/5/00 i?V CONCRETE BEAM CAPACITY NOTE' This program is limited to tension steel only & balanced condition. Based on fc<=5000asi Ref. AC1318-83 SEC.8.9 & 11 b INPUT fy (ksi) 60 b (in) 120.00 BEAM LOCATION fc (ksi) fy (ksi stir.) 5 60 d (in) Bar # 92.00 11 Max As = 277.7 in2 (0.75 balanced condition) Min As = 36.80 in2 (200bd/ff) As balanced = .8591fc87000bd/fy(87000+fy) Mu=4Mn=KnF=4fco(1-.59o)F WHEN cu=pfy/fc AND p=As/bd F= bd2/12000= 84.64 4)=0.9 for Mu; 0.85 for Vu M„ REDUCED by 33% when p<200/fy. Mu Tabulated up to Max. As=0.75 balanced Mu(max) = 94490 K' = 1327.1 Mu(for min. p=200/fy) = 14875.65 K' V„ (max) = 6635.5 Stirrup `•\ • • • • • d MOMENT (Mu) CAPACITY FOR DIFFERENT STEEL AREAS As(in^2) Mu(Kft) As(in^2) Mu(Kft) AsOn^2) Mu(Kft) As(inA2) Mu(Kft) 1.56 485.1 10.92 3375.4 20.28 6231 29.64 9051 3.12 969.2 12.48 3853.7 21.84 6703 31.20 9518 4.68 1452.4 14.04 4331.0 23.40 7175 32.76 9983 6.24 1934.6 15.60 4807.4 24.96 7645 34.32 10448 7.80 2415.8 17.16 5282.8 26.52 8115 35.88 10912 9.36 2896.1 18.72 5757.2 28.08 8583 37.44 15128 When V„<=1/2+Vc=.5*.85*2*fc"`*bd = Shear Reinforcement is required When 1/24 Vc= 663.5 <_VU <_ 34Vc = 3981.3 Kips Min Spac'g of s=Avfy/50b or d/2 OR 24inches; Whichever controls. 663.5 Kips Max. Spac'g for #6,#5,#4 & #3 (in) = 8.80 6.20 4.00 2.20 When 3$Vc<Vu<5$Vc (Max.Spac'g NOT to exceed d/4 OR 12 inches) Max. Spac'g for #6 , #5, #4 & #3 (in) = 8.80 6.20 4.00 2.20 STIRRUP Spac'g for strength req. = s 4A„fyd/(Vu-4Vc) ULTIMATE SHEAR (V„ )CAPACITY FOR DIFFERENT STIRRUP SPACING INPUT Spac'g (in) #6 BAR #5 BAR #4 BAR #3 BAR 18.00 0 0 0 0 16.00 0 0 0 0 14.00 0 0 0 0 12.00 0 0 0 0 10.00 0 0 0 0 8.00 1843 0 0 0 6.00 2015 1812 0 0 4.00 2359 2054 1796 0 TAYLOR AND GAINES PARKING STRUCTURE STRUCTURAL ENGINEERS 320 N.HALSTEAD ST. #200 PASADENA, CA. 91107 HOAG MEMORIAL sheet7�of By: SC Job No: 1395 Date: 03/01/00 GRADE BEAM LINE 1BIM DTOB 1=1.5 Beam L => 102 SEIS. DIR OT factor -----> +1 +1 -1 => 1 Ductile Y(1)N(0)=> 0 Ldg. Soil Bearing KLF Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 47.01 52.35 15.35 20.69 32.67 35.06 64.33 66.72 102 102 102 102 DL RM/OTM 3.964747 PIdno. a> Pdl> PII> Pot> Mot> 1 2 3 5 51 97 145 500 145 a5'L 39 105 39 l0 ' vcl r.OG% fin W Id no. c > d > W dl > W II > Wtr of > FTG. WT WALL FLR LOAD WAL/FLR SOIL WT 0 4 4 52 0 102 52 52 98 102 9.00 18.00 2.80 8.62 10 2.3 0.9 142.9737 TAYLORANDGAINES PARKING STRUCTURE sheet/CA?of x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 4.86 122.09 18.09 95.98 114.08 201.68 72.55 9.71 12.39 -12.42 453.84 441.42 642.42 -3.78 14.57 44.10 -4.35 827.21 822.86 1159.54 54.34 19.43 72.23 3.30 1071.10 1074.40 1493.39 106.74 24.29 96.77 10.55 1185.50 1196.05 1643.98 153.41 29.14 117.72 17.38 1170.42 1187.81 1622.19 194.35 34.00 135.08 23.80 1025.86 1049.67 1421.51 229.58 38.86 148.86 29.81 751.82 781.63 1039.96 259.08 43.71 159.05 35.41 348.29 383.70 477.56 282.86 48.57 165.65 40.59 -184.72 -144.13 300.92 -351.94 53.43 -313.93 -57.64 -1119.48 -1177.12 -537.49 -1532.90 58.29 -255.35 -46.48 -1046.25 -1092.73 -436.50 -1436.62 63.14 -200.35 -35.73 -961.96 -997.69 -341.23 -1324.08 68.00 -148.93 -25.40 -866.60 -892.00 -251.68 -1195.29 72.86 -101.11 -15.47 -760.19 -775.67 -167.85 -1050.26 77.71 -56 87 -5.96 -642.72 -648.69 -89.75 -888.98 82.57 -16.22 3.13 -514.19 -511.06 -17.37 -726.70 87.43 20.85 11.82 -374.60 -362.78 49.28 -546.73 92.29 54.33 20.09 -223.95 -203.86 110.21 -349.05 97.14 -60.78 -11.05 -207.25 -218.29 -103.88 -283.32 102.00 0.00 0.00 0.00 0.00 0.00 0.00 x M di M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.86 333.61 48.05 23.88 71.93 548.74 -142.67 9.71 330.21 -27.15 1080.14 1052.99 1369.59 14.57 468.85 -67.72 4243.67 4175.95 5819.95 19.43 752.81 -70.10 8906.25 8836.15 12336.95 24.29 1164.67 -36.29 14438.97 14402.69 20030.45 29.14 1687.01 31.72 20212.92 20244.64 28010.36 34.00 2302.40 131.91 25599.17 25731.08 35386.54 38.86 2993.42 262.29 29968.80 30231.09 41310.49 43.71 3742.64 420.85 32692.91 33113.76 45069.11 48.57 4532.64 605.59 33142.57 33748.16 45656.82 53.43 4144.14 560.93 29635.79 30196.72 40818.58 58.29 2763.05 308.25 24371.67 24679.92 33600.32 63.14 1657.82 108.77 19490.12 19598.89 26992.22 68.00 811.03 -39.51 15044.85 15005.34 21084.29 72.86 205.24 -138.60 11089.58 10950.98 15749.32 77.71 -176.96 -190.50 7678.03 7487.53 11073.37 -571.58 82.57 -352.99 -197.20 4863.91 4666.70 7142.47 -829.43 87.43 -340.28 -160.73 2700.93 2540.20 4042.68 -749.63 92.29 -156.26 -83.06 1242.82 1159.75 1860.04 -359.97 97.14 160.94 28.21 522.57 550.77 712.13 102.00 0.00 0.00 0.00 0.00 0.00 0.00 TAYLOR AND GAINES PARKING STRUCTURE sheetf77 of SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 5.00 123.18 18.35 112.62 130.97 203.64 95.77 5.01 -21.75 -20.63 -31.22 -51.85 -33.11 -65.52 51.00 167.61 43.03 -499.78 -456.75 307.80 -803.52 51.01 -332.39 -61.96 -1001.14 -1063.10 -570.68 -1365.94 97.00 83.39 27.73 -67.16 -39.43 163.88 -140.24 97.01 -61.55 -11.26 -211.82 -223.07 -105.31 -289.73 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.29 0.04 -0.02 0.02 0.48 -0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.29 0.04 -0.02 0.02 0.48 -0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 5.00 351.13 50.66 38.78 89.44 577.69 -130.64 5.01 350.91 50.45 38.46 88.91 577.04 -130.98 51.00 4937.49 707.15 32317.94 33025.09 44487.07.■a. 51.01 4934.17 706.53 32307.94 33014.47 44473.42 97.00 169.68 29.80 552.52 582.33 753.10 97.01 169.07 29.69 550.40 580.09 750.20 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES •1. For calculating woddng soil preawro.wpmimposed dead bad has been multiplied by a factor of .85 when combined with seismic overturning as required by UBC/CAC 2312 h). 02. For calculating maximum and minimum ultimata shears and moments the fallowing combinations have been used: A. I.4DL+I.7LL B..75(I.4DL+I.7LL+1.87E) C..9DL+1.43E D. 1.4(DL+LL+E) E..75DL+1.4E and .75DL-1.4E Vu DIAGRAM O 0 10 O O O O O N O SdIN NI elV3HS 0 0 0 O 0 ID O 0 O O N 0 0 O CO O O O v 0 04 0 DISTANCE FT Mu DIAGRAM O O O O O O V 0 O O O O O O O N N l� 1N901O01 O O 0 O O O 0 N O O O O DISTANCE FT TAYLOR AND GAINES PARKING STRUCTURE STRUCTURAL ENGINEERS 320 N.HALSTEAD ST. #200 PASADENA, CA. 91107 HOAG MEMORIAL sheet PFr+of By: SC Job No: 1395 Date: 03/01/00 GRADE BEAM LINE1BTWNDTOB 1=1.5 Beam L => 102 SEIS. DIR OT factor -------> +1 +1 -1 => -1 Ductile Y(1)N(0)=> 0 Ldg. Soil Bearing KLF Lt.end Rt. end L brg. DL TL DL+OT(#1) TL+OT 48.18 52.35 79.84 84.01 31.50 35.06 1.00 3.40 102 102 101.7951 102 DL RM/OTM 3.474902 Pldno. a> Pdl> PII> Pot> Mot> 1 2 3 5 51 97 145 500 145 39 105 39 W Id no. c > d > W dl > W II > Wtr of > FTG. WT WALL FLR LOAD WAUFLR SOIL WT 0 4 4 52 0 102 52 52 98 102 9.00 18.00 2.80 8.62 10 2.3 0.9 142.9737 oe. TAYLOR AND GAINES PARKING STRUCTURE sheet x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 4.86 122.09 18.09 148.19 166.29 201.68 147.21 9.71 12.39 -12.42 -429.06 -441.49 -3.78 -621.97 14.57 44.10 -4.35 -739.01 -743.36 54.34 -1080.15 19.43 72.23 3.30 -926.64 -923.34 106.74 -1363.38 24.29 96.77 10.55 -991.97 -981.42 153.41 -1469.81 29.14 117.72 17.38 -934.99 -917.61 194.35 -1399.43 34.00 135.08 23.80 -755.70 -731.90 229.58 -1152.25 38.86 148.86 29.81 -454.10 -424.29 259.08 -728.26 43.71 159.05 35.41 -30.20 5.21 282.86 -127.48 48.57 165.65 40.59 516.02 556.61 717.08 300.92 53.43 -313.93 -57.64 491.62 433.98 869.40 -537.49 58.29 -255.35 -46.48 535.56 489.08 901.18 -436.50 63.14 -200.35 -35.73 561.26 525.53 908.79 -341.23 68.00 -148.93 -25.40 568.74 543.34 892.23 -251.68 72.86 -101.11 -15.47 557.98 542.51 851.50 -167.85 77.71 -56.87 -5.96 528.99 523.02 786.59 -89.75 82.57 -16.22 3.13 481.76 484.89 697.51 -17.37 87.43 20.85 11.82 416.30 428.12 591.58 49.28 92.29 54.33 20.09 332.61 352.70 472.95 110.21 97.14 -60.78 -11.05 85.68 74.63 154.74 -103.88 102.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.86 333.61 48.05 643.34 691.39 845.95 9.71 330.21 -27.15 -419.72 -446.86 416.15 -775.21 14.57 468.85 -67.72 -3305.96 -3373.69 541.26 -4976.02 19.43 752.81 -70.10 -7400.62 -7470.72 934.77 -10981.88 24.29 1164.67 -36.29 -12109.62 -12145.91 1568.86 -17934.04 29.14 1687.01 31.72 -16838.90 -16807.18 2415.74 -24973.74 34.00 2302.40 131.91 -20994.37 -20862.46 3447.61 -31242.22 38.86 2993.42 262.29 -23981.97 -23719.68 4636.67 -35880.73 43.71 3742.64 420.85 -25207.63 -24786.78 5955.14 -38030.51 48.57 4532.64 605.59 -24077.29 -23471.70 7375.20 -36832.82 53.43 4144.14 560.93 -21347.50 -20786.57 6755.39 -32723.33 58.29 2763.05 308.25 -18845.56 -18537.31 4392.31 -28413.57 63.14 1657.82 108.77 -16174.47 -16065.70 2505.86 -24008.14 68.00 811.03 -39.51 -13422.80 -13462.31 1068.27 -19624.45 72.86 205.24 -138.60 -10679.10 -10817.70 51.72 -15379.89 77.71 -176.96 -190.50 -8031.94 -8222.44 -11445.30 82.57 -352.99 -197.20 -5569.88 -5767.09 -7938.77 87.43 -340.28 -160.73 -3381.50 -3542.22 -4827.52 92.29 -156.26 -83.06 -1555.34 -1638.40 -2232.19 97.14 160.94 28.21 -200.68 -172.48 273.27 -372.28 102.00 0.00 0.00 0.00 0.00 0.00 0.00 TAYLOR AND GAINES PARKING STRUCTURE sheaf/ Lof SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 5.00 123.18 18.35 133.73 152.08 203.64 125.95 5.01 -21.75 -20.63 -12.28 -32.91 -6.03 -65.52 51.00 167.61 43.03 834.99 878.02 1166.86 307.80 51.01 -332.39 -61.96 336.37 274.41 657.17 -570.68 97.00 83.39 27.73 233.94 261.67 334.06 163.88 97.01 -61.55 -11.26 88.71 77.45 159.48 -105.31 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.29 0.04 0.61 0.65 0.80 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.29 0.04 0.61 0.65 0.80 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dI M II M dl+ot M tl+ot +Mu max -Mu max 5.00 351.13 50.66 663.47 714.13 871.34 0.00 5.01 350.91 50.45 663.36 713.81 870.99 51.00 4937.49 707.15 -22442.96 -21735.81 8114.64 -34710.31 51.01 4934.17 706.53 -22439.61 -21733.08 8108.93 -34703.75 97.00 169.68 29.80 -213.16 -183.36 288.22 -394.75 97.01 169.07 29.69 -212.27 -182.58 287.17 -393.15 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES a1. For calculating working soi presure,superimposed dead load has been multiplied by a factor of .85 when combined with seismic overturning as required by t18C/CAC 2312(h). 02. For calculating maximum and minimum ultimate shears and moments the billowing combinations have been used: A. 1.40L+1.7LL B..75(1.4DL+1.7LL+1.87E) C..9DL+1.43E D. 1.4(DL+LL+E) E..75DL+1.4E and .751X-1.4E Of its L to Vu DIAGRAM 0 0 L0 0 0 O 0 0 0 0 0 SdIN NI 1:IV3HS O O 0 0 0 1.0 0 0 0 N 0 O O co O O 0 0 N 0 DISTANCE FT Mu DIAGRAM W ii uu N. xi `mac rw II LI 11raa 'es� ^A. kLI II III qq Y ky� `'t" ei, a- 'y`^ II II zr O O N O O O 10 O O o o O O O O O O O O O O O O O O O O O O O O O O O O O O 0 O O 0 0 0 10 0 Il] O N N-13 1N31/11O141 O O O O O O O O O O O O 0 In 0 If) DISTANCE FT T^'� TAYLOR & GAINES V STRUCTURAL ENGINEERS 320 NORTH HALSTEAD GREET • SUITE 200 PASADENA. CALIFORNIA 91 1 O7 05291 3514S8S1 FAX 9328] 361-5319 p skIW 4rAucaI $beet P-26 or by Job no. 3 JC date 610111 11 4Ftfset- WALL 6r Ript vssri e G ICI 12 ICT .11 1400-11 T GONT ¢11 (I GO►JT A-DDGG I,0f16rd 2-0 36' (Wbu-) �. • moo' 2G6 coLT re. *ra © 2I. µeu...r Pro = !'tl l bw)) I D"" Pe. GIRtn pri 114'4 I°u--.. 52 4 ewe pratf 1104 111:z 5--" rcAwn e t'LP "-o' rk_ 4514 19df = r4'i/t_ - <1I615"`rit' 1-6951 11- M r C 1.11 I11 "X',,.) .I. < 151-8n%c 6M = 1 I615r" W NON,- bd1/(1) xo,153 x 4vH a n15F /4P14s C WAS &D) xo105 ' 10,E h1pt,' it% L 56.x.1153xlaux 51-vz 5i6 leaf I4,= PIPSxlpux 5u"°4,5WP f - �'A e- /4'vrJ x S ',Qap T^' TAYLOR & GAINES IOL1� STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 PASADENA. CALI FORNI A 61 1 07 (6261 351 -BSS 1 FAX (6261 351-531 S 0 A'Gf pt44 cucucs sheet N' of by ono. 13 1 5 date 6/q9 4t6flk a as Prosti 4gu, P WALL Solt. 4 1712S-S511 IZS- A 6 gm°- n 1133 2 8 k411" s•n. let Ti 2-,AIL f4 51354.4� -�5 pew r T ARAI* tom (. +-o" x �3b� 1) p H : 53 $3.2-1 1 l 45 %N' < MuA-udt $ t 545SA> -vi_ e I A. t��+ I 4-0 * I ANT =C/t3 1 f (Asriti f T^'� TAYLOR & GAINES V STRUCTURAL ENGINEERS 320 NORTH HALSTEAD GREET • SUITE 200 PAS AO E NA, CALIFORNIA 61 1 07 (626) 351-8881 FAX (826) 351-531 S sheet A4g€,/of by lob no• data ,QA.,Aot /.a,4 ,a eat .A T L/NE 7 ?a 4R/O 6, 5- fi /74,1c� /�. ', C ,5 Fa.e.. =220/> (Mor)utr e0391/ f 2 co 75)/z Site/ do/Zs /, 25 ,ej/r 4341.L 2Z,s' fl P74 — /ox x , /S 7 /ilr .5L046 �l c/2AIE" Si char, /oX,six ,/s /ox/X,//=7a;Art c = (mac riAct.tPr4) - a{/'B 14$) x 36 = 82/ P«-52 P` _ 5" t e5 taVA at- 253'ear /%74 ats1, oAI 42' 9 f,Aam2/0,b -ES TAYLOR S. GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET STE 200 PASADENA, CA LIFORNIA 91107 (919) 351 - 3331 FAX (E1E) 351-5319 PARKING STRUC HOAG HOSPITAL sht: Ec57 by: sc / Job No: 1395 Date: 4/5/00 CONCRETE BEAM CAPACITY NOTE: This program is limited to tension steel only & balanced condition. Based on fc<=5000osi Ref. AC1318-83 SEC.8.9 & 11 b INPUT fy (ksi) 60 b (in) 168.00 BEAM LOCATION fc (ksi) fy (ksi stir.) 5 60 d (in) Bar # 90.00 11 GRB-13 Max As = 380.3 in2 (0.75 balanced condition) Min As = 50.40 in2 (200bd/f7) As balanced = .851lifc87000bd/fy(87000+fy) Mu=4Mn=KnF=4fcw(1-.5903)F WHEN co=pfy/fc AND p=As/bd F= bd2/12000= 113.40 4)=0.9 for Mu; 0.85 for Vu M„ REDUCED by 33% when p<200/fy. Mu Tabulated up to Max. As=0.75 balanced Mu(max) = 126598 K' 4)Vc = 1817.5 M„(for min. p=200/fy) = 19930.28 K' V„ (max) = 9087.7 Stirrup •\ • • • • • d MOMENT (Mu) CAPACITY FOR DIFFERENT STEEL AREAS As(inA2) Mu(Kft) As(inA2) Mu(Kft) As(inA2) Mu(Kft) As(inA2) Mu(Kft) 1.56 474.7 10.92 3308.3 20.28 6117 29.64 8900 3.12 948.7 12.48 3778.1 21.84 6583 31.20 9362 4.68 1422.0 14.04 4247.2 23.40 7047 32.76 9823 6.24 1894.6 15.60 4715.7 24.96 7512 34.32 10283 7.80 2366.5 17.16 5183.4 26.52 7975 35.88 10742 9.36 2837.7 18.72 5650.5 28.08 8438 37.44 11201 When V„<=1/24IVc=.5*.85*2*fc"`*bd = Shear Reinforcement is required When 1/24Vc= 908.8 <VU <_ 34Vc = 5452.6 Kips Min Spac'g of s=A„fy/50b or d/2 OR 24inches; Whichever controls. Max. Spac'g for #6,#5,#4 & #3 (in) = 6.29 4.43 2.86 When 34Vc<Vu<54Vc (Max.Spac'g NOT to exceed d/4 OR 12 inches) Max. Spac'g for #6 , #5, #4 & #3 (in) = 6.29 4.43 2.86 STIRRUP Spac'g for strength req. = s =¢A„fY d/(Vu-4Vc) 908.8 Kips 1.57 1.57 ULTIMATE SHEAR (V„ )CAPACITY FOR DIFFERENT STIRRUP SPACING INPUT Spac'g (in) #6 BAR #5 BAR #4 BAR #3 BAR 18.00 0 0 0 0 16.00 0 0 0 0 14.00 0 0 0 0 12.00 0 0 0 0 10.00 0 0 0 0 8.00 0 0 0 0 6.00 2491 0 0 0 4.00 2827 2529 0 0 T^'� TAYLOR & GAINES {J STRUCTURAL ENGINEERS 320 NORTH HALSTEAD GREET • SUITE 200 PASAOENA, CALI FORNIA S 1 1 O7 (6201 351-SSS1 FAX (0281 351-531S klb�4 sheet Mb of by PASKIT i l UG:1 Re !ono. date 1315 3Fratic. w,eu. Cier1 '3 Gfl.li� tra 't" .W SttrsdMt.L. tlbu _ gall el'? toot sX 60( 447050 a T� __reow ® rIn.y_ 195 pu.� 151" . --41' �a-a ask r'. - ?r e4al>,e fps' it ' pwz 3.01- _pe.4$In0_- pa-- lir pw' 5QC z ri/ L II sciito ., 3yu k 1- -pit-- rloi44 I'34144"0+#o't /1)+I Ob k+' 571f-19)(4 "J1''� = I IStit kJ n6I- t la x SPA 0,15 IJA.?.k itt$lear W Spa. s ([&t- /'i) x o I x i *r - sottue 6, la, Wt. 6-4F/1,-) x' 115 s 6o1I ' 1 f' rue, wen s w = ,,3'wl= wiu, _• (J2A) xb,I5 x I,,,NT s Irus ,a (at}b Ill,,s e,r6jxiIx tI.wat,KIP Lis 0,0 5 x 91 x � Lam' e 45lar r e I 61,1- franc Poole 766 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD SREET • SUITE 200 /� PASADENA. CALIFORNIA 91 1 07 l' (5251 351 -SS51 FAX (5261 351-5319 14by rt6r2k ISA ttRQUc'CURE. lob no. 13 55 dote -6. / 4 sheet NI of �N labs- Phu,Glzetle Ss-4 ri ' Gsin @ <co/4D -"Am L- Bent., . rIck6-ssu► e AL'1.°1-3b13-e eKSF x 133 ' &kw prricSa1L Rlpbltrr) ? rti &vsra6 EGA 61-0 I-1 Ili $b.t t brfl1 x In-c'-o LoIi4 I) 114 = o-e6d k= -i65 i41 kkArt.hoNiS' l cal b" ) Os tot° zJ Vu= V-dr o l: 'e I21tbt c J9A1) (pAtx4.)x6 y x 5t, wt►4t cllib 33x( XII-fix 1641= 57 /41- lt`e 4r I 1 rru>, • T/i, ...pigist sin ( " (A•rt)) ON Atka% y4 "`� ate TE TAYLOR 8 GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET STE 200 PASADENA, CA UIFORNIA 91107 (518) 351 - ISM FAX Olin 351-5319 PARKING STRUC HOAG HOSPITAL sht: pas by: sc Job No: 1395 Date: 4/5/00 CONCRETE BEAM CAPACITY NOTE: This program is limited to tension steel only & balanced condition. Based on fc<=5000osi Ref. ACI318-83 SEC.8.9 & 11 INPUT BEAM ), b LOCATION fy (ksi) 60 b (in) 120.00 fc (ksi) f1 (ksi stir.) Max As = Min As = 5 60 d (in) Bar # 90.00 11 GRB-13 271.7 in2 (0.75 balanced condition) 36.00 in2 (200bd/f7) As balanced = .8581Pc87000bd/fy(87000+fy) Mu=4)Mn=KnF=$fcw(1-.59w)F WHEN w=pfy/fc AND p=As/bd F= bd2/12000= 81.00 4)=0.9 for Mu; 0.85 for Vu M„ REDUCED by 33% when p<200/fy. Mu Tabulated up to Max. As=0.75 balanced Stirrup ,•\ • • • • • d Mu(max) _ Mu(for min. p=200/fy) = 90427 K' 14235.91 K' 4Vc = V„ (max) = 1298.2 6491.2 MOMENT (Mu) CAPACITY FOR DIFFERENT STEEL AREAS As(inA2) Mu(Kft) As(in^2) Mu(Kft) As(inA2) Mu(Kft) As(inA2) Mu(Kft) 1.56 474.6 10.92 3301.5 20.28 6093 29.64 8850 3.12 948.1 12.48 3769.2 21.84 6555 31.20 9306 4.68 1420.7 14.04 4236.0 23.40 7016 32.76 9762 6.24 1892.4 15.60 4701.8 24.96 7476 34.32 10216 7.80 2363.0 17.16 5166.6 26.52 7935 35.88 10669 9.36 2832.7 18.72 5630.5 28.08 8393 37.44 14791 When V„<=1/24jVc=.5*.85*2*fc1rz*bd = Shear Reinforcement is required When 1/2$Vc= 649.1 <_Vu <_ 34Vc = Min Spac'g of s=A„fy/50b or d/2 OR 24inches; Whichever controls. Max. Spac'g for #6,#5,#4 & #3 (in) = 8.80 6.20 4.00 2.20 When 341Vc<Vu<54Vc (Max.Spac'g NOT to exceed d/4 OR 12 inches) Max. Spac'g for #6 , #5, #4 & #3 (in) = 8.80 6.20 4.00 2.20 STIRRUP Spac'g for strength req. = s=$Ayfy'd/(Vu-$Vc) 649.1 Kips 3894.7 Kips ULTIMATE SHEAR (V„ )CAPACITY FOR DIFFERENT STIRRUP SPACING INPUT Spac'g (in) #6 BAR #5 BAR #4 BAR #3 BAR 18.00 0 0 0 0 16.00 0 0 0 0 14.00 0 0 0 0 12.00 ' 0 0 0 0 10.00 0 0 0 0 8.00 1803 0 0 0 6.00 1971 1773 0 0 4.00 2308 2010 1757 0 TAYLOR AND GAINES PARKING STRUCTURE sheet / JO / of_ STRUCTURAL ENGINEERS By: SC 320 N.HALSTEAD ST. #200 Job No: 1395 PASADENA, CA. 91107 HOAG MEMORIAL Date: 03/02/00 GRADE BEAM LINE12 I=1.5 Beam L => 100 Soil Bearing KLF SEIS. DIR OT factor > +1 Ldg. Lt.end Rt. end L brg. +1 -1 => 1 DL 32.76 35.17 100 Ductile TL 38.67 39.23 100 Y(1)N(0)=> 0 DL+OT(#1) 0.00 89.28 -78.16816 TL+OT 0.00 90.96 -85.64457 DL RM/OTM 1.982324 Pldno. a> Pdl> PII> Pot> Mot> 1 4 195 52 2 32 75 32 3 50 700 150 4 68 75 32 5 96 195 52 f m G.)f07 ti 90 rta io . CL84 /0 1 p JiacEX 8 aeir Wldno. c> d> Wdl> WII> Wtrot> FTG. WT 0 100 13.20 WALL 31 69 18.00 345.2659 FLR LOAD 31 69 2.80 2.3 WAUFLR 4 31 2.40 WAUFLR 69 100 2.4 5 TAYLOR AND GAINES PARKING STRUCTURE sheet RO?or x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 4.76 -94.77 -32.70 -259.69 -311.69 -188.26 -399.56 9.52 -4.01 -13.39 -333.97 -385.97 -28.38 -538.20 14.29 86.87 5.91 -408.26 -460.26 131.67 -676.89 19.05 177.88 25.22 -482.54 -522.85 291.90 -799.22 23.81 269.01 44.52 -554.59 -561.37 452.31 -935.65 28.57 360.27 63.83 -605.17 -575.80 612.89 -1056.34 33.33 333.72 45.77 8.37 34.70 545.02 -164.91 38.10 337.61 54.12 1158.15 1206.05 1565.57 564.66 42.86 341.63 62.47 1921.78 1989.41 2661.76 584.48 47.62 345.77 70.82 2299.24 2384.80 3213.77 604.48 52.38 -349.96 -70.82 1590.55 1542.21 2459.97 -610.35 57.14 -345.57 -62.47 1195.69 1161.64 1892.99 -590.00 61.90 -341.05 -54.12 414.68 393.09 773.75 -569.48 66.67 -336.41 -45.77 -752.50 -763.44 -548.78 -946.30 71.43 -361.96 -63.83 -1444.06 -1472.58 -615.25 -1929.57 76.19 -269.44 -44.52 -1235.64 -1246.19 -452.91 -1647.13 80.95 -176.81 -25.22 -1001.31 -995.72 -290.40 -1338.17 85.71 -84.04 -5.91 -741.08 -721.16 -127.71 -1015.21 90.48 8.85 13.39 -454.96 -422.52 35.15 -655.28 95.24 101.86 32.70 -142.93 -99.80 198.19 -258.37 100.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.76 93.68 6.34 -298.93 -338.55 141.94 -508.64 9.52 -141.55 -103.38 -1712.40 -1999.64 -2741.41 14.29 55.68 -121.18 -3479.61 -4014.47 -5634.46 19.05 685.99 -47.06 -5600.56 -6364.75 880.39 -9162.38 23.81 1749.97 119.00 -8073.78 -8955.78 2652.26 -13192.52 28.57 3248.22 376.98 -10845.41 -11672.87 5188.38 -17564.27 33.33 5031.24 677.96 -13044.90 -13698.95 8196.28 -21320.77 38.10 6629.61 915.78 -10114.23 -10590.82 10838.29 -17977.05 42.86 8246.81 1193.38 -2627.82 -2828.62 13574.28 -8128.59 47.62 9883.42 1510.75 7575.48 7740.13 16405.07 52.38 9873.39 1510.75 16990.13 17244.11 20511.87 57.14 8217.31 1193.38 23777.27 23835.80 30380.95 61.90 6582.44 915.78 27764.72 27691.48 36400.23 66.67 4969.38 677.96 27113.62 26963.65 36138.70 71.43 . 3175.84 376.98 20843.78 20560.54 28123.40 76.19 1672.46 119.00 14453.27 14077.71 19781.77 80.95 609.91 -47.06 9116.93 8730.27 12713.95 85.71 -11.21 -121.18 4958.10 4632.90 7096.02 -221.71 90.48 -190.30 -103.38 2100.11 1900.28 3104.01 -442.17 95.24 73.24 6.34 666.30 647.09 913.99 100.00 0.00 0.00 0.00 0.00 0.00 0.00 TAYLOR AND GAINES PARKING STRUCTURE sheetm%of SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 4.00 85.72 16.22 -52.80 -52.80 147.58 -120.94 4.01 -109.09 -35.74 -247.96 -299.96 -213.49 -377.68 32.00 407.66 75.43 -307.77 -255.80 698.95 -656.17 32.01 332.66 43.45 -379.73 -359.70 539.59 -719.32 50.00 347.89 75.00 2343.17 2437.00 3285.70 614.54 50.01 -352.10 -74.98 1643.15 1587.02 2536.32 -620.41 68.00 -335.09 -43.43 -1148.51 -1156.79 -542.95 -1498.75 68.01 -410.08 -75.41 -1226.60 -1266.86 -702.31 -1622.60 96.00 116.75 35.78 -90.60 -45.93 224.29 -191.44 96.01 -78.05 -16.18 -284.91 -292.22 -136.77 -380.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 4.00 171.42 32.43 -105.60 -105.60 295.12 -241.86 4.01 170.32 32.07 -108.08 -108.60 292.98 -244.82 32.00 4586.99 618.50 -12798.66 -13483.60 7473.24 -20733.19 32.01 4590.32 618.93 -12802.47 -13487.21 7478.63 -20740.41 50.00 10709.20 1684.35 13121.31 13499.62 17856.28 50.01 10705.68 1683.60 13137.74 13515.49 17850.07 68.00 4521.71 618.50 25849.64 25686.88 34568.48 68.01 4517.61 617.74 25837.39 25674.22 34553.13 96.00 156.52 32.43 577.29 591.53 770.31 96.01 155.74 32.27 574.44 588.60 766.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES #1. Far ealalefng working soi pressurs.superimposed dead bad has been multiplied by a factor of .85 when combined with seismic overtumig as required by UBC/CAC 2312 h). #2. For calculating maximum and minimum ultimate shears and moments the following combinations have been used: A 1.40L+1.7LL B..75(1.4DL+1.7LL+1.87E) C..90L+1.43E D. 1.4(DL+LL+E) E..75DL+1.4E and .75DL-1.4E -3041//T 3001/06 jC/03 4 0 O 0 0 0•) 0 N 0 0 0 SdIN NI 2lV3HS i 0 N 1- Mu DIAGRAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )1-JA 1N3WOW 0 0 0 0 0 0 0 0 0 0 0 0 8 N f/O¢ 0 0 0 0 M DISTANCE FT 2 TAYLOR AND GAINES PARKING STRUCTURE sheet FIO-bf STRUCTURAL ENGINEERS By: SC 320 N.HALSTEAD ST. #200 Job No: 1395 PASADENA, CA. 91107 HOAG MEMORIAL Date: 03/02/00 GRADE BEAM LINE12 1=1.5 Beam L => 100 Soil Bearing KLF SEIS. DIR OT factor > +1 Ldg. Lt.end Rt. end L brg. +1 -1 => -1 DL 34.62 33.31 100 Ductile TL 38.67 39.23 100 Y(1)N(0)=> 0 DL+OT(#1) 88.39 0.00 74.96077 TL+OT 90.21 0.00 86.3544 DL RM/OTM 1.993415 Pldno. a> Pdl> PII> Pot> Mot> 1 4 195 52 2 32 75 32 3 50 700 150 4 68 75 32 5 96 195 52 Wldno. c> d> Wdl> WII> Wtrot> FTG. WT 0 100 13.20 WALL 31 69 18.00 345.2659 FLR LOAD 31 69 2.80 2.3 WAUFLR 4 31 2.40 WAUFLR 69 100 2.4 TAYLOR AND GAINES PARKING STRUCTURE sheet f(OC of x > V dl V II V dl+ot V tl+ot +Vu max -Vu max 0 0 0 0 0 0 0 4.76 -94.77 -32.70 148.52 106.04 262.61 -188.26 9.52 -4.01 -13.39 457.06 425.79 655.72 -28.38 14.29 86.87 5.91 740.21 721.86 1012.46 131.67 19.05 177.88 25.22 997.98 994.23 1332.84 291.90 23.81 269.01 44.52 1230.37 1242.92 1642.69 452.31 28.57 360.27 63.83 1437.37 1467.92 1923.62 612.89 33.33 333.72 45.77 744.91 757.78 939.31 545.02 38.10 337.61 54.12 -422.66 -399.35 564.66 -783.33 42.86 341.63 62.47 -1203.54 -1168.11 584.48 -1902.13 47.62 345.77 70.82 -1597.75 -1548.50 604.48 -2468.04 52.38 -349.96 -70.82 -2305.28 -2390.51 -610.35 -3220.30 57.14 -345.57 -62.47 -1926.14 -1994.15 -590.00 -2667.01 61.90 -341.05 -54.12 -1160.31 -1209.41 -569.48 -1569.08 66.67 -336.41 -45.77 -7.81 -36.31 167.13 -548.78 71.43 -361.96 -63.83 608.96 576.35 1062.65 -615.25 76.19 -269.44 -44.52 562.13 564.47 946.66 -452.91 80.95 -176.81 -25.22 492.14 528.90 807.32 -290.40 85.71 -84.04 -5.91 417.86 469.64 689.05 -127.71 90.48 8.85 13.39 343.57 395.57 549.96 35.15 95.24 101.86 32.70 269.29 321.29 410.53 198.19 100.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.76 93.68 6.34 683.06 665.44 927.13 9.52 -141.55 -103.38 2134.99 1941.10 3128.06 -373.93 14.29 55.68 -121.18 4995.70 4683.00 7114.35 -128.06 19.05 685.99 -7.06 9144.33 8778.32 12712.82 23.81 1749.97 119.00 14460.01 14114.27 19750.32 28.57 3248.22 376.98 20821.85 20578.04 28053.69 33.33 5031.24 677.96 27057.49 26956.41 36025.64 38.10 6629.61 915.78 27671.31 27655.69 36333.40 42.86 8246.81 1193.38 23645.96 23769.51 30277.59 47.62 9883.42 1510.75 16822.77 17147.28 20372.53 52.38 9873.39 1510.75 7376.39 7614.58 16391.02 57.14 8217.31 1193.38 -2851.87 -2979.20 13532.98 -8433.34 61.90 6582.44 915.78 -10354.00 -10760.85 10772.25 -18294.91 66.67 4969.38 677.96 -13288.69 -13880.97 8109.66 -21636.60 71.43 3175.84 376.98 -11079.06 -11857.55 5087.05 -17797.76 76.19 1672.46 119.00 -8280.66 -9131.91 2543.74 -13412.22 80.95 609.91 -47.06 -5764.22 -6519.25 773.88 -9352.24 85.71 -11.21 -121.18 -3597.55 -4132.36 -5776.24 90.48 -190.30 -103.38 -1784.63 -2071.86 -2825.53 95.24 73.24 6.34 -325.44 -365.06 113.32 -538.62 100.00 0.00 0.00 0.00 0.00 0.00 0.00 TAYLOR AND GAINES PARKING STRUCTURE shee SHEAR AND MOMENTS AT CONCENTRATED LOAD POINTS. x > V, dl V II V dl+ot V tl+ot +Vu max -Vu max 4.00 85.72 16.22 291.80 299.68 388.02 147.58 4.01 -109.09 -35.74 97.48 53.39 197.22 -213.49 32.00 407.66 75.43 1216.12 1258.37 1611.55 698.95 32.01 332.66 43.45 1138.03 1148.31 1487.70 539.59 50.00 347.89 75.00 -1649.85 -1593.05 614.54 -2543.67 50.01 -352.10 -74.98 -2349.87 -2443.03 -620.41 -3292.68 68.00 -335.09 -43.43 384.18 361.76 726.98 -542.95 68.01 -410.08 -75.41 312.24 257.86 663.84 -702.31 96.00 116.75 35.78 257.40 309.40 388.22 224.29 96.01 -78.05 -16.18 62.24 62.24 130.38 -136.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x M dl M II M dl+ot M tl+ot +Mu max -Mu max 4.00 171.42 32.43 589.57 604.93 783.86 0.00 4.01 170.32 32.07 590.54 605.46 785.04 32.00 4586.99 618.50 25803.50 25687.03 34467.90 .- 32.01 4590.32 618.93 25814.90 25698.53 34482.43 50.00 10709.20 1684.35 12937.40 13388.08 17856.28 50.01 10705.68 1683.60 12913.90 13363.65 17850.07 68.00 4521.71 618.50 -13041.14 -13667.39 7381.84 -21045.34 68.01 4517.61 617.74 -13038.04 -13664.82 7374.82 -21038.73 96.00 156.52 32.43 -124.80 -124.80 274.26 -261.42 96.01 155.74 32.27 -124.18 -124.18 272.89 -260.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOTES 81. For calculating working aol pressuro.aupeiimposed dead load has been multiplied by a factor of .85 when combined wlth aelemic overturning as required by UBC/CAC 2312 h). 82. For calculating maximum and minimum ultimate shears and moments the tolllowing combinations have been used: A. 1.4DL+1.71.1. B..75(1.4DL+1.7LL+1.87E) C..9DL+1.43E D. 1.4(DL+LL+E) E..75DL+1.4E and .75DL-1.4E 5041/0 30#101 4- m g = a cm o 0 0 0 0 N 0 0 0 0 SdIN NI LIV3HS g N 0 0 0 C) /°8 0 0 0 0 0 0 0 8 M 0 0 O 8 N 0 0 0 O 0 O o O 0 N-Id 1N31,1OW 0 8 0 0 0 0 M DISTANCE FT TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 PASADENA. CALIFORNIA 91 1 07 (818) 351-8881 FAX (8181 351-5319 Koh shoat !la of ��RKI 5S1Weirsnkt bY Job no. 3 9,5 date a ,e- 13&s /84T kkt.. e UN& I 941170 3- 5'9'' -711-4 )+H • w- 51)pf. top rsf- Ss 4u►uNenist Reran / 12' '(11 K IJ41& r PP L 1tt StOIS Row %.#5aISc c viRT, 6 o I2J'o.c Ed. rake P1 L. 5$4.II Hoag Memorial Hospital Presbyterian—Geotechnical Investigation Law/Crandall Project 7013/-7-0254.0001 August /!, 1997 lt� '-- foot may be used, provided the shallowest point of the footing is at least 1 foot below the lowest adjacent grade. To reduce the movement of the shoring, the rakers should be tightly wedged against the footings and/or shoring system. Deflection It is difficult to accurately predict the amount of deflection of a shored embankment. It should be realized, however, that some deflection will occur. We estimate that this deflection could be on the order of 1 inch at the top of the shored embankment. If greater deflection occurs during construction, additional bracing may be necessary to minimize settlement of the existing utilities within or adjacent to the site. If desired to reduce the deflection of the shoring, a greater active pressure could be used in the shoring design. Monitoring Some means of monitoring the performance of the shoring system is recommended. The monitoring should consist of periodic surveying of the lateral and vertical locations of the tops of all the soldier piles. We will be pleased to discuss this further with the design consultants and the contractor when the design of the shoring system has been finalized. 7.8 WALLS BELOW GRADE Lateral Pressures For design of cantilevered retaining walls below grade where the surface of the backfill is level, it may be assumed that the soils will exert a lateral pressure equal to that developed by a fluid with a density of 35 pounds per cubic foot. The basement walls should be designed to resist a trapezoidal distribution of lateral earth pressure. The lateral earth pressure on the permanent basement walls will be similar to that recommended for design of temporary shoring except that the maximum lateral pressure will be 24H in pounds per square foot, where H is the height of the basement wall in feet. 20 To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block Information will be printed on each page. Title : Dsgnr: Description : Scope : Job 0 Date: 12:45PM, 25 JUL 99 WI Rev. 510300 URN I04000115, Vet 5.1.3. 22Jm31999, Wn32 15 1993.90 E3FAWC Multi -Span Concrete Beam Page 1. ■ Description HOAG PARKING STRUCTURE BASEMENT WALL LINE 1 General Information Calculations are designed to ACI 318-95 and 1997 UBC Requirements Fy Pc 60,000.0 psi Spans Considered Continuous Over Supports ACI Dead Load Factor 6,000.0 psi Stirrup Fy 40,000.0 psi ACI Live Load Factor 1.40 1.70 Concrete Member Information Description 'EL 1 TO LEVEL 2 Span ft 11.33 11.33 Beam Width in 12.00 12.00 Beam Depth in 12.00 12.00 End Fixity Pin -Pin Pin -Pin L Reinforcing Center ear DePth 10.000in 10.00In Left Arm 0 earns 2.00in 2.00inF Right k9R 0.44in2 0.31in2 ` Bares 2.00in 2.00in Loads Using Live Load This Span ?? Dead Load k/ft Live Load k/ft Yes Yes 0.550 0.650 Results Beam OK Beam OK Mmax @ Cntr k-ft 7.93 10.49 diX= ft 4.15 6.95 Mn' Phi k-ft 13.71 13.71 Max © Left End k-ft 0.00 -16.37 Mn • Phi k-ft 13.71 19.31 Max @ Right End k-ft -16.37 0.00 Mn • Phi k-ft 19.31 13.71 Bending OK Bending OK Shear © Left k 3.85 7.70 Shear © Right k 6.74 4.82 Reactions & Deflections DL @ Left k 0.00 0.00 LL 6) Left k 2.27 8.50 Total @ Left k 2.27 8.50 DL © Right k 0.00 0.00 LL lit Right k 8.50 2.83 Total © Right k 8.50 2.83 Max. Deflection in -0.010 -0.014 X = ft 4.81 6.42 Inertia : Effective In4 1,728.00 1,728.00 Shear Stirrups Stirrup Reber Area In2 0.400 0.400 Spacing © Left in Not Req'd Not Req'd Spacing t$ .21L in Not Req'd Not Req'd Spacing t$ .4'L in Not Req'd Not Req'd Spacing t$ .6'L in Not Req'd Not Req'd Spacing © .8•L in Not Req'd Not Req'd Spacing © Right In Not Req'd Not Req'd To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block Information /—' will be printed on each page. Title : Dsgnr: Description : Scope: Job a Date: 12:45PM, 25 JUL 99 W Rev: 510300 Wee. KW010115. Va 5.1.3, 22Aet1 W1, IMAM _ (5) 111/5-90 ENERCALC 1 Multi -Span Concrete Beam Page 2 Description HOAG PARKING STRUCTURE BASEMENT WALL LINE 1 LQuery Values Location ft 0.00 0.00 Moment k-ft 0.0 -16.4 Shear k 3.9 7.7 Deflection in 0.0000 0.0000 e^ TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 PASADENA. CALIFORNIA 91 107 (818) 351-8881 FAX (818) 351-5318 f{A-CI rfrpt444 N .9pe41cmilgke sheet W 5 of b9 Iob no. f 3 c, s date e t1&N1 pdtita e UNE Q) o$. -ALL, of THY - GONG. 6crinpI Rol- 6D11-51 my( a izlThKw . PO — El LE, 'Valzir. ktyF }iDR*. Ko 46 0 $ IP.% c F OWL St,I To specify your title block on these five fines, use the SETTINGS selection on the main menu and enter your title block Information /Th will be printed on each page. Title : Dsgnr: Description : Scope : Job e Date: 12:54PM, 25 JUL 99 w.: 510303 Wee: KWd00115. Vat 5.1.3. 22-A Maee, Wn02 {w 11e3aa erERCA c• Multi -Span Concrete Beam Page 1 Description HOAG PARKING STRUCTURE BASEMENT WALL LINE 1\ i- E General Information Calculations are designed to ACI 318415 and 1997 UBC Requirements Fy fc 60,000.0 psi Spans Considered Continuous Over Supports ACI Dead Load Factor 6,000.0 psi Stirrup Fy 40,000.0 psi ACI Uve Load Factor 1.40 1.70 [9,oncrete Member Information Description 'EL 1 TO LEVEL 2 Span ft 11.33 11.33 Beam Width in 12.00 12.00 Beam Depth in 12.00 12.00 End Fixity Pin -Pin Pin -Pin Reinforcing Center ins 0.281n2 0.28in2 exoa 10.00in 10.00in Left Area 0.281n2 0.281n2 Bar Depth 2.00in 2.00in Right An" 0.28in2 0.28in2 Bar oeNh 2.00in 2.00in Loads Using Live Load This Span ?? Yes Yes Dead Load k/ft Uve Load k/ft 0.450 Dead Load k/ft Uve Load k/ft 0.450 Start ft 0.000 0.000 End ft 0.000 7.500 Results Beam OK Beam OK Mmax @ Cntr k-ft 7.41 4.14 G X = ft 4.38 6.27 Mn • Phi k-ft 12.38 12.38 Max 6 Left End k-ft 0.00 -10.95 Mn • Phi k-ft 12.38 12.38 Max O Right End k-ft -10.95 0.00 Mn • Phi k-ft 12.38 12.38 Bending OK Bending OK Shear @ Left k 3.37 4.81 Shear 022 Right k 5.30 0.93 Reactions & Deflections DL t$ Left LL f Left Total t Left DL © Right LL tit Right Total © Right Max. Deflection iftX= Inertia : Effective k k k k k k in ft in4 0.00 1.98 1.98 0.00 5.94 5.94 -0.010 4.91 1,728.00 0.00 5.94 5.94 0.00 0.55 0.55 -0.005 6.42 1,728.00 To specify your title block on these flue lines, use the SETTINGS selection on the main menu and enter your title block information will be printed on each page. Title : Dsgnr: Description : Scope: Job # Date: 12:54PM, 25 JUL 99 Rev: 310300 unr. uwa 0115, Vet 5.1.3. 22-Jurv1000. KSn50 b 1a5.w eaERrxc Multi -Span Concrete Beam Page 21 Description HOAG PARKING STRUCTURE BASEMENT WALL LINE 1 Shear Stirrups Stirrup Rebar Area in2 0.400 0.400 Spacing rit Left in Not Req'd Not Req'd Spacing © .2'L in Not Req'd Not Req'd Spacing f .4t in Not Req'd Not Req'd Spacing © .6'L in Not Req'd Not Req'd Spacing et .81L in Not Req'd Not Req'd Spacing © Right in Not Req'd Not Req'd kiluery Values Location ft 0.00 0.00 Moment k-ft 0.0 -11.0 Shear k 3.4 4.8 Deflection in 0.0000 0.0000 TAYLOR & GAINES STRUCTURAL ENGINEERS 320 NORTH HALSTEAD STREET • SUITE 200 f-` PASADENA. CALIFORNIA 91107 Tt (818) 351.8881 FAX (818) 351.5319 ht P S6 y1KucTun6 sheet uzb of by Job no. l 3 '� 5 date '"l %r tE. 'f e Ut-)E- I'- 151.411 t =,-sip arse sad 1,i ii N am= 11 K oI- LOS vat 121iNr HoKit 4#6 @ rx%I c.- S•r CQtrtroc eare'noL> -51rAs t To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block Information will be printed on each page. Title : Dsgnr: Description : Scope : Job # Date: 12:57PM, 25 JUL 99 Re,: 510300 U r: Kwam115, Vat 5.1.2, 22Jui.11R2, M5n52 (41003-ee ERERCALC Multi -Span Concrete Beam Page 1. Description HOAG PARKING STRUCTURE BASEMENT WALL LINE j2 L2eneral Information Calculations are designed to ACI 318-95 and 1997 UBC Requirements Fy fc 60,000.0 psi Spans Considered Continuous Over Supports ACI Dead Load Factor 6,000.0 psi Stirrup Fy 40,000.0 psi ACI Live Load Factor 1.40 1.70 Concrete Member Information Description Span ft Beam Width in Beam Depth in End Fixity Reinforcing Center Area Bar NMI Left Aran Bar Depth Right Af" Bar Depth 'EL 1 TO LEVEL 2 11.33 12.00 12.00 Pin -Pin 0.20in2 10.00ln 0.201n2 2.00in 0.20in2 2.00in Loads Using Live Load This Span ?? Dead Load k/ft Live Load k/t Yes 0.280 Results Beam OK Mmax © Cntr k-ft © X = ft Mn • Phi k-ft Max © Left End k-ft Mn • Phi k-ft Max t$ Right End k-ft Mn • Phl k-ft Shear 42 Left k Shear © Right k 7.64 5.66 8.87 0.00 8.87 0.00 8.87 Bending OK 2.70 2.70 Reactions & Deflections DL @ Left k LL © Left k Total © Left k DL © Right k LL © Right k Total © Right k Max. Deflection In © X = ft Inertia : Effective in4 0.00 1.59 1.59 0.00 1.59 1.59 -0.014 5.66 1,728.00 Lhear Stirrups Stirrup Rebar Area Spacing © Left Spacing Spacing f .41L Spadng Spacing © Spadng © Right in2 in in in in in in 0.400 Not Req'd Not Req'd Not Req'd Not Req'd Not Req'd Not Req'd To specify your title block on these five lines, use the SETTINGS selection on the main menu and enter your title block information will be printed on each page. Title : Dsgnr: Description : Scope: Job Date: 12:57PM, 25 JUL 99 (.41 Rev 510300 Uses M-010115. Va 5.1.3, 22-Jun-1050, WY133 1915l335 E ERCALC Multi -Span Concrete Beam Page 2 1 Description HOAG PARKING STRUCTURE BASEMENT WALL LINE 1 Luery Values Location ft 0.00 Moment k-ft 0.0 Shear k 2.7 Deflection in 0.0000