Loading...
HomeMy WebLinkAboutX2010-1134 - MiscPlease print 3 copies WIP.INF'Mu'lr"FftireFeitm4.... tratiormin-r-trw T.-44w = • • Worksheet for Building Combo Permit Application • City of Newport Beach - Building Department * . p be to 't 6 Zola , . - st rBuilding r- Grading rDrainage r Elec +, r Mec h r Plum 1. Project Address (Not mailing address) -4 PlAgirti ifitentrar‘sa #/i/el tiA4e 4leg4,g:W7 Tenant Name(if Applicable) IA/5;4j in ,trin 0") A C go s /9/74 Floor Suite No # Units (if Residential)1 2. Description of Work 12211.114 Extg Building SF1 Demo Building SF • Extg Gar et 1 Demo Garage g New r- Add r Alter rtemo Add/Reconstruct Bldg SF Add/Reconstruct Garage sf TOTAL BLDG SF TOTAL GARAGE SF Use I Valuation $ 7esitg-' # Stories Cu Yd Cut Cu Yd Fill Check Appropriate Box for Applicant VT 3. Owner's Name Last I Owner's Address AeAt i‘ 4it1frio di a, t First Owner's E-mail Address V 44A 4" OR/n City I g4.00.ed San/ State 1 C a Zip 92663 Telephone r 4.....44.thisir Architect/Designers 0A cf. ii-literdsrn-Nee Last C.2A...fiti u Ai Address I a'?aeletthy First' Architect/Designer's /2 0 y E-mail Address Lic. No. -- I 2,328 /3/e0/11,/ ALT& City 1 cm nu/3 14 do State 'Cc Zip (21 AI Telephonel9n09- 3 7 y_407 7(59 r 5. Engineer's E Engineer's Name Last! Aadress 5./.1P4C17$ Engineer's First! Si, E-mail (7 i•-/- Address Lic. No. s.s ? Oz. ' 1787 /1/4/2b3 OLO 0 Oi.JR-f- C-Agillitistle4 jh City I Nom Ng- State { CA- Zip 9/ 7// Telephone{ 90:4 5 . MI r-- 6. Contractor's Contractors Name Last Address 1 r7uati_51/2 f 0.5 First{ Contractor's pi, oe E-mail Address Lic. No. 1 Zinn Class rdirK3 City I CitiZ/Z. f 4--0 ,S State A • ^ ri•Sita Zip /070 Telephone{ s ‘2... 4/0 Z-g331 OFF -le tOONLY ENE0 RGY GENENEWPORT BEACH PERMIT NO y20/0 - iby GRADING P/C FEE $ ` FIRE P/C FEE $ PLAN CHECK NO. 11 1 aol 0 Rev 4/16/09 ELECNECH/PLUM P/C FEE $ — PLAN CHECK FEE $ 972— 9 CITY OF NEWPORT BEACH BUILDING DEPARTMENT 3300 NEWPORT BLVD. P.O.BOX 1768, NEWPORT BEACH, CA 92658-8915 (949) 644-3275 COMMERCIAL PLAN CHECK CORRECTION LIST Project Description: Project Address' Plan Check No.: Use: Child Care Center Architect/Engineer: Roy Courtney Owner: Hoag Memorial Hospital Phone: Checked by: 1st Check 6/1/10 4th Check* 2nd Check 10 New non illuminated canopies 1 Hoag Hospital 0886-2010 Date Filed: 5/18/2010 No. Stories: 1 Occupancy: E Const. Type: VB Phone: 909-374-4198 Submitted Valuation: Phone: (949) 644-3281 Permit Valuation: 3rd Check $48,000 *NOTE: Do not resubmit after the 3rd plan check. Call plan check engineer for an in -person recheck appointment. WARNING: PLAN CHECK EXPIRES 180 DAYS AFTER SUBMITTAL. THIS PLAN CHECK EXPIRES ON: 11/14/2010 Approval of plans and specifications does not permit violation of any section of the Building Code or other City ordinances or State law. This plan check is according to 2007 California Building Code. • Make all corrections listed below • Resubmit originally checked plans and indicate the location of response on this sheet. DO NOT resubmit after the third check. Call plan check engineer and schedule in -person recheck. • Return this sheet with corrected plans • For checking status of plans: call (949) 644-3288 during business hours, or may be verified 24 hours 7 days a week via the Internet at: www.newportbeachca.gov/building/Or interactive voice response at (949) 644-3255 • For clarifications on corrections, you may call the Plan Check Engineer or schedule an appointment. • When new information is provided after plan check due to corrections or otherwise, additional reviewing time may be necessary upon resubmittal. Review of new information may result in additional corrections. • To expedite your project, please provide a written or oral response to all corrections. Incomplete response may delay approval. • Two wet signed and stamped sets are required for permit issuance. • All plan sheets and structural calculations are to be stamped and wet signed by a licensed Civil Engineer or Architect. Company name, address and phone number must be on first sheet of calculations and on all plans sheets. All plan sheets must include project name and address in title block. Advisement: South Coast AQMD Rule 445 does not allow wood burning fire place to be installed in projects for which a building permit is issued on or after March 9, 2009. Additional information is available on AQMD web site at http://www.aclmd.Qov/rules/re004/r445.pdf PART I, GENERAL 1. Valuation should be $ . Additional plan review fee is required. 2. 'Show on title page of drawings: a. Job address and name of owner. b. Name and address of designer with wet signature. c. Legal description. 3. Submit fully dimensioned plot plan including: a. Clear width of front, rear and side yards measured from property line to building face. b. North arrow and centerline of street and street name and building address c. Show grades around the building or structure, except minor permits. d. Show finished first floor elevations of all areas. 4. Identify the "Design Professional in Responsible Charge" for the project. The registered design professional in responsible charge shall be responsible for reviewing and coordinating submittal documents prepared by others, including phased and deferred submittal items, for compatibility with the design of the building. NBMC 15.02.010; CBC Appendix Chapter 1, 106.3.4. 5. Provide an accurate and complete listing of required special inspections pursuant CBC 1704 specific to this project. This should appear in prominent position on the cover sheet of the plan. Alternatively, provide a clear note in a prominent position on the cover sheet which states what sheet of the plans the list of special inspections specific to this project may be found. PART II. APPROVALS 6. Obtain approval on plans from Planning Department; they are checking the plans concurrently. All revised plans that change use, plot plan, height of building, or exterior of structure must be reviewed and approved by Planning Staff prior to permit issuance Contact Public Works Department at (949) 644-3311 concerning release status. This project must be approved by Public Works prior to issuance of Building Permit. Contact Fire Department at 644-3107 concerning release status. This project must be approved by Fire Department prior to issuance of Building Permit. ARCHITECTURAL 9. Provide code analysis on cover sheet. Specify building type of construction and occupancy classification of canopies. 10. Specify uses of canopies. 11. On Site Plan dimension distances from building(s) to all property lines, street center lines, and adjacent existing or proposed structures on the site. 12. Specify the occupancy (E), and construction type (type VB sprinklered) of existing CCC on the site. 13. Class "A" roof covering is required CBC 1505.1 and Table 1505.1. Provide copy of ESR research report for canopy covering 14. For roof covering specify: CBC 1505.1 a. Note on Plans: "Installation of roofing shall be in accordance with manufacturer's specifications." 15. Provide fire sprinklers for this project in accordance with 903.2 CBC. EGRESS 16. Submit an exit plan that labels and clearly shows compliance with all required egress features such as, but not limited to occupant load, required width, continuity, travel distance, etc. CBC 1001.1. Show clearly that new canopies will not impact exit passageway required for existing child care center. 17. Exit ways shall be illuminated with at least one foot candle at the floor level. CBC 1006.2 STRUCUTRAL: 18. Specify nuts at the end of bolts embedded in concrete. 19. , Wind design: use importance factor Iw=1.15 (category III) for daycare per Table 1-1. 20: Provide ties at the first upper 18" of footing per 1812.4 (1810.1.2.1). Justify tie spacing 12" o.c. in flexural region. CBC 1812.4 (1810.1.2.2) and ACI 21.4.41 thru 21.4.4.2. 21. Specify f c of concrete on the plan and state whether special inspection is required. 22. Engineering calculations used 250 psf/ft but it is not listed in Table 1804.2. Use 150 psf/ft for allowable lateral bearing without soils report. Provide soils report to verify Class 3 material in Table 1804.2. TITLE 24 DISABLED ACCESS CORRECTION LIST SITE DEVELOPMENT & ACCESSIBLE ROUTE OF TRAVEL 23. Show on site plan the accessible path of travel from parking to proposed canopies. Show all grade changes, ramps, etc. 24. Provide detectable warning strip 36" wide where a walk crosses or adjoins a vehicular way and the walking surface is not separated by curbs, railing or other approved elements at the following locations: curb ramp at parking area. (1133B.8.5). 25. Specify detectable warning product and incorporate a copy of state approval on plan. Provide a detail for pattern and dimensions on plan. If product is not state -approved, incorporate a copy of product warranty onto drawings per department policy CBC 1133B.8.5 (copy available on Building Department web page). 26. Write a note on drawings, "Contractor to provide a detectable warning product sample to the Building Inspector for approval of color contrast with finish surface." ADDITIONAL CORRECTIONS: 27. Commercial Plan Check Correction List Project: 10 New non illuminated canopies Project Address: 1 Hoag Hospital Plan Check No.: 0886-2010 Date: September 3, 2010 To whom it may concern, Per your request, the following represents a list of responses required to complete the review for the above referenced project. Please note additional sheets have been provided with this resubmittal. Sheets AS1, AS2 and AS3 have been added to provide the additional information requested. PART I, GENERAL 1. Valuation should be $. Additional plan review fee is required. Project cost is valued at $105,000 2. Show on title page of drawings: a. Job address and name of owner. b. Name and address of designer with wet signature. c. Legal description. The job address and name of owner are shown on sheet 101 The name & address of designer w/ wet signature and the legal description are shown on sheet 101 3. Submit fully dimensioned plot plan including: a. Clear width of front, rear and side yards measured from property line to building face. - b. North arrow and centerline of street and street name and building addess. c. Show grade around the building or structure, except minor permits. d. Show finished first floor elevations of all areas All clear widths are shown on the overall lower canpus plan on additional sheet provided AS1. North arrow and centerline of street and street name and building numbers are also shown on sheet AS1. The existing finished first floor elevations are shown on sheet AS2. 4. Identify the "Design Professionals in Responsible Charge" for the project on the tile page of the plans. The registered design professional in responsible charge shall be responsible for reviewing and coordinating submittal documents prepared by others, including phased and deferred submittal items, for compatibility with the design of the building. NBMC 15.02.010; CBC Appendix Chapter 1, 106.3.4. The "Design Professional" is indicated at the top of sheet 101 with wet signature per Item #2b above. 5. Provide an accurate and complete listing of required special inspections pursuant CBC 1704 specific to this project. This should appear in prominent position on the cover sheet of the plan. Alternatively, provide a clear note in a prominent position on the cover sheet which states what sheet of the plans the list of special inspections specific to this proiect may be found. Special Inspection is not required because there is not on site welding or bolting and because the concrete has be calculated at 2500psi which is categorized as non-structural concrete, and therefore does not require inspection. PART II, APPROVALS 6. Obtain approval from Planning Department; they are checking the plans concurrently. All revised plans that change use, plot plan, height of building, or exterior of structure must be reviewed and approved by Planning Staff prior to permit issuance. 7. Contact Public Works Department at (949) 644-3311 concerning release status. This project must be approved by Public Works prior to issuance of Building Permit. Eide will contact Public Works after the documents are re -submitted for 2id plan check. 8. Contact Fire Department at 644-3107 concerning release status. This project must be approved by Fire Department prior to issuance of Building Permit. Upon resubmittal an appointment will be made with Fire Department for approval over the counter. ARCHITECTURAL 9. Provide code analysis on cover sheet. Specify building type of construction and occupancy classification of canopies. Please see sheet 101 for code analysis including building type of construction and occupancy classification. 10. Specify uses of canopies. Please see sheet 101 for use of canopies as 'sun shade canopies 11. On Site Plan dimension distance from building(s) to all property lines, street center lines and adjacent existing or proposed structures on the site. Please see sheet AS1 for dimensions from (e) buildings to all property lines, street center lines and adjacent existing trailers. See sheet AS3 for dimensions of new canopies to existing buildings. 12. Specify the occupancy (E), and the construction type (type VB sprinklered) of existing CCC on the site. Please see sheet 101 for occupancy classification and construction type of the existing Child Care Center. 13. Class "A" roof covering is required CBC 1505.1 and Table 1505.1. Provide copy of the ESR research report for canopy covering. Class "A" designation is noted on sheets 102-107 under General Notes 2. Cover/ Fabric. The ESR research report is attached to the drawings. 14. For roof covering specify: CBC 1505.1 a. Note on plans: "Installation of roofing shall be in accordance with manufacturer's specifications." Please see sheet 101 under Building Data for additional note. 15. Provide fire sprinklers for this project in accordance with 903.2 CBC. Per conversations and email with Kim Fleitman, fire sprinklers are not required on this project. Per the request of Kim Fleitman, please see additional note provided under Building Data on sheet 101noting exemption. EGRESS 16. Submit an exit plan that labels and clearly shows compliance with all required egress features such as, but not limited to occupant load, required width, continuity, travel distance, etc. CBC 1001.1. Page 12 Show clearly that new canopies will not impact exit passageway required for existing child care center. Please see sheet AS3 for existing evacuation path and existing evacuation area. None of the canopy structures impede upon the evacuation path. 17. Exit ways shall be illuminated with at least one foot candle at the floor level. CBC 1006.2. Please see note regarding existing evacuation path on sheet AS3. STRUCTURAL See attached letter from Structural Engineer dated 10/19/10 addressing each Structural Issue below 18. Specify nuts at the end bolts embedded in concrete. 19. Wind design: use importance factor Iw = 1.15 (category Ill) for daycare per Table 1-1. 20. Provide ties at the first upper 18" of footing per 1812.4 (1810.1.2.1). Justify tie spacing 12" o.c. in flexural region. CBC 1812.4 (1810.1.2.2) and ACI 21.4.41 thru 21.4.4.2. 21. Specify f'c of concrete on the plan and state whether special inspection is required. 22. Engineering calculations used 250 psf/ft but it is not listed in Table 1804.2. Use 150 psf/ft for allowable lateral bearing without soils report. Provide soils report to verify Class 3 material in Table 1804.2. TITLE 24 DISABLED ACCESS CORRECTION LIST SITE DEVELOPMENT & ACCESSIBLE ROUTE OF TRAVEL 23. Show on site plan the accessible path of travel from parking to proposed canopies. Show all grade changes, ramps, etc. Please see sheet AS3 for existing accessible path of travel from parking to existing buildings and proposed canopies. Canopies are generally placed over landscaped or sandbox playground areas; the accessible path of travel is shown up to these points. 24. Provide detectable warning strip 36" wide where walk crosses or adjoins a vehicular way and the walking surface is not separated by curbs, railing or other approved elements at the following locations: curb ramp at parking area. (1133B.8.5). The detectable warnings are existing per permit B2005-1425. This has been noted on sheet AS2 keynote #15. 25. Specify detectable warning product and incorporate a copy of state approval on plan. Provide a detail for pattern and dimensions on plan. If product is not state -approved, incorporate a copy of product warranty onto drawings per department policy CBC 1133B.8.5 (copy available on Building Department web page). Please see response to comment 24 above 26. Write a note on drawings, "Contractor to provide a detectable warning product sample to the Building Inspector for approval of color contrast with finish surface." Please see response to comment 24 above. If you have any questions or require any additional information, please feel free to contact us. Thank you, Page I 3 Scott J. Sanders, SE Consulting structural engineers Arizona California Nevada Hawaii Washington October 19, 2010 Mark Yousef, Project Manager Eide Industries, Inc. 16215 Piuma Avenue Cerritos, CA 90703-1528 Ph. 562-402-8335 ext.161 Fax: 562-924-2233 Subject: Hoag Hospital Child Care Canopy Design Plan Check SWPN: 2259 Dear Mark, Below are my responses to the plan check comments from the City of Newport Beach: Item#18: The hex nut is welded to the rode and matches the rod material. Item#19: The wind design has been revised in the structural calculations. Item#20: Per our conversation, the footing is a plain concrete design and CBC 1812.4 does not apply. Item#21: 2500 psi concrete used for the design, special inspection is not required. See note added to plan. Item#22: See revised footing design. Per CBC section 1804.3.1, it is acceptable to use 2x tabular values for flagpole footing. Please call if you have any questions. Sincerely, Scott J. Sanders, SE Exp. Date: 6-30-2012 CITY OF NEWPORT BEACH BUILDING DEPARTMENT AP°POVAL OF THESE PLANS DOES NOT CONSTITUTE EXPRESS OR IMPLIED AU HOP CFF. fl rCSESTRLOT A .y BUILDING IN VIOLATION OF OR INCONSISTENT CV IH THE C S PA FJS PC) SI .IBE OF THE CITY OF NEWPORT BEACH. THIS � A� jCF ,.TIC THIY r N ARE, IN ALL RESPECTS, IN THE CITY ' r ,ETI1D1 EiG "LF FIf SES. PANS AND POLICIES. 'AT RE-ACEECTERE ES T _: TEE HETET/JEREN F RMITTEE TO E . 'I4, 4 7 r T H PLANS I r0 LY WITH THE C rCU EOLICI SUFTr' F Y ECET ,PQhf „F P4E'irECET ACKN:; .' LEBcG'ENT, YT SE TNATUFF 789 Marlboro Ct., Claremont, California 91711 (909)625-1906; Fax (909) 634-7860 sjs@claremontSE.com DAIS CooWsZOIO Scott J. Sanders, SE Consulting structural engineers Arizona,. California, Hawaii, Nevada, Washington 789 Marlboro Court, Claremont, California 91711 Phone: (909) 625-1906 Fax: (909) 634-7860 Email: sjs@claremontSE.com PROJECT NO: 2259 DATE: 1-Dec-09 8-Oct-10 Plan Revisions PROJECT: Cable, Column, Base Plate aann Foundation design for Hoag Memorial iabj It I T BEACH BUILDING DEPARTMENT Newp ,n S rO„� fi,`-CA p!2663CES NOT CONSTITUTE EXPRESS OR IMPLIEP 1/4 :TAN 'JILCIP (3 IN VIOLATION OF CR INCON4STENT AF _R F '1' JP , TYOFNc ArORT FtCd HIS RRE IN A L R 't„TS. IN W. A 19 F(1 S. r0 o . CLIENT: _ Ode lndustrie5, Inc.- `` - 16215 Piuma Ave. - Cerritos, CA-90703 - thlic:e-662.402413.35— BY. --�Y IY.TH IHE Scott -I, Sancders, SE Consulting structural : engineers ASizbna, California. Hawan,Nevada, Washington Project No:2259 Hoag Rev Page:2 of 10/19/2010 2259 Hoag Rev Project: Cable, Column, Base Plate and Foundation design for Hoag Memorial Hospital PROJECT NO: 2259 Contents Item Description Page 1.00 2.017 --'Canopy SRt h Kit-SXC8 3.00 Bases for Design 3 4.00 General Notes GN4, GN5 6.00 Wind Load L1 7.00 Canopy: Design C1 to C8 8.00 Typical Steel Column Design C9 to C11 9.00 Typical Base Plate C12 to C16 10.00 Typical Anchor Bolt Design C17 to C26 11.00 Typical Footing Design _ N__y� C27 to C31 12.00 Guy Wire Design --M W1 to W2 13.00 14.00 t 3902 �n>Y , PCP;: ��FQF"+r0.1\fqa" Wet Signature Required CALCULATION AND ENGINEERING PREPARED BY: SCOTT J. SANDERS CA SE 3902 EXP.DATE: 6-30-12 2259 Hoag Rev sEcn ativetrillrinasnuntri —.—Alrar — .W flamrsoc . ...ems ...rtam °�`+«r..•KAM taw mitasawn .au„•eR. •.IR 11¢M1W.II ;Erman. • aetatie eat:. ACV 6eseeetil .tiee3'. ub1 gitiftealLor(tnsrc f;Ailly run �,s oy IFS 50v 4 nis a-54'104 Pukt gig. wr © �� leas J 3 ..l• I 9 �,� , .�a ntttc `ep ma �(.R 34 e.va.® '� tt3C4 V ~ 11 fir.I Mal Ia IMt1,tt a( IClalltOttAGA . ycrnrt.ms E • FaaO° I. 22MS—rt.s I - a I Q mm am AD m•. we R rant!, 032940 CANOPY 1ton 11111m IIEINIGEITIACK CA OM 12 tinapranact astaaKaanti 9 B aome wsesmlri r,.WOOXLOmmmIV.LU wlulmmlwmm I F0111geplm 141r/uvmeelb.Ir a= 6 whin mlvin9rm ue aul.ua 3 luvmasmll r.wlecmwe a IWO 110. tengium �fl mo IIC/FIIQAITIE �( 1171014 1arYA CAP Utlia WilOCCAile SEICIMMA 1.t0i w�ttw�m �� �ieu1n60rupm Dal L n H " - da- #i".fp r{¢p #O MUM rl r (WEIN ass tgolnaoarw, 41141.1 r re 501.0 ImEny m B a I i IS mo mos 032940 a CANOPY3 I_ J MANS 6.6 Pf PLAatalaIna —pf 11ThYPORTIMACII.01.02411 Dartaa CC4 CIaCQ eara 1 II n sooneurI w 1 /~/ 1e1,9,i1 n,/1,1 ! .'Wtned.e. mlNn.c.ele• ®Oa4MI _� M.uu�rnrrp OOanwu til awAr}um�wsluuw.aou."raleiglAIMMIDITS O. MUM Ciatla•MATIMMIIIS �a10m 9 WI tatlaew`Vlwlwt NI1.CfM3.41e1311 9 IYOMICIOAMLI Icaworaw awlmea+w snUat'mom.r 6 aanwt 5 4 awlrww wv aw.om 9 PLCIICIra r.w•mm.weo .2 M..nnwtaanflOie .nAllit KIM= maws/cam mcwm tat N0E6SA5MY • Ive.vmnaq SMOMPIVINOIStaliga 6' fl ( ea) 9 a AAA tit O CANOPY 4 r •.IR. Ab a bar 032940 n IONiw� ev°"natnra a ((,, •mrlauawa,n NID rMtaWfaOLOOLUSO M)n• ...0.;9: m°' Swn "Mier:Pr em�w4l°e finre a .mawr '9aArea..m r 8 7 nnnnirue ro a -la nrwtmmaw nnMil WOW Tin ar 6 $ waaawc 4 cma..mana N/ W&Y.nd 5 W71a, M •a1Tffi'M1NJa 9 ( canna* eat NOMENCIATURE urv.vnit WO 44417646444 OCIS6•tlwl ***4 —Itl— • -In— Katommnanatinne iternalarit r 9 uliu— " .. ins - IlEilitilf iligittli igtasmaii t Ma,an➢e<.a. 2 a. 9 I awn.t Swamk Ohm ORM 032940 =Win CANOPY 5 na.,G,.Ru MIR. Td.IXG.N. 4mnRU sd IXL.1 Milektail IN �i�— [WREM1yap4ryyM�� •�ueiwiepvura R , ' �o•nw�Ym4v f Q I } „ % l i`L�//J• mA.WWmleeedL mot 4'G i :.'gym"'® m. •• LINISINAlla 1 • clicentr Mira HOAG MEMORIAL HOSPITAL E4 NEWPORT R aarraw murwax. TENSION STRUCTURE I(= — v 1• n 9 s e o. vu. l museums ne• 7' m.mm.v unew� 6 mslu,. m.,am nut 4 C.nsemmm. Vl Wv.ntll C 3 eusmemml r•W711Len6.6a snow R* o_ YY{3 % • lssw) g m+� ai 4. 4 sari sr m m MA � il. na ueemsuV l 1[ -ft. �_ _ [:: p►� .� Yb)Iie: la KW ff It -Y 032940 , • 01.111C08 A0 . . CANOPY 606 Sawa �"fl awe M %1 a N�rv�c� w�J�a�wmdomeW�¢ �� tirr -frt- .,...o,o..War an ..MAIM Mi1 �.,ra. S TOMA CUIRCLIW Maus. Calenepa Ytleus.�lm ML ▪ YVCV OM4Tflta RS1YM1 ..gcwr6 AI r Si. &A810911Me IO.ODObbfLBMRtAt aawfoovn 10311NV!@AIX4WO flaulwa.a aMa tCA•nI • ma of .,"=aman nra. ,snot, etcs rain..-i•maananMEISSLowoomeO • sWilaanescans 9 euua 04a.`�`�mu 91 vuu a ruecrxma ynewrfmnfefym 6 d 1 wawa wf4aMfe M9O1N0.1p wramw NOMENCLAIIME xa aor. f'a VY TEL B.µp 1ure.a'm ((SWFI a t ram nuireatgewaswauxo. came M1 r =mW nM YN .I IIIII711—II- tir tee.. IMO ifs RINKE! "It" (.101 H t x� n✓JIIFODfi(aa I I 032940 CANOPY CA8 474 Scott]. Sanders, SE Consulting structural engineers Arizona. California. Hawaii, Newada.Washington PR0JECT:97.2259 Hoag Rev Page: 3 10/19/2010 PROJECT: Cable, Column, Base Plate and Foundation design for Hoag Memorial Hospital Newport Beach, CA 92663 DESCRIPTION: Fabric Canopy VERTICAL LOADING: ROOF: Fabric Canopy Flat UVE LOAD = 0.00 PSF Awning Material = 1 Q0 PSF 1/2"SHEATH'G = 0.00 PSF - Rafters = 0.00 PSF - MPE = 0.00 PSF CEILING = 0.00 PSF INSULATION = 0.00 PSF MISCELL'S = 0.00 PSF TOTAL DL = 1.00 PSF TOTAL. LOAD = - 1.00 PSF Wind Design Der 2007 CBC Use 15.68 psf for Horizontal and Vertical Loading see attached wind analysis 85 mph, Exp C, I=1.15 Scott). Sanders, SE Cauumog ,wcWrai enghiets Arizona, California, Hawaii. Nevada, Washington 969 Marlboro Court. Cavemen; Calllemla gam. mionat Coo") A5-1906 ?MC (96) 55/-966o' amyl; M,gciarMnnt5r_eom GENERAL NOTES & SPECIFICATIONS PROJECT NO: 2006 IBC STANDARD SJS Page: GN4 4/13/2010 1.00 GENERAL A. 2006 IBC B. DRAWING GENERAL NOTES GOVERN DESIGN CRITERIA.. C. THIS ENGINEERING REPORT SHALL BE USED ONLY FOR THE SPECIFIC PROJECT COVERED BY THE AGREEMENT AND THE COVER SHEET OF THE REPORT. ALL REVISIONS AND CHANGES TO THE SUBJECT PROJECT SHALL BE SUBMITTED TO THE ENGINEER FOR REVIEW AND APPROVAL 2.00 TIMBER: A. ALL DOUGLAS FIR LARCH, WCLIB, UNLESS NOTED OTHERWISE. B. 2X JOIST NO.1 4X NO.2 C. 6X & GRT: NO.1 D. GLULAM: 24F-V8 INDUSTRIAL APPEARANCE GRADE, UNO. E. 2X4 STUD STUD DF Fb = 675 psi, Fv= 95 psi, E =1.4 x10A6 2X8 STUD NO 2 DF Fb = 875 psi, Fv= 95 psi, E = 1.6 x10A6 4X POST POST DF Fb = 675 psi, Fv= 95 psi, E = 1.4 x1046 2X6 STUD STUD DF Fb = 675 psi, Fv= 95 psi, E =1.4 x1046 F. ALL PLATE AND SILL DOUGLAS FIR LARCH, PT AT CONCRETE. 3.00 FRAMING NOTES: A. NON -BEARING, BALLOON FRAMED WALLS; (1) 2X4 AT 16" 0/C 14'-0" MAX. LATERALLY UNSUPPORTED HEIGHT (1) 2X6 AT 16" OIC 20'-0" MAX. LATERALLY UNSUPPORTED HEIGHT ALL STUDS DF STUD GRADE OR BETTER B. NAIL MULTIPLE STUDS TOGETHER WITH 16D NAILS AT 24" 0/C, UNO. C. ALL BEAMS SHALL HAVE FULL BEARING SUPPORT. D. ALL ISOLATED POST AND BEAMS SHALL HAVE METAL POST CAPS AND POST BASES. E. ALL WALLS ON WOOD FLOORS SHALL BE SUPPORTED BY BEAM, DOUBLE JOIST OR SOLID BLOCKING AT PERPENDICULAR CONDITION. F. ALL STEEL HOLDOWNS AND STRAPS SHALL BE FASTENED TO 4X4 POST. G. ALL STEEL WOOD CONNECTOR SHALL BE SIMPSON, UNO. H. ALL SHOP DRAWINGS SHALL BE REVIEWED BY CONTRACTOR AND ARCHITECT PRIOR TO SUBMITTAL TO ENGINEER FOR REVIEW. I. ALL EXTERIOR WALLS SHALL BE SECURED W/ 1/2" DIA.X10" ANCHOR BOLTS AT AT A MAX SPACING 72" 0/C , FOR SHEAR WALLS SEE SCHEDULE. J. INTERIOR NON -BEARING, NON -SHEAR WALLS MAY BE SECURED WITH SHOT PINS PER MANUFACTURERS SPECIFICATIONS, UNO. RECOMMEND RAMSET #3348 AT 48" 0/C. K ALL CONVENTIONAL FRAMED PORTIONS OF TIMBER STRUCTURE SHALL BE CANSTRUCTED—PER-20tt 16EC; UNO. L. ALL NAILS PER IBC SCHEDULE UNO. PROJECT NO: 2006 IBC STANDARD SJS Page: GN5 4/13/2010 Scott]. Sanders, SE consulting atructutal aaolnana Arizona, California, Hawaii, Nevada, Washington 799 MadboroCourt. CIaemoas.Calt aola 9011 Phone: (909)92S-1206Foe i909j 634-7660 tmslh afi dsr.manMFRam GENERAL NOTES & SPECIFICATIONS 4.00 CONCRETE: A. ALL STRUCTURAL CONCRETE SHALL BE: fc 2500 PSI UNO. B. ALL SLAB -ON -GRADE, CONTINUOUS SPREAD FOOTING/SPREAD FOOTINGS CONCRETE SHALL BE: . Pc = 2500 PSI UNO. C. ALL CONCRETE SHALL REACH MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS. D. DRYPACK SHALL BE ONE (1) PART CEMENT TO NOT MORE THAN THREE (3) PARTS SAND. 6.00 REINFORCING STEEL: A. ALL REINFONC11VG-STEELSITARBE ASTM A 61 r5W FOR-1F4BARS & SMALLER. B. ALL REINFORCING STEEL SHALL BE ASTM A-615-60 FOR #5 BARS & LARGER. C. WELDED WIRE FABRIC SHALL BE ASTM A-185, LAP 1-1/2 SPACES,9" MIN. D. BAR SPLICES SHALL HAVE OF MIN. LAP OF 30 BAR DIA. OR 2'-0", UNO. E. MASONRY REINFORCEMENT SHALL HAVE LAPPING OF 40 BAR DIA. WITH 2'0" MIN., UNO. F. ALL REINFORCING BARS SHALL BE ACCURATELY AND SECURELY PLACED BEFORE CASTING CONCRETE OR GROUTING MASONRY. G. MIN. REINFORCEMENT COVER SHALL BE': 1. CAST AGAINST EARTH:. 3" 2. FORMED, EXPOSED TO EARTH: 2" 3. SLAB -ON -GRADE, FROM TOP: tat 4. COL'S & BEAMS TO MAIN BARS: 2" 6.00 STRUCTURAL STEEL: A. FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL BE IN ACCORDANCE WITH "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS", AISC, CURRENT EDITION. B. STEEL SHALL CONFORM TO ASTM A36 C. PIPE COLUMNS SHALL CONFORM TO ASTM A53, GRADE B. D. ALL WELDING SHALL BE DONE BY CERTIFIED WELDERS. E. ALL FIELD WELDING SHALL HAVE CONTINUOUS INSPECTION. F. ALL STEEL EXPOSED TO WEATHER SHALL BE HOT -DIP GALVANIZED AFTER FABRICATION. G. WHERE FINISH IS ATTACHED TO STRUCTURAL STEEL PROVIDE 1/2" DIA. WELDED STUDS AT 4'-0" 0/C, FOR ATTACHMENT OF NAILER. 7.00 MASONRY: A. CONCRETE BLOCK SHALL CONFORM TO ASTM C-90, GRADE "N" NORMAL WEIGHT UNITS, BLOCK SIZE SHALL BE PER ARCHITECTURAL DRAWINGS OR SPECIFICATIONS. B. VERTICAL REINFORCING BAR PLACEMENT IN MASONRY WALLS: 1. ABOVE GRADE NON -RETAINING AT CENTER OF BLOCK, UNO. 2. RETAINING WALLS PLACE AS DETAILED ON SECTION. --C. ALL GELES WITH-S-TEEL-SHALL BESOL-ID-GRGUTED. D. GROUT ALL CELLS IN RETAINING WALLS AND WALLS BELOW GRADE. STRUCTURESWEST m•ednrnun• Ma•. md•w= WOW r.W, •MMO WIND DESIGN Project No:2259 Hoag Rev Page: LA 10/8I2010 PROJECT' Cable, Column, Base Plate and Foundation design for Hoag Memorial Hospital pESCRIPTION: Canopy Structure Wind Donlan eer2006 IBC (ASCE? 6.5.131 Method 2 • Analytical Procedure for Open Canopy Exposure • B la. Kd = 0.85 Directionaliity factor Table e-4 lb. V = 88.00 aph,1mm:repeat 2 Iw = 1.15 Importance Factor Table CA 3. Kt = 0.85 Eryasurefactor. erpC 8.5.6.6, T•6•3 MWFR 4. K2t = 1.00 Topagnphyfactor, Er)C 6.5.7.2 Af = 1.00 Ht.z at thecentmid of Area 5. G = 0.85 Gust Effect Factor 6.5.8 6. Open Building Enclosure Classi0cation 6.5.9 7. G = 0.85 Interval Pressure Coef 6.5.11.1 8. n •—•1720 Forcexoe8— '"Flgurss18io 9. qh • 0.00256x Kzx Kitx Kdx Va2 xl= 15.37 PSF Eq.6-16 10. p=gh•G*Cn • 15.68 psf Eq. 6-25 0.5.16, Design Wind Load on Others Structures F • q1G CIA{ (6-27) qt .00256 Kd Ka Ka V2I (8-15) Htz atthe cenlroid of area At• 10 tt Exp=C Exposure coefficient K2= 0.85 6.5.6.8, T•8.3 far MWFR Topography factor K=• 1.00 6.5.72 Directionality factor lid = 0.85 Table 6-4 Wind Speed V = 85 mph Importance factor l•= 1.15 Table 8-1 go 15.37 Paf Gust Effect factor G = 0.85 6.5.8 Force coeff Cf. 1.2 Figure 8-21 through 8-23 Design Wind pressure, F/Ar = 15.68 Psf 2259 Hoag Rev Structures West Canopy 1-16'x16' Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: qh=0.00256KhKztKdV^21= Kh 0.85 Kzt 1.00 Kd 0.85 V 85.00 I 1.15 15_37 psf p=gh•G•Cn - 15.68 psf G=0.85 Cn = 1.20 ASSUMPTIONS: SOILS-CLASS-311ItATtRIAt"PEKIBCiaBNO:1804.2 85 MPH, EXPOSURE C 0-15 FEET 0-15 FEET 85 MPH ht, ft FG d, ft IND LOADING ON ELEVATION: 10/8/2010 Paget it 2259 Hoag Rev ,Canopy dia col ffg AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 8.00 2.00 15.68 260.80 10.00 2508.04 Column 0.50 10.00 15.68 78.38 5.00 391.88 FOOTING 0.00 0.00 15.68 0.00 0.00 0.00 H RESULTANT ARM = MA.OAD TOTAL = 329.18 8.81 2899.9 SOIL BEARING= 1� LATERAL BEARING = in LES/SQ.FT/FT. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 CALCULATE FOOTING DEPTH (d) PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP Wind Load: Tension Load P= h= S= b= A= 2.34P/S1b = 1 d = 0.5A (1+(4.36h/A)rl/2) _ fc= 2500 psi fy = 60000 psi 329.18 LBS 8.81 FT. 300.00 #JFT^2IFT. OF DEPTH 3.00 FT. 3.33 •Ei Column Design: 6" Diameter Column M = Pxh = 2899.915937 Ft-lbs USE 300.00 h= 10.00 S = 150.00 b = 3.00 FT. A=2.34P/S1b= 1.56 d = 0.5A (1+(4.36h/A))^112) _ Sreq'd=(Mx12)/(Fyx1.33) Fy= Sreq'd = 1.08 in^3 Delta max = U180 = 0.67 in . Ireq'd = (M`M2)/(3"E`Delta )_ 36000 psi LBS FT. #/FT^2/FT. OF DEPTH 4.98 FT 6.7051 in^4 6" DIAMTER PC STANDARD Fv=36ks1 Ixx=26.5 In^4: Sim a 7.991n^3 Canopy Area + It x width - opening a Lt = 16 ft Width = 16 ft Opening = 48 sq. ft Columns = 4 Wind Load = 15.68 psf Uplift at each Column = Area* Wind! Columns = Dead Load of Footing = 5274.072 lbs 208 sq.R 815.11 lbs Structures West Canopy 2-8'x8' Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: qh=0.00256KhKztKdVA21= Kh Kzt Kd V p=gh'G'Cn 0.85 1.00 0.85 85.00 1.15 15.37 G Cn 85 MPH, EXPOSURE C 0-15 FEET 0-15 FEET 85 MPH psf 15.68 psf = 0.85 = 1.20 ASSUMPTIONS: SOiLt -CLASS 3-1RFERiid-PER-IBC TABL-E'NO:1'8042 ht, ft FG d, ft dia col f'g 10/8/2010 Page:a 2. 2259 Hoag Rev ,Canopy AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 4.00 2.00 15.68 125.40 10.00 1254.02 column 0.50 10.00 15.68 78.38 5.00 391.88 FOOTING 0.00 0.00 15.58 0.00 0.00 0.00 H RESULTANT ARM = M/LOAD TOTAL = 203.78 8.08 1645.90 SOIL BEARING= 1500 LATERAL BEARING = 2� LBS/SQ.FT/FT. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 CALCULATE FOOTING DEPTH (d) PER IBC 1805.72.1 NON -CONSTRAINED AT TOP Wind Load: P= 203.78 LBS h = 8.08 FT. S = 300.00 #/FTA2/FT. OF DEPTH b= 3.00 FT. A= 2.34P/Sib = 1 d = 0.5A (1+(4.36h/A))41/2) _ IS FS Pc = fya Psi 60000 psi Column Design: 6" Diameter Column M = Pxh = 1645.898234 Ft-lbs 2500 USE Tension Load P= 300.00 h = 10.00 S = 150.00 b = 3.00 FT. A= 2.34P/S1b = 1.58 d = 0.5A (1+(4.36h/A))"1/2) Sreq'd = (M x 12)/( Fy x 1.33) Fy = Sreq'd = 0.82 inA3 Delta max=U180= 0.67 In Ireq'd = (M•h"2)/(3•E•Defa )_ 36000 psi LBS FT. #/FT"2/Fi'. OF DEPTH la FT 3.199 In"4 6" DIAMTER PC STANDARD Fv=36ks1 Ixx=26.51nM4: Sxx = 7.991na3 Canopy Area + It x width - opening = Lt = 8 ft Width = 8 ft Opening = 24 sq. ft. Columns = 4 Wind Load = 16.68 psf Uplift at each Column = Area* Wind/ Columns = Dead Load of Footing = 5274.072 lbs 40 sq.ft. 156.76 lbs Structures West Canopy 3-26'x13' 3 column Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: qh=0.00256KhKztKdV421= 85 MPH, EXPOSURE C Kh 0.85 Kzt 1.00 0-15 FEET Kd 0.85 0-15 FEET V 85.00 85 MPH I 1.15 15.37 psi p=qh*G*Cn = 15.68 psf G = 0.85 Cn = 1.20 ASSUMPTIONS: SOILS: CLASS 3 MATERUCCPER IEIC TABLET107, 8U4.2 ht, ft FG d, ft dla col ft'g 10/8/2010 Page:14".. 2259 Hoag Rev ,Canopy AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 13.00 2.00 15.68 407.56 10.00 4075.56 Column 0.50 10.00 15.68 78.38 5.00 39188 FOOTING 0.00 0.00 15.68 0.00 0.00 0.00 H RESULTANT ARM = M/LOAD TOTAL = 9.19 SOIL BEARING= 1500 LATERAL BEARING = LBS/SQ.FT/FT. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 CALCULATE FOOTING DEPTH (d) PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP Wind Load: Tension Load P= 485.93 LBS P= 300.00 LBS h= 9.19 FT. h= 10.00 FT. S = 300.00 #/Ff^2IFT. OF DEPTH S = 150.00 #/FT^2/FT. OF DEPTH b = 3.00 FT. b = 300 FT. A= 2.34P/S1b = 1 A= 2.34P/S1b = 1.56 d = 0.5A (1+(4.38h/A))"1/2)'= 4.25 El d = 0.5A (1+(4:36h/A))^112) = • 4.98 FT Pc = fy= 2500 psi 60000 psi Column Design: 6" Diameter Column M =Pxh = 4467A38065 Ft-lbs Sreq'd = (M x 12)/( Fy x 1.33) Fy = 38000 psi Sreq'd = 1.67 103 Delta max = IJ180 = 0.67 . In Ireq'd = (M*h^2)/(3*E"Delta )= 11.25 1n^4 USE 6" DIAMTER PC STANDARD Fv=36ksi Ixx=25.51n^4: Sxx = 7.99 inn Canopy Area + ft x width • opening = Lt = 26 ft Width = 13 ft Opening = 65 sq. ft. Columns = 3 Wind Load = 16.68 psf Uplift at each Column = Area* Wind/ Columns = Dead Load of Footing = 5274.072 lbs 104 sq.ft. 543.41 lbs Structures West Canopy 4-16'x24' Canopy 20061BC ASSUMPTIONS: WIND LOAD: qh=0.00256KhKztKdVA21= 85 MPH, EXPOSURE C 0.85 1,00 0-15 FEET 0.85 0-15 FEET 85.00 85 MPH I 1.15 15;37 psf p=qh*G'Cn = 15.68 psf G =0.85 Cn=1.20 ASSUMPTIONS: SOILS: CLASS 3 MATERIAL PER IBC TABLE NO.18b4.2 SOIL BEARING= 1600 LATERAL BEARING = 200 LBS/SO.FT/F T. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 ht, ft FG d, ft col frg dia Kh Kzt Kd V • 10/8/2010 Page: 2259 Hoag Rev ,Canopy AREA WIDTH HT WIND LOAD MARM M FT FT PSF LBS FT FT-LBS Roof 12.00 2.00 15.68 376.21 10.00 3762.05 Column 0.50 10.00 15.68 78,38 5.00 391.88 FOOTING 0.00 0.00 15.68 0.00 0.00 0.00 H RESULTANT ARM = M LOAD TOTAL = CALCULATE FOOTING DEPTH (d) PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP Wind Load: Tension Load P= 454.58 LBS Pa 300.00 LBS h = 9.14 FT. h = 10.00 FT. S = 300.00 #/FTA2/FT. OF DEPTH S = b= 3.00 FT. b= 3.00 FT. A=2.34P/S1b= 1 A=2.34P/S1b= 1.56 d = 0.5A (1+(436h/A))^112) = FT d = 0.5A (1+(4.36h/A))^1/2) _ fc= fy= 2600 psi 60000 psi Column Design: 6" Diameter Column M = Pxh = 4153,933639 Ft-lbs USE Sreq'd=(Mx12)/(Fyx1.33) Fy= Sreq'd = 1.55 inA3 Delta max = U180 = 0.67 in Ireq'd = (M'hA2)/(3'E'Delta )_ 36000 psi 9.14 150.00 #/FTA2/FT. OF DEPTH 4.98 FT 10.334 In^4 6" DIAMTER PC STANDARD Fy=361csi lxx=26.51n^4; Sxx = 7.99103 Canopy Area +'It x width - opening = Lt = 16 ft Width = 24 ft Opening = 64 sq. ft. Columns = 4 Wind Load = 15.68 psf Uplift at each Column = Area' Wind/ Columns = Dead Load of Footing = 5274.072 lbs 320 sq.ft. 1254.02 Ibs Structures West Canopy 5.16'x26' Canonic 2006 IBC ASSUMPTIONS: WIND LOAD: qh=0.00256KhKztKdV"21= Kh 0.85 Kzt 1.00 Kd V p=gh•G•Cn 0.85 85.00 1.15 85 MPH, EXPOSURE C 0-15 FEET 0-15 FEET 85 MPH 15^37 psf = 15.68 psf G = 0.85 Cn = 1.20 ASSUMPTIONS: SOILS: CLASS 31NATERfACPER1BC TATILE'NC1804:2 ht, ft FG d, ft dia N ELEVATION: col ft'g 10/8/2010 �+ Page:.. 5 2259 Hoag Rev ,Canopy AREA WIDTH HT WIND LOAD M ARM M FT FT PSF - LBS FT FT-LBS Roof 13.00 2.00 15.68 407.56 10.00 4075.56 Column 0.50 10.00 15.68 78.38 6.00 391.88 FOOTING 0.00 0.00 15.68 0.00 0.00 0.00 H RESULTANT ARM = MILOAD TOTAL = 485.93 9.19 4467. SOIL BEARING= 1500 LATERAL BEARING = 200 LBS/SQ.FTIFf. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 CALCULATE FOOTING DEPTH Wind Load: P= h= S= b= A= 2.34P/S1 b = (d) PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP 485.93 LBS 9.19 FT. 300.00 #/FTA2/FT. OF DEPTH 3.00 FT. 1 d = 0.5A (1+(4.38h/A))"112) = fc fy= 2500 psi 60000 psi 4.25 FT Column Design: 6" Diameter Column M = Pxh = 4467.438065 Ft-lbs USE Tension Load P= 300.00 h = 10.00 S = 150.00 b = 3.00 FT. A=2.34P/S1b= 1.56 d = 0.5A'(1+(4.36h/A))^1/2) _ Sreq'd = (M x 12)/( Fy x 1.33) Fy = Sreq'd = 1.67 in"3 Delta max = U180 = 0.67 in Ireq'd = (M"h"2)/(3"E"Delta )_ LBS FT. #/FT^2/FT. OF DEPTH 38000 psi 11.25 In^4 6" DIAMTER PC STANDARD Fy=361csi ixx=26.5 in^4; Sxx=7.99 in^3 Canopy Area + It )(width - opening = Lt = 16 Width = 26 Opening = 68 Columns = 4 Wind Load = 16.68 psf Uplift at each Column = Area" Wind/ Columns = ft ft sq. ft. Dead Load of Footing = 5274.072 lbs 348 sq.& 1363,74 lbs Structures West Canopy 6-18' c14' Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: gh=0.00256KhKztKdVA2I = Kh Kit Kd V p=qh*G*Cn 0.85 1.00 0.85 85.00 1.15 1L2Z G Cn ASSUMPTIONS: SOILS: CLASS 3 MATE SOIL BEARING= LATERAL BEARING = 85 MPH, EXPOSURE C 0-15 FEET 0-15 FEET 85 MPH psf = 15.68 psf = 0.85 = 1.20 ht, ft FG d, ft dia LEVATION: col n'g 10/8/2010 Page: .O 2259 Hoag Rev Canopy AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 9.00 2.00 15.68 282.15 10.00 2821.54 Column 0.50 10.00 15.68 78.38 5.00 391.88 FOOTING 0.00 0.00 15.68 0.00 0.00 0.00 H RESULTANT ARM = WLOAD TOTAL = 8.91 -UAL PERTBC TABLENO4804:2 1500 200 LBS/SQ.FTIFT. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 CALCULATE FOOTING DEPTH (d) PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP Wind Load: Tension Load P= 360.53 LBS P= 300.00 h= 8.91 FT. h= 10.00 S = 300.00 #/FTA2IFT. OF DEPTH S = 150.00 b = 3.00 FT. b = 3.00 A= 2.34P/S1b = 1 d = 0.5A (1+(4.36h/A))A1/2) _ fc- 2500' psi 60000 psi A=2.34P/S1b= 1.56 3.52 FT • d = 0.5A (1+(4.38h/A))A1/2) _ Column Design: 6" Diameter Column M = Pxh = 3213.420362 Ft-lbs USE LBS FT. #!FTA2/FT. OF DEPTH FT. 4.98 FT Sreq'd - (M x 12)I( Fy x 1.33). Fy = 36000 psi Sregd = 1.20 in'3 Delta max - L/180 = 0.67 In ireq'd = (M*h=2)/(3*E*Delta )= 7.6056. lnA4 6" DIAMTER PC STANDARD Fy=36ksi ixx=26.5 in'4: Sxx = 7.99 InA3 Canopy Area + It x width - opening = Lt = 18 ft Width = 14 ft Opening = 46 sq. ft. Columns = 4 Wind Load = 15.68 psf Uplift at each Column = Area* Wind! Columns = Dead Load of Footing = 5274.072 lbs 206 sq.ft. 807.27 lbs ------------ Structures West Canopy 7-16514' Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: qh 0.00256KhKztKdV^21= 85 MPH, EXPOSURE C Kh 0.85 Kzt 1.00 0-15 FEET Kd 0.85 0-15 FEET V 85.00 85 MPH I 1.15 15_37 psf p=qh*G*Cn = 15.68 psf G 0.85 Cn = 1.20 ASSUMPTIONS: ht, ft FG d, ft col • 10/812010 Page:a- 2259 Hoag Rev ,Canopy AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 8.00 2.00 15.68 250.80 10.00 2508.04 Column 0.50 10.00 15.68 78.38 5.00 391.88 0.00 0.00 15.68 0.00 0.00 0.00 FoonNG H RESULTANT ARM = MILOAD TOTAL = 8.81 SOILS: CLASS 3-MATERIAL PERIUCTXBLET70.f804:2 SOIL BEARING= 1600 LATERAL BEARING = 200 LBS/SQ.FT/FT. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 CALCULATE FOOTING DEPTH (d) PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP Wind Load: Tension Load P= 329.18 LBS P= 300.00 LBS h = 8.81 FT. h = 10.00 FT. S = 300.00 #/FT^2(FT. OF DEPTH S = 150.00 #JFT^2(FT. OF DEPTH b = 3.00 FT. b = 3.00 FT. A=2.34P/Stb= 1 A= 2.34P/S1b = 1.56 d = 0.5A (1+(4.36h/A))^1/2) = 3:33 FT d = 0.5A (1+(4.36h/A))^112) = 4.98 FT fc = fY= 2600 psi 60000 psi Column Design: . 6" Diameter Column M = Pxh = 2899.915937 Ft-lbs Sreq'd = (M x 12)/( Fy x 1.33) Fy Sreq'd = 1.08 in^3 Delta max =11180 = 0.67 in Ireq'd = (M*h02)/(3*E*Deita )_ 36000 psi 6.7051 in^4 USE 6" DIAMTER PC STANDARD Fy=36ksi lxx=26.5in^4; Sxx=7.99 in^3 Canopy Area + It x width - opening = Lt = 16 ft Width = 14 ft Opening = 44 sq. ft Columns = 4 Wind Load = 15.68 psf Uplift at each Column =Area• Wind( Columns = Dead Load of Footing = 6274.072 lbs 180 sq.ft. 705.38 lbs Structures West Canopy 8-11'x10' Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: qh=0.00256KhKztKdV42I = 85 MPH, EXPOSURE C Kh 0.85 Kzt 1.00 0-15 FEET Kd 0.85 0-15 FEET V 85.00 85 MPH I 1.15 15.37 psf p=qh*G*Cn = 15.68 psf G = 0.85 Cn = 1.20 ASSUMPTIONS: SOILS: CLASS 31CMATERRArPER1BC TABCENO:1804: ht, ft FG d, ft dia • col ft'g 10/8/2010 Page; 8 2259 Hoag Rev ,Canopy AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 5.50 2.00 15.68 172.43 10.00 1724.27 Column 0.50 10.00 15.68 78.38 5.00 391.88 FOOTING 0.00 0.00 15.88 0.00 0.00 0.00 H RESULTANT ARM = MILOAD TOTAL = 250.80 8.44 SOIL BEARING= 1500 LATERAL BEARING = 2� LBS/SQ.FT/FT. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 CALCULATE FOOTING DEPTH (d) PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP Wind Load: Tension Load P= 250.80 LBS P= 300.00 LBS h = 8.44 FT. h = 10.00 FT. S = 300.00 #/FTA2/FT. OF DEPTH S = 150.00 #/FT*2/FT. OF DEPTH b = 3.00 FT. b = 3.00 FT. A=2.34P/S1b= 1 A= 2.34P/S1b = 1.56 d = 0,5A (1+(4.36h/A))A1/2) _ - 2.80 FT d = 0.5A (1+(4.36h/A))41/2) = • 4.98 i fc= fy= 2500 psi 60000 psi Column Design; 6" Diameter Column M = Pxh = 2116.164873 Ft-lbs Sreq'd =.(M x 12)/(Fy x 1.33) Fy Sreq'd = 0.79 InA3 Delta max = L/180 = 0.67 In Ireq'd - (M*h42)/(3*E*Delta )_ 36000 psi 4.4884 InA4 USE 6" DIAMTER PC STANDARD Fv=36ksi ixx=26.5 InA4; Sxx = 7.99 Inn Canopy Area + It x width - opening = Lt = 11 ft Width = 10 ft Opening = 31 sq. ft. Columns = 4 Wind Load = 15.68 psf Uplift at each Column = Area* Wind/ Columns = Dead Load of Footing = 6274.072 lbs 79 sq.ft. 309.59 lbs ScottJ. Sanders, SE convening aiwwrat nMinwr Arizona. California. Hawaii. Nevada, Washington 769 Marlboro Coun.Clrennnt. CnafwnM 917t1 Pions:190M RS-19069ax 19691636-0a69 Email: ifMalt uwnnisiaum JOE SHEET NO. d41 OF CALCULATED BY DATE CHECKED BY OATE SCALE i i tLis IIft I , '& t r I t +�-.on r l ig ..l ;- �� 1 1 i l —�--- !_ — 1 — _--I---'I, 1 -_l---i- I I j 1 --i�-- f , t` F;; 1 i --- t--r- - III_.' -� ! I I ; 11•I -�- — :-r Jr!I -41-11 ' 1 __ F l I-- I I -1 1— 1 _ - — r-- r _ I 1 1 f a fr_I f- I—L 1 — 1_-_i...___ —, -- __1 4---4-----f-- I- __..L..--.- -_--F-.._._._1..---'---1 — — --' L t t _ — —'_----. i i i .__ _ -- -- I ill _. 1 — —} ir 1 —3—!__. —I I -� Scott). Sanders, SE Lic KW-06000660 ". Description : Typical Column Design for al canopies 6' Diameter Colunn General inf aiio t 4' ,"fit t..Y Steel Section Name : Analysis Method : Steel Stress Grade Fy: Steel Yield E:Elastic Bending Modulus Load Combination : lied 11Fonst Column self weight included :190.0 lbs Dead Load Factor AXIAL LOADS .. . Axial Load at 10.0 ft, W = 0.990 k BENDING LOADS Pipe6 Std 2006 IBC & ASCE 7-05 35.0 ksi 29,000.0 ksi Allowable Stress Title : Dsgnr: • Project Desc.: Protect Notes : Job # 6.a Riot 8 OCT 2010,1259PM *I a fA .1 a ga2ts9 =royal{ awrvyanletaan mFapa e§; License 'Owner : STRUCTURES WEST: Code Ref : 2006 IBC, AISC Manual 13th Edition Overall Column Height 10.0 ft Top & Bottom Fixity Top Free, Bottom Fixed Brace condition for deflection (buckling) along columns : X-X (width) axis :Unbraced Length for X X Axis buckling =10ft, K= 2,1 Y-Y (depth) axis :Unbraced Length far Y-Y Axis buckling = 10 ft, K = 2.1 Service loads entered. Load Factors will be applied for calculations. Let. Point Load at 10.0 ft creating Mx-x, W =1.485 k Bending & Shear Check Results PASS Max. Axial+Bendklg Stress Ratio =. Load Combination Location of maxabove base At maximum location values are ... Pu :Axial Pn I Omega :Allowable Mu-x : Applied Mn-xf Omega: Allowable Mu-y :Applied Mny f Omega: Allowable PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base At maximum location values are... Vu: Applied Vn I cmmm"ega :Allowable are MEV Load Combination 0.8097 :1 +D+W+H 0.0 ft 1.180 k 57.673 k 14.80 k-ft 18.513 k-ft 0.0 k-ft 18.513 k-ft Along X-X for load combination 0.04509 :1 +D+W+H 0.0 ft 1.480 k 32.820 k Maximum Axial + Bending Stress Ratios Stress Ratio Status Location Maximum SERVICE Load Top along X-X Bottom along X-X Tap along Y-Y Bottom along Y-Y Maximum SERVICE Load AlongY-Y -1.1 for load combination Reactions.. 0.0 k 0.0 k 0.0 k 1.480 k Deflections... 04 in at :W Only 0.0 In at Maximum Shear Ratios Stress Ratio Status Location 10.0ft above base 0.0ft above base +D+W+H +0+0.750Lr+0.750L+0.75016/+H +0+0.750L+0.7505+0.750W4t +0.60D+W+H Load Combination 0.810 PASS 0.00 ft 0.608 PASS 0.00 ft 0.608 PASS 0.00 ft 0.809 PASS 0.00 ft 0.045 PASS 0.00 ft 0.034 PASS 0.00 ft 0.034' PASS 0.00 ft 0.045 PASS 0.00 ft Note: Only non -zero reactions are listed. X-XAxa Reaction @Base @Top Y-Y Axis Reaction @Base ©Top W Only - i Dell $Wt$ad,Com6t on$ ,EfarSor'edifoa` & Load Combination Max. X-X Deflection Distance 1.480 Max.YY Deflection Distance W Only 0.0000 in 0.000 ft ai Ox.:r. „,--,v`.•p. w Pr�pg,ie- pt e65 d�,,n a` -1.093 in 9.933 ft Scott). Sanders, SE Title : Dsgnr: Project Desc.: Project Notes : cci Job # bocr201a I �Lw Description : Typical Column Design torah canopies 6' Diameter Column ySteel.Se lfig Prop rhos Depth Web Thick = Flange Width Flange Thk* Area Weight Ycg Pipeb;.$tdFa:: 6.625 in 0.000 in • 6.625 In ▪ 0.280 in = 5.220 ln=2 • 19.000 pif • 0.000 In Ixx Sxx Rxx • 26.50 iM4 7.99 103 - 2,250 in = 26.500 InM ▪ 7.990 ln"3 2.250 in eC J 52.900 lee Ysrtteaes j � W Load, an total eat rec IMO. Mass do eat relied absolute mredlo. Scott). Sanders, SE Description : Typical Base Plate Design 1'x14'sq for all canopies General Information Title : Dsgnr. Project Desc.: Project Notes Job # Nark eocrtora 1.08 1.54 Se, It License: Owner : STRUCTURES WEST Calculationsper 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker Material Properties AISC Design Method Load Resistance Factor Design Steel Plate Fy = 36.0 ksi Concrete Support Pc = 3.0 ksi Assumed Bearing Area :Full Bearing (1s e : LRFD Resistance Factor Allowable Beadng Fp per JB Column & Plate Column Properties Steel Section : Pipe6 Std Depth 6.625 In Area Width 6.625 in hoc Flange Thickness 0.261 In lyy Web Thickness 0 in Plate Dimensions N: Length 14.0 in B: Width 14.0 in Thickness 1.0 in Column assumed welded to base plate. 5.22 102 26.5 InA4 26.5 inA4 Support Dimensions Support width along'X' Length along 'Z' 30.0 In 30.0 In Applied Loads D: Dead Load FLY Ma k k Lr:Roof Live ._._,. k S: Snow _...._...... • k W:Wbd ..._.....,_.. k E: Earthquakek H: lateral Eat k k k-ft 'P'=Gravity bad, '+signlsdannward. '+ Moments create highersoil pressure at+2 edge. "a Shears push plate towards+Z edge. Anchor Bolts k k k k 1.475 k k Anchor Bolter Rod Descipton 718' Max of Tension or Pullout Capacityk Shear Capacity k Edge distance: bolt to plate.........._1.250 in Number of Bolts In each Row ........ 2.0 Number of Bolt Rows._... _....,._._.... t0 k-ft k-ft k-ft k-ft 14.750 left k-ft 0.60 5.10 ksi Scott j. Sanders, SE ....SO4.4.PSWlas ... Title : Dsgnr. Project Deso: Project Notes : 0)3 Job # Niue 8041201a 1:8PM Si=la„aseiria e Lic: S KW-06000560'"N Fdea"G:.. •ELicen Owner : STRUCTURES WEST - Description: Typical Base Plate Design l"x14' sq for all canopies GOVERNING DESIGN LOAD CASE SUMMARY Plate Design Summary Design Method Governing Load Combination Governing Load Case Type Design Plate Size Pu : Axial .. Mu: Moment„„... fv: Actual Fv: Allowable = 0.60 • Fy * 090 (per G2) Stress Ratio Load Resistance Factor Design +1.200+0,50Lr•0.50L+1.60W Axial +Moment, Eccentricity <= L/6 1'-2" x 1'-2• x l" 0.000 k 23.600 k-ft 0.452 ksi 32.400kst 0.014 Shear Stress 0K Mu : Max. Moment.. fb : Max. Bending Stress Pb: Allowable: Fy • Phi Stress Ratio 0.860 Bending Stress OK M: Max. Plate Beadng Stress.,.. Fp : Allowable: min( 0.85Yc'sgrt(A2JA1), 1.7• rc)'Phf 4.645 k-In 27.871 ksi 32.400 KM 0,619 MI 3.060 ksi 0202 Bearing Stress 0K Load Comb.: +1.20D+1.60Lr+0.60L+0,80W Axial Load+ Moment, Eec. <L/6 Loading Pu:Axial......_. Mu: Moment.._._ Al : Plate Area ..... A2: SupportArea Distance for Moment Calculation ' m' ...._......_....... " n' ... 0.000 k 11.800 k-ft 0.000 In 196.000 In^2 900.000 IM2 2.000 4.350 in 4.350 In Bearing Stresses Fp : Allowable fu : Max. Bearing Pressu Stress Ratio._„. Plate Bending Stresses Mmaxl = Fu • m^2 / 2 . Mmax2= FU • 02/2.__.._._..__„. Mmax.._. lb :Actual .._.. Fb : Allowable _..._ Stress Ratio .„.__. Shea Stress iv:Actual Fv :Albs/able Stress Ratio_.__._„_... 3.060 ksi 0310 KS 0.101 2323 k-in 0510 k_In. 2323 lc -in 13936 kS 32400 KS 0.430 0226 KS 32.400 lei 0.007 Load Comb. : +1.20D+1,60Lr+0,60L•0.80W Leming Pu:Aidal..,... 0.000 k Mu : Moment 11.800 k-ft Eccentricity 0.000 In A1: Plate Area...„ - 196.000 in^2 A2 : SupportArea ...„_.......... 900.000 1n"2 Distance for Moment Calculation in" .. 2000 4.350 In 4.350 N Bearing Stresses Fp : Allowable _............. hr : Max. Bearing Pressu Stress Ratio ...„ ......._ Plate Bending Stresses Mmaxl=Fu•nt2/2 Mmax2 = Fu' n'2 / 2 ..........._..„ Pb: Allowable .........._....._......_.... Stress Ratio ..._._.._._ hear Stress fv: Actual • Axial Load + Moment, Ecc. < U6 3.060 ksi 0.310 ksi 0.101 2323 kin 0.510 kIn 2.323 k In 13.936 rat 32.400 KS 0.430 0.226 l el 32.400 kel 0.007 Scott!. Sanders, SE Title : Dsgnr: Project Desc.: Project Notes : eta Job 0 800T2e1e 1:00 Lis:: #': K W-06000560.'1;; Description : Typical Base Plate Design 15c14" sq for all canopies License Owner STRUCTURES WEST Load Comb. : +1.20D+0.50L+1.60S+0.80W Loading Pu:Axial ..__.. Mu :Moment Eccentridl r Al : Plate Area A2: Support Area J A2/A1 Bearing Stresses 0.000 k Fp : Allowable 11.800 k-ft fu : Max. Bearing Pressu 0.000 In - Stress Ratio .._._.,.__._, 196.000 In"2 Plate Bending Stresses 900.000 In42 Mmaxl = Fu • m"212 . 2.323 k-in 2000 Mmax2 =Fu•n"212 0,510k-In Mmax...._.........._...._...._... 2.323 k-In Distance for Moment Calculation ib : Actual 13.936 ksl ' m' . 4.350 in Fb : Alowabe . 32.400 ksi ' n "._ 4.350 In Stress Ratio ...«.-....._. 0.430 Axial Load + Moment, Ecc. <U6 3.060 ksi 0.310 ksl 0.101 Shear Stress N: Actual . 0226 ksi Fv: Albwebre 32A00 kat 0.007 Load Comb.: +1.20P+0.50L+1.608-0.80W Axial Load +Moment, Ecc.<U6 Loading Bearing Stresses Pu:Axial ._._.. 0.000k Fp:Alowable _ 3.050 ksi Mu :Moment.-- 11.800 k-ft fu : Max Beaaring Pressu 0.310,ks1 EccenMdly 0.000 In Stress Ratio „...._„...«_.. 0.101 Al : PWIe Area .......... 196.000 ln"2 Plate Bending Stresses A2: SupportArea...._.......«_... 900.000102 Mmax1=Fu'm"2/2 2.323k-In V A21At ...... ... 2.000 Mmax2 =Fu • n"212 0.510 k-in Mmax...._.............._.._._.. 2.323 k-in Distance for Moment Calculation @: ACWal ...,..............._........ 13.936 ksl " m " 4.350 In Fb:AAavable..........._.._.._......._. 32.400 lest ' n'....._. 4.350 In Stress Ratio ..«,_..«...... 0430 Shear Stress N: Actus....._........._..,.«....... 0226 kd Fe:Allowable 32400lest Stress Ratio _«,.-.__«.. 0.007 Load Comb.: +1.2OD+0.50Lr+0.50L+1.60W Axial Load+Moment, Ecc. <U6 Loading Bearing Stresses Pu:Axil_...... 0.000k FP:Allowable ............_......._..... 3.060 het Mu :Moment 23.600 k-ft fu :Max. Bearing Pressu 0.619 131 Eccentricity . 0.000 In Stress Ratio ... 0.202 Al : Plate Area ._...... ... 196,000 in"2 Plate Bending Stresses A2: Support Area 900.0001n"2 Mmaxl Fu • mA2 /2 - 4.645 kin J A2/A1 ._.,_..... ....... 2.000 Mmax2=Fu'n42/ 2._......... 1.020 kin Mmax 4.645 k-in Distance forMOment Calculation Po : Actual _. 27.871 ks1 ' m' 4.350 in Eh:Allowable 32.400 ksl ' n' 4.350 In Stress Ratio .........,«... 0.800 Shear Stress N: Actual 0.452 lest Fv:Allowable 32.400 ksI Stress Ratio ..... _......___ 0.014 Scott J. Sanders, SE Title : Dsgnr: Project Desc.: Project Notes : Job q Mated: 8 OCT 2070. 10WM 13 Description : Typical Base Plate Design Pale sq for all canopies Load Comb.: +1.2OD+O.5O1r+O.5OL-1.6OW LoadInq Pu : Axial .. Mu : Moment Eccentddly...._. Al : Plate Area ......... A2: SupportArea ........... .� A2/A1 . _._.._ Distance for Moment Calculation "m. " n ' 0.000 k 23.600 k-ft 0.000 In 196.000 In^2 900.000 inA2 Axial Load + Moment, Ecc. < U6 Bearing Stresses Fp :Allowable fa : Max. Searing Pressu Plate Bending Stresses Mmaxl =Fu • m^212....._....__.. Mmax2= Fu * nA2 f 2........ ..... _._. Mmax fb : Actual 4.350 in Fb :Allowable ». 4.350 In Stress Ratio ........ 2,000 Shear Stress At:Acluat Fv:Alloble 3.060 ksl 0.619 MI 0.202 4.645 k4n 1.020 k4n 4.645 k4n 27.871 kat 32A00 ksi 0.60 0A52 ksi 32400-ksl 0.014 Load Comb. : +1.200+O.S0L+0.S0S+1.6OW Loading Pu: Mal ....... Mu: Moment Eccentricity . _...._...,._..... Ai : Plate Area ._..._.... A2: Support Area N/ AVM Distance for Moment Calculation m' n" 0.000 k 23.600 k-ft 0.000 in 198.000 Ina2 900.000 Intl 2000 4.350 In 4.350 in • Bearing S sses fu : Max. Bearing Pressu Stress Ratio --.--- Plate Bending Stresses Mmaxl =Fu • mA212._..___ Mmax2=Fu"n4212 Mmax fb :Actual Fb :Allowable ..._... _. Stress Ratio _.:..-...,.... Shear Stress N : Actual .... Fs :Allowable .._..._._._......__ Stress Ratio ... --- Axial Load + Moment, Ecc. < U6 3.060 ksl 0.619 lot. 0.202 4.645 WI 1.020 k-in 4.645 k-In 27.871 Itsi 32.400 ksi 0.860 0,452 ksi 32.400 ksi 0014 Load Comb. : +1.20 D+0.50 L+0.5 0 5-1.60 W Loading • Pu:Axial ......... Mu: Moment ....... Eccentricity . _....__....._. Al : Plate Area ..... A2: Support Area .......... Distance for Moment Calculation "n'_ 0.000 k 23.600 k-ft 0.000 In 198.000 in^2 900.000 102 2.000 4.350 in 4.350 In Bearing Sbesses Fp:Allawabte .... fu: Max. Bearing Pressu Stress Ratio _-.-._.- Plate Bending Stresses Mmaxt =Fum*212 ib: Actual Fb : Allowable ....... ........ Stress Ratio ..... Shear Stress iv:Actual ._,..._.... Fe:Atlowable Stress Ratio..._ ................ Axial Load +Moment, Ecc. <U6 3.060 kW 0.619 ksi 0.202 4.646 k-In 1.020 kIn 4.645 k-m 27.871 ks1 32.400 !GI 0.860 0.452 ksl 32400 ksl 0.014 Scott]. Sanders, SE Title : Dsgnr: Project Desc.: Project Notes : Job# Printed: 8 OCT 2010. 1:13aPM Description: Typical Base Plate Design l'x14'sgford canopies Load Comb. : +0.90D+1.60W+1.60H Loading Pu :Axel Mu : Moment Eacentriclb' Al : Plate Area A2: Support Area A21A1 Axial Load + Moment, Ecc. < 1.16 Bearing Stresses 0.000 k Fp: Allowable 23.600 k-ft fu : Max. Bearing Pressu 0.000 in Stress Ratio _._.__..._... 196.000 inA2 Plate Bending Stresses 900.000 k1A2 Mmax1 = Fu' m"2 !2 4.645 k-in 2.000 Mmax2 = Fu * nA212 1.020 k4n Mmax 4.645 k-In Distance for Moment Calculation Po :Actual ..........._.._.._.__... 27.871 ksi 4.350 in Fb: Allowable 32.400 ksi ' n' 4.350 M Stress Ratio _..._....,..... 0.860 Shear Stress Fv : Allowable _. 3.060kd 0.619 ksi 0.202 0.452 ksl 32.400 ksl 0.014 Load Comb.: +0.90D-1.60W+1.60H Axial Load +Moment, Ecc. < U6 Loading Bearing Stresses Pu :Axial .._..... 0.000 k Fp:Allowable _......._,........ __._._. 3.060ks1 Mu : Moment....... 23.600 k ft fu :Max.Searing Pressu 0.619 ksl Eccenh1dly....._._.__... 0.000 In Stress Ratio .............. 0202 Al : Plate Area ..... ....... 196.0001nA2 Plate Bending Stresses A2: Support Area 900,000 inA2 . Mmax1= Fu `mA212._.._ 4.645 k4n 2.000 Mmax2=Fu•nA212.._............. 1.020k-hr Mmax.:...._..................._.._ 4.645 k-in Distance for Moment Calculation Po: Actual ...._...._..........._..._. 27.871 ksi 'm' 4.350 In Fb:Allowable ................._......_... 32.400 ksl ' n' 4,350 InStress Ratio _.......__- 0.860 Shear Stress Fv: Allowable Stress Ratio .......___._ 0.4521c1 32.400 let 0.014 Page 1 of 9 Anchor Calculations Anchor Designer for ACI 318 (Version 4.2.0.2) Job Name : Typical Anchor Bolts 1) Input Calculation Method : ACI 318 Appendix D For Uncracked Concrete Calculation Type : Analysis a) Layout Anchor : 7/8" Heavy Hex Bolt Steel Grade: F1554 GR. 36 Built-up Grout Pads : No 'ITS Date/Time : 10/8/2010 12:54:43 PM Number of Anchors : 4 Embedment Depth : 24 in Anchor Layout Dimensions : or/ :12in cx2 : 12 in co:12in cy2 : 12 in bxi:1.5in bx2 : 1.5 in by1 : 1.5 in by2:1.5in sx� ' 1-1-in so : 11 in about:blank 10/8/2010 Page 2 of 9 (q WARNING: EXCESS BEARING PRESSURE! Calculated bearing pressure is 2533.05 psi and exceeds the permissible bearing stress of 4) Fp per ACI 318 Section 10.17. Designer must exercise own judgement to determine if this design is suitable. b) Base Material Concrete : Normal weight fc : 2500.0 psi Cracked Concrete : No ''c,v : 1.40 Condition : B tension and shear $Fp : 1381.3 psi Thickness, h : 48 in Supplementary edge reinforcement : No c) Factored Loads I cad ctor source A 1318 Section 9.2 Nua : 0 lb Vijay : 2380 lb Muy : 0 !Wit ex : 0 in ey:0in Moderate/high seismic risk or intermediate/high design category : No Apply entire shear load at front row for breakout : No d) Anchor Parameters Anchor Model = HB87 do = 0.875 in Category = N/A het = 23.125 in hmin = 24.75 in cac = 34.6875 in cmin = 5.25 in ;min = 5.25 in Ductile = Yes 2) Tension Force on Each Individual Anchor Anchor #1 Nua1 = 122.85 lb Anchor#2 Nua2 = 122.85 lb Anchor #3 Nuas = 12188.46 lb Anchor #4 Nua4 = 12188.46 lb Sum of Anchor Tension ENua = 24622.62 lb ax = 0.00 in Vuax : 0 lb Mux : 24000 Ib*ft ay = 1.39 in . about:blank 10/8/2010 Page 3 of 9 iso e'Nx = 0.00 in e'Ny = 5.39 in 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor: Anchor #1 Vuai = 595.00 lb (Vualx = 0.00 lb , Vuaiy = 595.00 lb ) Anchor #2 Vua2 = 595.00 lb Nua2x = 0.00 lb , Vua2y = 595.00 lb ) Anchor #3 Vua3 = 595.00 lb (Vua3x = 0.00 lb , Vua3y = 595.00 lb ) Anchor #4 Vua4 = 595.00 lb Wua4x = 0.00 lb , Vua4y = 595.00 lb ) Sum of Anchor Shear EVuax = 0.00 Ib, EVuay = 2380.00 lb e'vx=0.00in e'vy=0.00in 4) Steel Strength of Anchor In Tension [Sec. D.5.1] Nsa = nAsefuta [Eq. D-3] Number of anchors acting in tension, n = 4 Nsa = 26795 lb (for each individual anchor) +p = 0.75 [D.4.4] 4Nsa = 20096.25 lb (for each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec._D.5.2] Ncbg = ANc/ANcoY'ec,N Ted, N 'c,N 'cp,NNb [Eq. D-5] Number of influencing edges = 4 hef (adjusted for edges per D.5.2.3) = 8.000 in Awn = 576.00 in2 [Eq. D-6] ANc= 1225.00 in2 't'ec,Nx = 1.0000 [Eq. D-9] `1'ec,Ny = 0.6900 [Eq. D-9] Tec,N = 0.6900 (Combination of x-axis & y-axis eccentricity factors.) `Fed,N = 1.0000 [Eq. D-10 or D-11] Wc,N = 1.2500 [Sec. D.5.2.6] 'Ycp N = 1.0000 [Eq. D-12 or D-13] Nb = kc.\t f" a hef1.5 = 27152.90 lb [Eq. D-7] kc = 24 [Sec. D.5.2.6] Ncbg = 49809.90 lb [Eq. D-5] about:blank 10/8/2010 Page 4 of 9 = 0.70 [D.4.4] = 34866.93 lb (for the anchor group) $Ncbg 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] Np = BAbrgf'c [Eq. D-15] Abrg = 1.1880 in2 Npn -'Yc pNp [Eq. D-14] `Yc3=1.4[D.5.3.6] Npn = 33264.00 lb (I) = 0.70 [D.4.4] Npn = 23284.80 lb (for each individual anchor) 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge, cal < 0.4het. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] Vsa = n0.6Asefsta [Eq. D-20] Vsa= 16080.00 lb (for each individual anchor) = 0.65 [D.4.4] Vsa = 10452.00 lb (for each individual anchor) 9) Concrete Breakout Strength of Anchor. Group in Shear [Sec D.6.2] Case 1: Anchor(s) closest to edge checked against sum of anchor shear loads at the edge In x-direction... Vcbgx = Avcx/Avcox`1'ec,VWed,VWc,VVbx [Eq. D-22] cal = 12.00 in Avsx = 630.0ain2 Ave= = 648.00 in2 [Eq. D-23] 'I'ec,V = 1.0000 [Eq. D-26] 'ked,V = 0.9000 [Eq. D-27 or D-28] `PTV = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/d0)0.24 dogfc(ca1)1.5 [Eq. D-24] le = 7.00 in Vbx = 20628.23 lb aboutblank 10/8/2010 Vcbgx = 25269.58 lb [Eq. D-22] = 0.70 +Vcbgx = 17688.71 lb (for the anchor group) In y-direction... Vcbgy = Avcy/Avcoy`1'ec VWed V`I'c VVby [Eq. D-22] cal =12.00in Avoy = 630.00 in2 Avow = 648.00 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] `Yed,V = 0.9000 [Eq. D-27 or D-28] `itew_-1..0004Sec D62.7j Vby = 7(le/do)0.2.4 do4 fc(ca1)1.5 in [Eq. D-24] le = 7.00 in Vby = 20628.23 lb Vcbgy = 25269.58 lb [Eq. D-22] = 0.70 Wobgy = 17688.71 lb (for the anchor group) Case 2: Anchor(s) furthest from edge checked against total shear load In x-direction... x/Avcox`Pec,V �ed,V`�c VVbx [Eq. D 22] Vcbgx = Avc cal = 23.00 in Avex = 1207.50 in2 Avcox = 2380.50 in2 [Eq. D-23] Y'ec,v = 1.0000 [Eq. D-26] `f'ed,V = 0.8043 [Eq. D-27 or D-28] ;,v = 1.4000 [Sec. D.6.2.71 Vbx = 70e/d0)0.2,"I dot fc(ca1)1.5 [Eq. D-24] 1e=7.00in Vbx = 54737.10 lb Vcbgx = 31266.03 lb [Eq. D-22] • = 0.70 O Vcbgx = 21886.22 lb (for the entire anchor group) Page 5 of 9 L122. about:blank 10/8/2010 Page 6 of 9 In y-direction... = Avcy/Avcoy`Pec,v'Fed,VPc,VVby [Eq. D-22] Vcbgy cal = 23.00 in Avcy = 1207.50 in2 Avow = 2380.50 in2 [Eq. D-23] Team = 1.0000 [Eq. D-26] YJed,V = 0.8043 [Eq. D-27 or D-28] WeN = 1.4000 [Sec. D.6.2.7] Vby = 7(le/d0)0.2.� do4 fc(ca1)1.5 [Eq. D-24] le = 7.00 in Vby - 54-7377t 0-ib Vcbgy = 31266.03 lb [Eq. D-22] 0 = 0.70 +Vcbgy = 21886.22 lb (for the entire anchor group) Case 3: Anchor(s) closest to edge checked for parallel to edge condition Check anchors at cx1 edge Vcbgx = Avex/AvcoxiFec,vWed,V`1'c,VVbx [Eq. D-22] cal = 12.00 in Avex = 630.00 in2 Avcox = 648.00 in2 [Eq. D-23] Teo/ = 1.0000 [Eq. D-26] Wady = 1.0000 [Sec. D.6.2.1(c)] trey = 1.4000 [Sec. D.6.2.7] Vbx = 7((e/do)0.2,� do4 fc(ca1)1.5 [Eq. D-24] le = 7.00 in Vbx = 20628.23 lb Vcbgx = 28077.31 lb [Eq. D-22] Vcbgy = 2 * Vcbgx [Sec. D.6.2.1(c)] Vcbgy = 56154.62 lb =0.70 (lVvbgy = 39308 24 Ib (for the anchor gZPup) about:blank 10/8/2010 Page 7 of 9 Check anchors at cy1 edge Vcbgy = Avcy/Avcoy`I'ec VTed V'1'c VVby [Eq. D-221 cal = 12.00 in Avcy = 630.00 in2 Away = 648.00 in2 [Eq. D-23] '1'ec,V = 1.0000 [Eq. D-26] ''ed,V = 1.0000 [Sec. D.6.2.1(c)] Way = 1.4000 [Sec. D.6.2.7] Vby = 7(1e/d0)o.2 doe4 fc(Ca1)1.5 [Eq. D-24] 1e=7.00in Jby = 20628.23-ib Vcbgy = 28077.31 lb [Eq. D-22] Vcbgx = 2 * Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 56154.82 lb = 0.70 Vcbgx = 39308.24 lb (for the anchor group) Check anchors at cx2 edge Vcbgx = AvcxlAvcox`1'ec,V`1'ed,V`1'c,V cal = 12.00 in Avcx = 630.00 in2 Avcox = 648.00 in2 [Eq. D-23] Teo/ = 1.0000 [Eq. D-26] `'ed,V = 1.0000 [Eq. D 27 or D-28] [Sec. D.6.2,1(c)] 'Foy = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/do)0.2 dcy` fc(ca1)1.5 (Eq. D-24] le = 7.00 in Vbx = 20628.23 lb Vcbgx = 28077.31 lb [Eq. D-22] Vcbgy = 2 *Vcbgx [Sec. 0.6.2.1(c)] Vcbgy = 56154.62 lb (I) =.070 [Eq. D-22] about:blank 10/8/2010 Page 8 of 9 G"tc = 39308.24 lb (for the anchor group) ¢Vcbgy Check anchors at cy2 edge Vcbgy = Avcy/AVCoyWec VTed,VWc,VVby [Eq. D-22] cal = 12.00 in Avcy = 630.00 in2 Avcoy = 648.00 in2 [Eq. D-23] '1'ec,V = 1.0000 [Eq. D-26] 'ed,V = 1.0000 [Sec. D.6.2.1(c)] = 1.4000 [Sec. D.6.2.7] Vby = 7(le/do)o.2,4 do4 fc(ca1)1.5 [Eq. D-24] le = 7.00 in Vby = 20628.23 lb Vicegy = 28077.31 lb [Eq. D-221 Vcbgx = 2 * Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 56154.62 lb = 0.70 = 39308.24 lb (for the anchor group) Vcbgx 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.3] Vcpg = kcpNcbg [Eq. D-30] kcp = 2 [Sec. D.6.3.1] eNx = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) eNy = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) `f'ec,Nx = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) 'Yec,Ny = 1.0000 [Eq. D-9] (Calulated usingapplied shear load eccentricity) 'Pec,N. = 1.0000 (Combination of x-axis & y-axis eccentricity factors) Ncbg = (ANca/ANc)Oyec,N'/Y'ec,N)Ncbg Ncbg = 49809.90 lb (from Section (5) of calculations) ANc= 1225.00 in2 (from Section (5) of calculations) ANca = 1225.00 in2 (considering all anchors). 1.1'ec,N = 0.6900 (from Section(5) of calculations) Ncbg — 7218382 lb-(consideringall-anchors) about:blank 10/8/2010 Page 9 of 9 �iZfr V0pg = 144367.63 lb = 0.70 [D.4.4] 4Vcpg = 101057.34 lb (for the anchor group) 11) Check Demand/Capacity Ratios [Sec. D.7] Tension - Steel : 0.6065 - Breakout : 0.7062 - Pullout : 0.5235 - Sideface Blowout : N/A Shear - Steel : 0.0569 - Breakout (case 1) : 0.0673 - Breakout-(case-2) 0_10R7 - Breakout (case 3):0.0303 - Pryout : 0.0236 V.Max(0.11) <= 0.2 and T.Max(0.71) <=1.0 [Sec D.7.1] Interaction check: PASS Use 718" diameter F1554 GR. 36 Heavy Hex Bolt anchor(s) with 24 in. embedment about:blank 10/8/2010 ScottJ. SanderS, SE •W..OIYUYM�,�n - Title : Dsgnr. Project Desc.: Project Notes : Job U di? Pdated: 90CT2oIa 1:r2PM Lc;#:: r-rbiu .0. Description : Typical Concrete Footing Design GnblaIJOPbrpjaitdn,,..:0`: Pc : Concrete 28 day strength = E_ Density Fy - Main Rebar E-Main Reber Allow, Reinforcing Limits Min, Reinf. Max. Reinf. 3.Oksi 3,122.0 ksi = 145.0 pcf = 0.850 60.0 ksl = 29,000.0 ksi A31nfA616Bers Used 1.0% 8.0% Load Combination 2006 IBC & ASCE 7-05 'v,5411�th A eC ` ' .f....Y.... 4.,"'�, a .. ', are i� kA.�.�?.'z •IN'�'il^,e Column Dimensions 08:01n DlameWt tbk ffiWEdge fccR6ber Edge Cover = 3.01n Column Reinforcing :18.0 - #7 bars Column self weight included :6,149.671bs*Dead Load Factor AXIAL LOADS Axial Load at CO ft above base, D =1.390 k BENDING LOADS ... Moment acting about X-X axis, W =15.0 k-ft Load Combination Location of max.above base Maximum Stress Ratio (Ratio = (Y2+MuA2)A.5 t (PMPnA2+PhiMnA2)A.5 pu= 6.788 k *Pn= Mu-x= 24.0 k-1t Mu-y= 0.0 k-ft Mu Angle= 0.0 deg �'Mn-x= W' Mn-y= A License Owner: STRUCTURES WEST Code Ref :2006IBC, AC1318-05 Overall Column Height = • 6.0 ft End Fixity Top Free, Bottom Fixed ACI Code Year ACI 318-05 Brace condition for deflection (buckling) along columns : X-X (width) axis :Fully braced against budding along X-X Ms Y-Y (depth) ads :Fully braced against buckling Song Y-Y Ms Type ofstinupsused : Spirals Fy-StinWs = 4O1ksi E- Stlmgns 29000ksi Entered loads are factored per load combinations specified by user. +O.9OD+1.6OW+1.8OH 6.Oft 0.02702:1 257.06 k 888.36 k-ft 0.0 k-ft Mu at Angle= 24.0 k-ft WMnatAngle= 888.36k-ft Pn & Mn values located at Pu•Mu vector Intersection with capacitycunre Column Capacities... Pnmax : Nominal Max. Compressive Axial Capacity 3,216.04 k Pnmin : Nominal Min. Tension Axial Capacity -648.0 k 9 Pn, max: Usable CompressiveAxia Capacity 1,913.55 k W Pn, min : Usable Tension Axial Capacity -453.60 k MffaVil .....k at]ibR�l'oq.e'sultsrs•.'`._.,.•w: Maximum SERVICE Load Reactions .. Top along Y-Y k Bottom along Y Y Top along X-X k Bottom along X-X k k Maximum SERVICE Load Deflections... AlongYY-0.001801 In at 6.Oft above base for load combination : W Only Along X-X 0.0In at O.Oft above base for load combination : General Section Information . = 0.70 =0.850 . g = 0.850 p : % Reinforcing 1.061 % Rebar Ok Reinforcing Area 10.801nA2 Concrete Area 1,017.881n02 Ag`F i;ed'Co'Lftr � s rem kl Il` ., " s a s 9. P ft' t.a f. u°s ip4�.P `fl .� , x s-: -*»: y r A:;M�i. +1.20D+1.60Lr+0.50L+O.80W +1.20Ot0,SOL+1.605+O.80W 6.00-10.56-1;913.55-6:00-1:000 1:OOD 6.00 9.05 623.79 6.00 1.000 12.00 858.77 1.000 6.00 9.05 623.79 6.00 1.000 12,00 658.77 1.000 M.Uu6 0.014 0.014 Scott J. Sanders, SE Title: Dsgnr. Project Desa: Project Notes: Job It te PrInied: SCOT 2010. 1:11PM satra r:_,n•iit. • License Owner: STRUCTURES WEST Description: Typical Concrete Footing Design ts; q0MingF4-6tthrgd2 load Coniiiiateort: +1.20040.501r.0.50L+1.60@ +1.20D-4.50L450S+1.60W +0.90D+1.60W+1.60H base ft . eiftt '.8)( —.51"PtuX t' tlici4gOkt 6.00 9.05 34869 6.00 tor 24.00 907.34 1.000 6.00 9.05 348.69 6.00 1.000 24.00 907.34 1.000 6.00 6.79 257.06 6.00 1.000 24.00 888.36 1.000 "CROWAIIWitratis thlfaeadittrAge Load Combination JI*Vi • T.: Reaction °tang X-X Axis @ Base @Top 0.026 0.026 0.027 Note: Only non -zero reactions are listed. Reaction along Y-Y Axis @Base @Top D Only W Cry Load Combination 9,11-4 ntrisictialti.141217atalartotarl Max. X-X Deflection Distance Max. Y-Y Deflection Distance D Only W Only D+W 0.0000 in 0.000 ft 0.000 In 0.0000 in 0.000 ft -0 002 In 0.0000 In 0.000 ft -0.002 In 0.000 ft 6.000 ft 5.960 ft iseMsamiRaid• twillegalineaVe Scott). Sanders, SE .1gweGb� W.P.-KXmN.'IUNp. Title: Dsgnr. Project Deno.: Project Notes: Job # ?doled 80472014 1:12PM Description: Typical Concrete Fooling Design Pr�'te' c atif i qra e r l`(gawit: 1,913,5 1,722.2 1,530.8 1,339.5 1,148.1 956.8 765.4 514:i_ -153.0 -306.1 -459.1. -612.2 -765.2 0.0 9 .5 191.0 2 • Concrete Column P-M Interaction Diagram Allowable Moment (k-ft) 4 381.9 4 .4 572.9 66:.4 76.8 85.3 954.8 Scott-J. Sanders, SE Consulting structural en mesa Arizona, California. Have ail, Nevada. Washington I69 Mailbag Coun.Clarenont. alllomle 91711 Phone: MOW 69E-1a06 Fut (log) 634-I860 EnNl: fyhMeman9E<pm JOB Z215 SHEET NO. s' OF CALCULATED BY DATE CHECKED BY DATE SCALE !j� itte).1114—._IrEl - "� i i i I I._ - I- - i l efkI I ,.- —a , A. . 5Qi , i t !^t 4--.4 ?��� - -- -- t f-i Fr _ -- I + . ' - 1 1 -I -__ -- - - I- I- LI LI I I - ti - i r - --- - _ _r l I- -- _I. — , I i ! 1 , i' i Scott J. Sanders, SE A aN.uleem 4 w.Mbi,4 WAkM.9wn, 1U14a"wa nana,L,„NiN9sya91911 WIND DESIGN Project No:2259 Hoag Rev Page: l-2 1011912010 PROJECT: DESCRIPTION: Cable, Column, Base Plate and Foundation design for Hoag Memorial Hospital Fabric Canopy f L = I"(1+8/3*(f0)2) qw p qd fb=fu Fs 26.00 ft 2.00 26.41 ft Length Cable Sag Total Length 0.27 plf weight of cable per foot 40.80 plf wind load 3.00 plf final diaphragm load 2.15 ft 75.00 ksi =((gw+p+gd)""I"2)7(8`76i (1+T8(t61q"2yil2= Tb = 1.82 kips Ab Ab 8qd A f L = r(1+8f3'(f0)2) qw p qd 16=fu Fs = TbIFs = 0.02 in42 24000000.00 psi 0.38 in"2 300.00 ft 20.00 303.56 ft 25.00 plf 200.00 plf 120.00 plf 20.00 ft 75.00 ksi Tb=((qw+p+qd)h"2)/(8`ib)*(1+16(fblq"2)"1/2 = Tb 200.84 kips Ab Ab Aqd E A = TbIFs 2.68 In"2 = 24000000.00 psi = 0.38 in"2 Length Cable Sag Total Length weight of cable per foot wind load final diaphragm load 2259 Hoag Rev a�y American Wire Group 1920 E. Hallandale Beach Blvd., Suite PH8 Hallandale, Florida 33009 Toll Free: 1-800-342-7215 • Telephone: 1-954-455-3050 • Fax: 1-954-455-9886 E-Mail: thhnman@aol.com • Website:www.buyawg.com Item # GW12-3/8-120, Galvanized Guy Wire Galvanized Guy Wire AR products meet or°exceed RtA specifications for the eleotrical and telecommunications industries as well as other industry standards: ASTM A2111, ASTM A363, ASTM A474, ASTM A476, ASTM A588, ASTM B500. Products can also be manufactured to meet your special requirements or specifications. We keep these standard lengths in stock: • 260 it.-and-500-ft-cols • 1,000 ft., 2,500 ft. and 5,000 ft. reels • Custom lengths to meet your Job requirements SPECIFICATIONS Strand Diameter Inches 318 Coated Diameter Inches 0.120 Number of Wires Per Strand 7 Approx. Strand Weight 1000 Ft. Lbs. 273 Minimum Breaking Strength - UBlities/Spedkcetlon Grade - Minimum Breaking Strength -Common Grade 4250 Minimum Breaking Strength - Siemens -Marlin Grade - 6950 Minimum Breaking Strength - High Strength Grade 10800 Minimum Breaking Strength - Extra High Strength'Grade 16400 . Minimum Weight of Coating OzJSq.f:L - Class -A 0.85 Minimum Weight of Coating Oz/Sq.Ft. - Class B 1.70 Minimum Weight of Coating Oz./Sq.Ft. - Class C 2.55 9/3120091 Page 1 of 1 od96 v0lu Scott J. Sanders, SE Consulting structural engineers Arizona, California, Hawaii, Nevada, Washington 789 Marlboro Court, Claremont, California 91711 Phone: (909) 625-1906 Fax: (909) 634-7860 Email: sjs@claremontSE.com PROJECT NO: 2259 DATE: 1-Dec-09 ea) PROJECT: Cable, Column, Base Plate and Foundation design for Awing Tension Structure for Hoag Memorial Hospital Newport Beach, CA Bakersfield, California 93309 CLIENT: Eide Industries, Inc. 16215 Piuma Ave. Cerritos, CA 90703 Office: 562-402-8335 .Structures West CONSULTING ENGINEERS Project No:2259 Hoag Page: 2 of 4/13/2010 2259 Hoag Project: Cable, Column, Base Plate and Foundation design for Awing Tension Structure for PROJECT NO: 2259 Contents Item Description Page 1.00 2.00 3.00 4.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 Awing Sketch Bases for Design General Notes W nd Load Canopy: 24x16,14x16,12x14 Canopy: 8x8 Canopy: 12x12 Canopy: 16x23 Canopy: 13x14, 16x14 Canopy: 12x12 & 12x12 Typical Footing Design Guy Wire Design SK-1 to SK-6 3 GN4, GN5 L1, L2 C1 to C15 C16 to C30 C31 to C45 C46 to C63 C64 to C78 C79 to C93 F1 to F4 W1 to W4 CALCULATION AND ENGINEERING PREPARED BY: COTT J. SANDERS CA SE 3902 EXP.DATE: 6-30-10 2259 Hoag PLAN VIEW SECTION A -A oN BB SECTION CC ISOMETRIC VIEW PLATEICONNECTON® DETET.4II,TYPICALICAL ALL FABRIC DETAIL IIMMEL OTTI SANgr "MwnA M'NALL¢MOR. CLADEMNT, CA SinI 3 of 8 7 4 2 ( _,.M.....u15. coaaar AB icon. IS ntf CLA �� i@ MTPA MDCAP NOMENCLATURE �m.�.L Nt vw�� ,,y� v Nome T NOWSIDua Moir elaBED LEV WORD LOAD War I f MR PDT 3560T Maa alas EDT (A DESCRIPTION (85MTH) "/4 LAS @ABISUNO 032940 PLANVE:W A SECTION 3-3 Eli 111 190843TRIc VIEW SernoN C-C y ®R P—* PLATE CONNOCC ON® OETALL TYPICAL ALL FABRIC BEPAIL OAG MEMORIAL HOSPITALomx0cnrre ERL x0171 SAo6 s.SE rA CAO Cr. Verrew unrvl RIDS DM MUMMA NC PN.o:AttINUE PAPOMO vox ole,Munraucom n ...2 6 :a._Ano w A:rrA» 4714,111 . �r3f14-s rz",/� plus rita 6 6'� ysv Pt 9 s4Atws 8 1 a 5 4 2 Aavc PANELS rwrm0IN BASE CABLE CLAMP 7n"9 W0AA00AoLmryA31s w=NAAAssrmvw�n� t §I al4 Waw¢ice MATECONM0CMY POSE MU CAP roar NOMPNCLANRE YA I271111( m.(A-nl OESCARTIO (RIMPH) DRAWNBY Bee 032940 r±fl 103 t PLATE CONNEC3]ON° DETAIL TYPICAL ALL tier CUSTOMIM FrOAGMEMOWAL HOSPITAL no t Dias i mac " .CAN 1 FAX MD 1 PNATTAIN NT. F 875, O .w e 0.P ] rtwncwNu9wn OQ n `•�sW z On.WA� i POSY y--m , NOMENCLANRE DESCEIPI1' (83 MPHI ,. N ®;t04 0 DR WxOxry 032940 104 PLAN VIEW LSOWMUC VIEW PLATE CONNEMONCD DETAIL TYPICAL ALL SCOT( I. SANDERS, SE „PNMRuoeea 42/114he3Casttrve_. dl1(`i4 f 6 l " 9 s 8 AB p a 6 sE 4 CASEZE valDLISET e i STL END CAP DMENCLA1URE DESCPIMII (85 MPH I „Ft FABRIC DETAIL 4 032940 105 PLAN VIEW -18'r- �+ PLATE WNCISON® DETAIL TYPICAL ALL FABRIC DETAIL fLLSiQHOAG �R ' MORIAL HOSPITALMT IMREORME NEWPORT MACH CA 92663 0 t% lilt '/t, ammo4485 19 rdr s%i%m' MEN61100. Yea PIGEIAMINCI STAMP 9 8 6 5 4 vr%c70 R% z ly l vJ FABRIC VMBI EASEAXIS CAMIL clap CARlA MUMMER POST®N 4p POST NOMENCLATURE r.I7TUX. .xii l W'p.N' M(AM) D (8)MPH) I 85 MPH RIAL HOSPITAL St w.a 032940 Mita 106 PLAN VIEW SECTIONA A SECTION98 ri 4111 m ISOW I1UC VIEW vlEw c SECTION C-C PLATE CONNECTION® DETAIL TYPICAL ALL culT451553. OAS HOHOOPP2 memo; Oxu.e8 7.9 MARLBOROLAPPTAlt, CS 91711 198aauO.wrea as m M 0.......arkirkiCArkeuxtiosocurrr rum.. ;I�r��r�i�w.uux /S a tits old e iz `y4 g9 awceis 15-wWO6 DEn uw. you (A. PIASTER VM SSOTAI loom: PARER Naw e¢rsmri.eea 78 6 5 4 3 Baia nASS CAW CLAW unEE4RozoIa PATECONNECTION POETENOCAP POST NOMENCLATURE O un-n¢U4xi) fwwefDSSC8Jw 85(MPHC1l1) ) AD951{ 101- ATID SDI NOLIMIl6A IIG own. tmmes y.c..11.22.15 W 11 tl 1 a AD DATE PE.M. W 032940 lIST C y1N 107 Structures West 'BASES P'iF DESIGN PROJECT: DESCRIPTION: PROJECT:97.2259 Hoag Page: 3 1/5/2010 Cable, Column, Base Plate and Foundation design for Awing Tension Structure for Hoag Memorial Hospital Fabric Awing VERTICAL LOADING: ROOF: Fabric Awing Flat LIVE LOAD = 0.00 PSF Awning Material = 1.00 PSF 1/2" SHEATH'G = 0.00 PSF Rafters = 0.00 PSF MPE = 0.00 PSF CEILING = 0.00 PSF INSULATION = 0.00 PSF MISCELL'S = 0.00 PSF TOTAL DL = 1.00 PSF TOTAL LOAD = 1.00 PSF Wind Design per 2007 CBC 13.43 Use 32:8 psf per attached Wind analysis 85 mph, Exp,", 1=1 Scott]. Sanders, SE Consulting structural englncere Arizona, California, Hawaii, Nevada, Washington 789 Marlboro Court, Claremont, Caflfornia 91711 Phone:1909) 625-1908 Fax (909) 634-7880 Email: sji®tlaremantSE.com GENERAL NOTES & SPECIFICATIONS PROJECT NO: 2006 IBC STANDARD SJS Page: GN4 4/13/2010 1.00 GENERAL A. 2006 IBC B. DRAWING GENERAL NOTES GOVERN DESIGN CRITERIA.. C. THIS ENGINEERING REPORT SHALL BE USED ONLY FOR THE SPECIFIC PROJECT COVERED BY THE AGREEMENT AND THE COVER SHEET OF THE REPORT. ALL REVISIONS AND CHANGES TO THE SUBJECT PROJECT SHALL BE SUBMITTED TO THE ENGINEER FOR REVIEW AND APPROVAL. 2.00 TIMBER: A. ALL DOUGLAS FIR LARCH, WCLIB, UNLESS NOTED OTHERWISE. B. 2X JOIST NO.1 4X NO.2 C. 6X & GRT: NO.1 D. GLULAM: 24F-V8 INDUSTRIAL APPEARANCE GRADE, UNO. E. 2X4 STUD STUD DF Fb = 675 psi, Fv= 95 psi, E = 1.4 x10^6 2X8 STUD NO 2 DF Fb = 875 psi, Fv= 95 psi, E = 1.6 x10^6 4X POST POST DF Fb = 675 psi, Fv= 95 psi, E = 1.4 x10A6 2X6 STUD STUD DF Fb = 675 psi, Fv= 95 psi, E = 1.4 x10^6 F. ALL PLATE AND SILL DOUGLAS FIR LARCH, PT AT CONCRETE. 3.00 FRAMING NOTES: A. NON -BEARING, BALLOON FRAMED WALLS; (1) 2X4 AT 16" 0/C 14'-0" MAX. LATERALLY UNSUPPORTED HEIGHT (1) 2X6 AT 16" 0/C 20'-0" MAX. LATERALLY UNSUPPORTED HEIGHT ALL STUDS DF STUD GRADE OR BETTER B. NAIL MULTIPLE STUDS TOGETHER WITH 16D NAILS AT 24" 0/C, UNO. C. ALL BEAMS SHALL HAVE FULL BEARING SUPPORT. D. ALL ISOLATED POST AND BEAMS SHALL HAVE METAL POST CAPS AND POST BASES. E. ALL WALLS ON WOOD FLOORS SHALL BE SUPPORTED BY BEAM, DOUBLE JOIST OR SOLID BLOCKING AT PERPENDICULAR CONDITION. F. ALL STEEL HOLDOWNS AND STRAPS SHALL BE FASTENED TO 4X4 POST. G. ALL STEEL WOOD CONNECTOR SHALL BE SIMPSON, UNO. H. ALL SHOP DRAWINGS SHALL BE REVIEWED BY CONTRACTOR AND ARCHITECT PRIOR TO SUBMITTAL TO ENGINEER FOR REVIEW. I. ALL EXTERIOR WALLS SHALL BE SECURED WI 1/2" DIA.X10" ANCHOR BOLTS AT AT A MAX. SPACING 72" 0/C , FOR SHEAR WALLS SEE SCHEDULE. J. INTERIOR NON -BEARING, NON -SHEAR WALLS MAY BE SECURED WITH SHOT PINS PER MANUFACTURERS SPECIFICATIONS, UNO. RECOMMEND RAMSET #3348 AT 48" 0/C. K. ALL CONVENTIONAL FRAMED PORTIONS OF TIMBER STRUCTURE SHALL BE CONSTRUCTED PER 2000 IBC, UNO. L. ALL NAILS PER IBC SCHEDULE UNO. Scott" Sanders, SE Consulting structural engineers Arizona, California, Hawaii, Nevada, Washington 789 Marlboro Court, Claremont, California 91711 Phone: (909) 625-1906 FaC (909) 634-7860 Email: JsOclaremontSELOm GENERAL NOTES & SPECIFICATIONS PROJECT NO: 2006 IBC STANDARD SJS Page: GN5 4/13/2010 4.00 CONCRETE: A. ALL STRUCTURAL CONCRETE SHALL BE: fc= 2500 PSI UNO. B. ALL SLAB -ON -GRADE, CONTINUOUS SPREAD FOOTING/SPREAD FOOTINGS CONCRETE SHALL BE: fc = 2500 PSI UNO. C. ALL CONCRETE SHALL REACH MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS. D. DRYPACK SHALL BE ONE (1) PART CEMENT TO NOT MORE THAN THREE (3) PARTS SAND. 5.00 REINFORCING STEEL: A. ALL REINFORCING STEEL SHALL BE ASTM A-615-40 FOR #4 BARS & SMALLER. B. ALL REINFORCING STEEL SHALL BE ASTM A-615-60 FOR #5 BARS & LARGER. C. WELDED WIRE FABRIC SHALL BE ASTM A-185, LAP 1-1/2 SPACES,9" MIN. D. BAR SPLICES SHALL HAVE OF MIN. LAP OF 30 BAR DIA. OR 2'-0", UNO. E. MASONRY REINFORCEMENT SHALL HAVE LAPPING OF 40 BAR DIA. WITH 2'0" MIN., UNO. F. ALL REINFORCING BARS SHALL BE ACCURATELY AND SECURELY PLACED BEFORE CASTING CONCRETE OR GROUTING MASONRY. G. MIN. REINFORCEMENT COVER SHALL BE : 1. CAST AGAINST EARTH: 3" 2. FORMED, EXPOSED TO EARTH: 2" 3. SLAB -ON -GRADE, FROM TOP: 1" 4. COL'S & BEAMS TO MAIN BARS: 2" 6.00 STRUCTURAL STEEL: A. FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL BE IN ACCORDANCE WITH "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS", AISC, CURRENT EDITION. B. STEEL SHALL CONFORM TO ASTM A36 C. PIPE COLUMNS SHALL CONFORM TO ASTM A53, GRADE B. D. ALL WELDING SHALL BE DONE BY CERTIFIED WELDERS. E. ALL FIELD WELDING SHALL HAVE CONTINUOUS INSPECTION. F. ALL STEEL EXPOSED TO WEATHER SHALL BE HOT -DIP GALVANIZED AFTER FABRICATION. G. WHERE FINISH IS ATTACHED TO STRUCTURAL STEEL PROVIDE 1/2" DIA. WELDED STUDS AT 4'-0" 0/C, FOR ATTACHMENT OF NAILER. 7.00 MASONRY: A. CONCRETE BLOCK SHALL CONFORM TO ASTM C-90, GRADE "N" NORMAL WEIGHT UNITS, BLOCK SIZE SHALL BE PER ARCHITECTURAL DRAWINGS OR SPECIFICATIONS. B. VERTICAL REINFORCING BAR PLACEMENT IN MASONRY WALLS: 1. ABOVE GRADE NON -RETAINING AT CENTER OF BLOCK, UNO. 2. RETAINING WALLS PLACE AS DETAILED ON SECTION. C. ALL CELLS WITH STEEL SHALL BE SOLID GROUTED. D. GROUT ALL CELLS IN RETAINING WALLS AND WALLS BELOW GRADE. STRUCTURESWEST Project No:2259 Hoag Page: Li 1/5/2010 SHUR:BRAL ENGINEERS ARIZONA CALIFORNIA NEVADA HAWAII WASHINGTON WIND DESIGN PROJECT: Cable, Column, Base Plate and Foundation design for Awing Tension Structure for Hoag Memorial Hospital DESCRIPTION: Canopy Structure Wind Design per 2006 IBC (ASCE7 6.5.131 Method 2 - Analytical Procedure for Open Canopy Exposure = B la. Kd = 0.85 Directionalilty factor Table 6-4 lb. V = 85.00 mph, Wind speed 2. Iw = 1.00 Importance Factor Table 6-1 3. Kz = 0.85 Eryosure factor, Exp C 6.5.6.6, T-6-3 MWFR 4. Kzt = 1.00 Topography factor, Exp C 6.5.7.2 Af = 1.00 Ht. z at the centroid of Area 5. G = 0.85 Gust Effect Factor 6.5.8 6. Open Building Enclosure Classification 6.5.9 7. G = 0.85 Internal Pressure Coef 6.5.11.1 8. Cn = 1.20 Force coeff Figure 6-18 to 6-22 9. qh = 0.00256 x Kz x Kzt x Kd x VA2 x I = 13.36 PSF Eq. 6-15 10. p=qh*GACn = 13.63 psf Eq. 6-25 2259 Haag Scott]. Sanders, SE Consulting structural engineers Arizona, California, Hawaii, Nevada, Washington 789 Marlboro Court, Claremont, California 91711 Phone: (909) 625-1906 Fax: (909) 634-7860 Email: sjs&claremontSE.com WIND DESIGN Project No:2259 Hoag Page: L-2 1 /5/2010 PROJECT: Cable, Column, Base Plate and Foundation design for Awing Tension Structure for Hoag Memorial Hospital DESCRIPTION: Fabric Awning I = 24.00 ft f = 2.00 L = I*(1+8/3*(f/I)2) = 24.44 ft qw = 0.50 plf weight of cable per foot p = 100.00 plf wind load qd = 10.00 plf final diaphragm load fb=fu = 1.00 plf Fs = 75.00 ksi Tb=((qw+p+qd)*I^2)/(8*fb)*(1+16(fb/I)^2)^1 /2 = Tb = 8.07 kips Ab = Tb/Fs Ab = 0.11 inA2 Aqd = 2259 Hoag ,Structures West Tributary Load from 24x16, 14x16, 12x14 ft Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: 85 MPH, EXPOSURE C qh=0.00256KhKztKdV^21 = Kh 0.85 Kzt 1.00 0-15 FEET Kd 0.85 0-15 FEET V 85.00 85 MPH I 1.00 13.36 psf p=qh*G*Cn = 13.63 psf G = 0.85 Cn = 1.20 ht, ft FG d, ft dia WIND LOADING ON ELEVATION: col ft'g roof 1/5/2010 Page:9f GA 2259 Hoag AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 19.00 2.00 13.63 517.96 10.00 5179.64 Column 0.50 10.00 13.63 68.15 5.00 340.77 FOOTING 0.00 0.00 13.63 0.00 0.00 0.00 H RESULTANT ARM = M/LOAD TOTAL = ASSUMPTIONS: SOILS: CLASS 3 MATERIAL PER IBC TABLE NO.1804.2 SOIL BEARING= 1500 LATERAL BEARING = 250 LBS/SQ.FT/FT. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 586.12 9.42 CALCULATE FOOTING DEPTH (d) PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP Wind Load: Tension Load P= 586.12 LBS P= 300.00 LBS h = 9.42 FT. h = 10.00 FT. S = 250.00 #/FT^2/FT. OF DEPTH S = 250.00 #/FT^2/FT. OF DEPTH b = 3.00 FT. b = 3.00 FT. A=2.34P/S1b= 2 A=2.34P/S1b= 0.936 d = 0.5A (1+(4.36h/A))^1/2) = 5.34 FT d = 0.5A (1+(4.36h/A))^1/2) = 3.70 FT fc = fy= 2500 psi 60000 psi Column Design: 6" Diameter Column M = Pxh = 5520.404 Ft-lbs Sreq'd = (M x 12)/( Fy x 1.33) Fy = Sreq'd = 2.07 in^3 Delta max = L/180 = 0.67 in Ireq'd = (M*h^2)/(3*E*Delta )= 36000 psi 14.59 in^4 USE 6" DIAMTER PC STANDARD Fy=36ksi lxx=26.5 in^4; Sxx = 7.99 inA3 5520.40 Job it Scott]. Sanders, SE /,a Rawait xe Steel Column Lie. # KW-06000560 Description : 6' Diameter Column Design for 24X16+14X16 +12x14 ft Sail General information Steel Section Name : Analysis Method : Steel Stress Grade Fy : Steel Yield E : Elastic Bending Modulus Load Combination : Applied Loads Pipe6STD 2006 IBC & ASCE 7-05 A-36, Carbon Steel, Fy = 36 ksi 36.0 ksi 29,000.0 ksi Allowable Stress Column self weight included :190.0 lbs *Dead Load Factor AXIAL LOADS... Axial Load at 10.0 ft, Xecc = 4.000in, W = 2.031 k BENDING LOADS .. . Lat. Point Load at 10.0 ft creating Mx-x, W = 0.8180 k DESIGN SUMMARY Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = Load Combination Location of max.above base At maximum location values are .. . Pu : Axial Pn / Omega : Allowable Mu-x : Applied Mn-x/ Omega : Allowable Mu-y : Applied Mn-y / Omega : Allowable PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base At maximum location values are ... Vu : Applied Vn / Omega : Allowable Load Combination Results Load Combination +D+L+H +D+Lr+H +D+W+H +D+0.750 Lr+0.750 L+0.750 W+H +D+0.750L+0.750S+0.750 W+H +0.60D+W+H Maximum, Reactions - Unfactored Load Combination Title : Dsgnr: Project Desc.: Project Notes : CZ Printed: 5 JAN 2010, 1:24PM o Istructwest data0200 229912259 RoagA2259 hoag.ec6„ ENERCALC, INC. 198a-2008 Ver 60.221,=tft16994 License Owner: STRUCTURES WEST Code Ref : 2006 IBC, AISC Manual 13th Edition Overall Column Height 10.0 ft Top & Bottom Fixity Top Free, Bottom Fixed Brace condition for deflection (buckling) along columns : X-X (width) axis : Unbraced Length for X-X Axis buckling = 10ft, K = 2.1 Y-Y (depth) axis :Unbraced Length for Y-Y Axis buckling = 10 ft, K = 2.1 Service loads entered. Load Factors will be applied for calculations. 0.4842 : 1 +D+W+H 0.0 ft 2.221 k 58.245 k 8.180 k-ft 19.042 k-ft 0.6770 k-ft 19.042 k-ft 0.02423 : I +D+W+H 0.0 ft 0.8180 k 33.758 k Maximum Axial + Bending Stress Ratios Stress Ratio Status Location 0.003 0.003 0.484 0.364 0.364 0.484 PASS PASS PASS PASS PASS PASS X-X Axis Reaction @ Base @ Top Maximum SERVICE Load Reactions.. Top along X-X Bottom along X-X Top along Y-Y Bottom along Y-Y 0.0 k 0.0 k 0.0 k 0.8180 k Maximum SERVICE Load Deflections... Along Y-Y -0.610 in at for load combination :W Only Along X-X -0.07560 in at for load combination :W Only Maximum Shear Ratios Stress Ratio Status Location 10.0ft above base 10.0ft above base 0.00 ft 0.000 PASS 0.00 ft 0.00 ft 0.000 PASS 0.00 ft 0.00 ft 0.024 PASS 0.00 ft 0.00 ft 0.018 PASS 0.00 ft 0.00 ft 0.018 PASS 0.00 ft 0.00 ft 0.024 PASS 0.00 ft Note: Only non -zero reactions are listed. Y-Y Axis Reaction @ Base @ Top W Only Maximum Deflections for Load Combinations-`Unfactored Loads 0.818 Load Combination Max. X-X Deflection Distance Max. Y-Y Deflection Distance W Only -0.0746 in 9.933 ft Steel Section Properties : Pipe6STD, -0.604 in 9.933 ft Job # Web Thick Flange Width Flange Thick Area Weight Yog Scott" Sanders, SE Steel Column': Description : 6" Diameter Column Design for 24X16+14X16 + 12x14 ft Sail Steel Section Properties : . Pipe6STD ., Depth = 6.625 in I xx Sxx Rxx 0.000 in 6.625 in 0.280 in 5.220 inA2 I yy 19.000 plf S yy R yy 0.000 in Load 1 Title : Dsgnr: Project Desc.: Project Notes 26.50 inA4 7.99 inA3 2.250 in 26.500 inA4 7.990 inA3 2.250 in C� Printed: 5 JAN 2010. 1:24PM File. clstrucbwestdata122W 2299i2259 Hoagf2259 hoag`ecE . ENERCAEC,1NC. 19832006, Yee, 6.0.221, 7J:16994'. icenseOwner :: STRUCTURES WEST J Loads 52.900 inA4 Loads are total entered value. Arrow do not reflect absolve direction. Scott]. Sanders, SE Title : Dsgnr: Project Desc.: Job Steel ase,Plate Design' Lie. #,'KW-06000560 Description : 1-1/4' thick x14" sq base plate for 24x16 General Information Project Notes : 14x16+12x14 ft Printed: 5 JAN 2010, 1:26PM Ble: c 1structwestdata12200 229912259 Hoagt2259 hoagec6 ENERCALc ING 1983 2008, Ver 6:0.221, N-_16694",� License Owner STRUCTURES WEST Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker Material Properties AISC Design Method Load Resistance Factor Design Steel Plate Fy = 36.0 ksi Concrete Support f c = 3.0 ksi Assumed Bearing Area :Full Bearing Column & Plate Column Properties Steel Section : Depth Width Flange Thickness Web Thickness Plate Dimensions N : Length B : Width Pipe6STD 6.625 in 6.625 in 0.261 in 0 in 14.0 in 14.0 in Thickness 1.625 in Column assumed welded to base plate. Applied Loads P-Y ............................ . D: Dead Load 2.221 k L : Live 0.0 k Lr: Roof Live ......... 0.0 k S: Snow 0.0 k W : Wind 0.0 k E : Earthquake 0.0 k H : Lateral Earth .. 0.0 k " P' = Gravity load,'+" sign is downward. Area lxx lyy cA c : LRFD Resistance Factor Allowable Bearing Fp per J8 5.22 InA2 inA4 inA4 Support Dimensions Support width along 'X' Length along "T 30.0 in 30.0 in V. M-X 0.8180 k 0.0 k-ft 0.0 k 8.180 k-ft 0.0 k 0.0 k-ft 0.0 k 0.0 k-ft 0.0 k 0.0 k-ft 0.0 k 0.0 k-ft 0.0k O.Ok-ft "+ Moments create higher soil pressure at+Z edge. '+ Shears push plate towards +Z edge. Anchor Bolts Anchor Bolt or Rod Description 1 1/2' Max of Tension or Pullout Capacity Shear Capacity Edge distance : bolt to plate Number of Bolts in each Row Number of Bolt Rows 0.0 k 0.0 k 1.250 in 2.0 1.0 0.60 5.10 ksi Scott]. Sanders, SE Title : Dsgnr: Project Desc.: Job # Project Notes : Printed: 5 JAN 2910, 126Ph4 Steel Base Plate Design tic. # - KW-06000560 Fite c lstructwestdafak2200 22991/22259 Hoag12259 ENERCALC, (NC 1983-2008yeR'S:ant-N:16994, License Owner:: STRUCTURES WEST Description : 1 1/4' thick x14" sq base plate for 24x16 + 14x16+12x14 ft GOVERNING DESIGN LOAD CASE SUMMARY Rate Design Summary Design Method Governing Load Combination Governing Load Case Type Design Plate Size Pu : Axial Mu : Moment Load Resistance Factor Design +1.20 D+0.50Lr+1.60 L+1.60 H Axial +Moment, Lf2 < Eccentricity, Tension on Bc 1'-2" x 1'-2" x 1.518 2.665 k 13.088 k-ft fv: Actual Fv : Allowable = 0.60 * Fy' 090 (per G2) Stress Ratio .. . Load Comb.: +1.40D Loading Pu : Axial Design Plate Height Design Plate Width 'Will be different from entry if partial bearing used. Al : Plate Area A2: Support Area 0.188 ksi 19.440ksi 0.010 Shear Stress OK 3.109 k 14.000 in 14.000 in 196.000 inA2 900.000 inA2 A2/A1 2.000 Distance for Moment Calculation m" 4.350 in "n" 4.350 in X 0.000 inA2 Lambda 0.000 n' 0.220 in n' Lambda 0.000 in L = max(m, n, n") 4.350 in Load Comb.: +1.20D+0.50Lr+1.60L+1.60H Loading Pu : Axial ......... Mu : Moment Eccentricity .... Al : Plate Area ......... A2 : Support Area A2/A1 .. 2.000 Calculate plate moment from bearing ... m" "A" : Bearing Length Mpl : Plate Moment Shear Stress fv : Actual Fv: Allowable Stress Ratio 2.665 k 13.088 k-ft 58.928 in 196.000 inA2 900.000 inA2 4.350 in 0.642 in 0.339 k-in 0.188 ksi 19.440 ksi 0.010 fu : Max. Plate Bearing Stress .... Fp : Allowable : Mu : Max. Moment fb : Max. Bending Stress Fb : Allowable : Fy*Phi 4.062 k-in 9.231 ksi 32.400 ksi Stress Ratio 0.285 Bending Stress OK 3.060 ksi 3.060 ksi min( 0.85`f c'sgrt(A21A1), 1.7` fc)'Phi Stress Ratio 1.000 Bearing Stress OK Tension in each Pelt Allowable Bolt Tension Stress Ratio . . Bearing Stresses Fp : Allowable fu : Max. Bearing Pressu Stress Ratio Plate Bending Stresses Mmax = Fit ` LA2/2 fb : Actual Fb : Allowable Stress Ratio Shear Stress fv: Actual Fv;Allowable Stress Ratio 5.543 0.000 0.000 Tension Stress OK Axial Load Only, No Moment 3.060 ksi 0.016 ksi 0.005 0.150 k-in 0.227 ksi 32.400 ksi 0.007 0.000 ksi 0.000 ksi 0.000 Axial Load + Moment, Ecc. > L/2 Calculate plate moment from bolt tension .. . Tension per Bolt 5.543 k Tension : Allowable 0.000 k Stress Ratio 0.000 Dist. from Bolt to Col. Edge Effective Bolt Width for Bending Plate Moment from Bolt Tension Bearing Stresses Fp : Allowable fu : Max. Bearing Pressu Stress Ratio Plate Bending Stresses Mmax tb : Actual Fb : Allowable Stress Ratio 3.100 in 12.400 in 2.771 k-in 3.060 ksi (set equal to Fp) 1.000 4.062 k-in 9.231 ksi 32.400 ksi 0.285 Scott]. Sanders, SE Title : Dsgnr: Project Desc.: Job # Steel Base PlateDesigni Description : 1- le thick x14" sq base plate for 24x16 Load Comb.: +1.20D+1.60Lr+0.50L Loading Pu: Axial Mu : Moment ........ Eccentricity Al : Plate Area A2: Support Area - / A2/A1 Calculate plate moment from bearing .. . 'A" : Bearing Length Mpl : Plate Moment Shear Stress fv : Actual Fv :Allowable .. Stress Ratio 4x16+12x14 ft 2.665 k 4.090 k-ft 18.415 in 196.000 inA2 900.000 inA2 2.000 4.350 in 0.237 in 0.129 k-in 0.188 ksi 19.440 ksi 0.010 Project Notes : C Lf Pndod: 5 JAN 2010, 126PM File: ctstactwesf dala12209 229912259,Hoag{2259 hoag ec6 ENERCAL JN0.1983-2b08,'Vec601221;=M16994. License Owner:: STRUCTURES\ EST' Axial Load + Moment, Ecc. > L/2 Calculate plate moment from bolt tension .. . Tension per Bolt .. Tension : Allowable Stress Ratio Dist. from Bolt to Col. Edge Effective Bolt Width for Bending Plate Moment from Bolt Tension Bearing Stresses Fp : Allowable fu: Max. Bearing Pressu Stress Ratio Plate Bending Stresses Mmax fb : Actual Fb : Allowable Stress Ratio 1.209 k 0.000 k 0.000 3.100 in 12.400 in 0.604 k-in 3.060 ksi (set equal to Fp) 1.000 1.551 k-in 3.523 ksi 32.400 ksi 0.109 Page 1 of 9 Anchor Calculations Anchor Designer for ACI 318 (Version 4.2.0.2) Job Name : Hoag 24x16, 14x16,12x14 Awning 1) Input Calculation Method : ACI 318 Appendix D For Uncracked Concrete Calculation Type : Analysis a) Layout Anchor : 3/4" Heavy Hex Bolt Steel Grade: F1554 GR. 36 Built-up Grout Pads : No 4 ANCHORS 'Nua IS POSfTIVE FOR TENSION AND NE COMPRESSION.. MICA TES CEPtrER OF FOUR CORNER ANC..+" 1OR Anchor Layout Dimensions : cx1 : 11 in cx2 : 11 in co : 11 in cy2 : 11 in bx1 : 1.5 in bx2:1.5in by1 : 1.5 in bye : 1.5 in sx1 : 12 in so : 12 in 62- Date/Time : 1/5/2010 1:28:55 PM Number of Anchors : 4 Embedment Depth : 24 in about:blank 1/5/2010 Page 2 of 9 b) Base Material Concrete : Normal weight Cracked Concrete : No Condition : B tension and shear Thickness, h : 36 in Supplementary edge reinforcement : No c) Factored Loads Load factor source : ACI 318 Section 9.2 Nua : 2221 lb Vuay : 0 lb MuY : 0 lb*ft ex : 0 in ey:0in Moderate/high seismic risk or intermediate/high design category : No Apply entire shear load at front row for breakout : No d) Anchor Parameters Anchor Model = HB75 do = 0.75 in Category = N/A hef = 23.25 in hmin = 24.75 in eau = 34.875 in emin = 4.5 in smin = 4.5 in Ductile = Yes 2) Tension Force on Each Individual Anchor Anchor #1 Nua1 = 643.12 lb Anchor #2 Nua2 = 643.12 lb Anchor #3 Nua3 = 4356.06 lb Anchor #4 Nua4 = 4356.06 lb Sum of Anchor Tension ENua = 9998.36 lb ax = 0.00 in ay=1.22in e'Nx = 0.00 in e'Ny = 4.46 in 3) Shear Force on Each Individual Anchor fo : 2500.0 psi c,v:1.40 (I)Fp : 1381.3 psi Vuax : 818 lb Mux : 8180 lb*ft about:blank 1/5/2010 Page 3 of 9 Resultant shear forces in each anchor: Anchor #1 Vuai = 204.50 lb (Vuaix = 204.50 lb , Vua1y = 0.00 lb ) Anchor #2 Vua2 = 204.50 lb (Vua2x = 204.50 lb , Vua2y = 0.00 lb ) Anchor #3 Vua3 = 204.50 lb (Vuaax = 204.50 lb , Vua3y = 0.00 lb ) Anchor #4 Vua4 = 204.50 lb (Vua4x = 204.50 lb , Vua4y = 0.00 lb ) Sum of Anchor Shear EVuax = 818.00 Ib, EVuay = 0.00 lb e'Ux=0.00in e'vy = 0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.1] Nsa = nAsefuta [Eq. 0-3] Number of anchors acting in tension, n = 4 Nsa = 19370 lb (for each individual anchor) = 0.75 [D.4.4] ONsa = 14527.50 lb (for each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.2] Ncbg = ANc/ANcoWec,NWed,N c,N`Pcp,NNb [Eq. D-5] Number of influencing edges = 4 he (adjusted for edges per D.5.2.3) = 7.333 in '4Nc0 = 484.00 in2 [Eq. D-6] ANC = 1156.00 in2 Leo Nx = 1.0000 [Eq. D-9] = 0.7117 [Eq. D-9] Pec,Ny Tec,N = 0.7117 (Combination of x-axis & y-axis eccentricity factors.) t ed, N = 1.0000 [Eq. D-10 or D-11 ] Tc,N = 1.2500 [Sec. D.5.2.6] `Pcp,N = 1.0000 [Eq. D-12 or D-13] Nb = kc f ' c hef1.5 = 23830.51 lb [Eq. D-7] kc = 24 [Sec. D.5.2.6] Ncbg = 50634.25 lb [Eq. D-5] = 0.70 [D.4.4] Ncbg = 35443.97 lb (for the anchor group) 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] e-` about:blank 1/5/2010 Page 4 of 9 Np = 8Abrgf'c [Eq. D-15] = 0.9110 in2 Abrg Npo = T0.pNp [Eq. D-14] `Pc p = 1.4 [D.5.3.6] Npo = 25508.00 lb = 0.70 [D.4.4] Npo = 17855.60 lb (for each individual anchor) 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge, cal < 0.4hef. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] Vsa = n0.6Asefuta [Eq. D-20] Vsa = 11625.00 lb (for each individual anchor) = 0.65 [D.4.4] Vsa = 7556.25 lb (for each individual anchor) 9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2] Case 1: Anchor(s) closest to edge checked against sum of anchor shear loads at the edge In x-direction... Vcbgx = Avcx/Avcoxkliec,VtedVTc,VVbx [Eq. D-22] cal = 11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] Ped,V = 0.9000 [Eq. D-27 or D-28] Pc v = 1.4000 [Sec. D.6.2.7] Vbx = 70e/do)0.2 do fc(ca1)1.5 [Eq. D 24] le = 6.00 in Vbx = 16761.22 lb Vcbgx = 21759.11 lb [Eq. D-22] = 0.70 Vcbgx = 15231.38 lb (for the anchor group) about:blank 1/5/2010 Page 5 of 9 In y-direcction... Vcbgy = " vcyfAvcoyTec,VTed,V`t`c,VVby [Eq. D-22] cal=11.00in Avcy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] Wec,v = 1.0000 [Eq. D-26] `Ped,V = 0.9000 [Eq. D-27 or D-28] c,V = 1.4000 [Sec. D.6.2.7] Vby = 7(1e/do)0.2, 1 do -J f c(ca1)1.5 [Eq. D-24] le = 6.00 in Vby = 16761.22 lb Vcbgy = 21759.11 lb [Eq. D-22] = 0.70 Vcbgy = 15231.38 lb (for the anchor group) Case 2: Anchor(s) furthest from edge checked against total shear load In x-direction... Vcbgx = Avcx/AvcoxTec,VTed,V cal = 23.00 in Aycx = 1173.00 in2 Avcox = 2380.50 in2 [Eq. D-23] `1'ec,V = 1.0000 [Eq. D-26] ''ed,V = 0.7957 [Eq. D-27 or D-28] `1'c,V = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/do)o.2 J doJ fc(ca1)1-5 [Eq. D-24] le = 6.00 in Vbx = 50676.71 lb Vcbgx = 27815.67 lb [Eq. D-22] (I) = 0.70 Wcbgx = 19470.97 lb (for the entire anchor group) In y-direction... Vcbgy = Avcy/".vcoyTec,VWedV`Pc,VVby [Eq. D-22] cal = 23.00 in Vbx [Eq. D-22] 6E1 about:blank 1/5/2010 Page 6 of 9 Avcy = 1173.00 in2 Avcoy = 2380.50 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] `Ped,V = 0.7957 [Eq. D-27 or D-28] Tc,v = 1.4000 [Sec. D.6.2.7] Vby = 7(1e/do)o.2, d0J fc(ca,)1.5 [Eq. D-24] le = 6.00 in Vby = 50676.71 lb Vcbgy = 27815.67 lb [Eq. D-22] = 0.70 (1)Vcbgy = 19470.97 lb (for the entire anchor group) Case 3: Anchor(s) closest to edge checked for parallel to edge condition Check anchors at cx1 edge Vcbgx = Avcx/AvcoxTec,V`Ped, cal = 11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] Teo/ = 1.0000 [Eq. D-26] ed,V = 1.0000 [Sec. D.6.2.1(c)] `Pc,V = 1,4000 [Sec. D.6.2.7] Vbx = 70e/d0)0.2 do fc(ca1)1.5 [Eq. D-24] le = 6.00 in Vbx = 16761.22 lb Vcbgx = 24176.79 lb [Eq. D-22] Vcbgy = 2 * Vcbgx [Sec. D.6.2.1(c)] Vcbgy = 48353.59 lb ¢ = 0.70 4)Vcbgy = 33847.51 lb (for the anchor group) Check anchors at cy1 edge Vcbgy = Avcy/Avcoytec,v`Ped,V`Pc,VVby [Eq. D-22] cal =11.00in c,vVbx [Eq. D-22] about:blank 1/5/2010 Page 7 of 9 Avcy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] Tec,V = 1.0000 [Eq. D-261 `Ped,v = 1.0000 [Sec. D.6.2.1(c)] `Yc V = 1.4000 [Sec. D.6.2.7] Vby = 7(1e/do)0.2, do., fc(cat)1.5 [Eq. D-24] le = 6.00 in Vby = 16761.22 lb Vcbgy = 24176.79 lb [Eq. D-22] Vcbgx = 2 * Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 48353.59 lb = 0.70 $Vcbgx = 33847.51 lb (for the anchor group) Check anchors at cx2 edge Vcbgx = Avcx/AvcoxPec,VTed,V`Pc,VVbx [Eq. D-22] cat=11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] `Fec,v = 1.0000 [Eq. D-26] t ed,V = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1(c)] Y'c,V = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/do)0.2 _Y ! do( fc(ca1)1.5 [Eq. D-24] le = 6.00 in Vbx = 16761.22 lb Vcbgx = 24176.79 lb [Eq. D-22] [Sec. D.6.2.1(c)] Vcbgy = 2 * Vcbgx Vcbgy = 48353.59 lb = 0.70 (Vcbgy = 33847.51 lb (for the anchor group) Check anchors at cy2 edge Vcbgy = Avcy/Avcoy`Fec,Vted,V`f`c,VVby [Eq. D-22] about:blank 1/5/2010 Page 8 of 9 cal =11.00in Avcy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] Tec,V = 1.0000 [Eq. D-26] t'ed,V = 1.0000 [Sec. D.6.2.1(c)] Tex = 1.4000 [Sec. D.6.2.7] Vby = 70e/do)0.24 d0.4 pc(ca1)1.5 [Eq. D-24] le = 6.00 in Vby = 16761.22 lb Vcbgy = 24176.79 lb [Eq. D-22] 2 " Vcbgy [Sec. D.6.2.1(c)] Vcbgx = Vcbgx = 48353.59 lb = 0.70 PVcbgx = 33847.51 lb (for the anchor group) 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.3] Vcpg = kcpNcbg [Eq. D-30] kcp = 2 [Sec. D.6.3.1] eNx = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) eNy = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) `Pec,Nx = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) Yec,Ny = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) `I'ec,N1 = 1.0000 (Combination of x-axis & y-axis eccentricity factors) Ncbg = (ANca/ANc)(Vec,MIWec,N)Ncbg Ncbg = 50634.25 lb (from Section (5) of calculations) ANc = 1156.00 in2 (from Section (5) of calculations) ANca = 1156.00 in2 (considering all anchors) Pec,N = 0.7117 (from Section(5) of calculations) Ncbg = 71146.88 lb (considering all anchors) Vcpg = 142293.76 lb = 0.70 [D.4.4] WVcpg = 99605.63 lb (for the anchor group) 11) Check Demand/Capacity Ratios [Sec. D.7] about:blank 1/5/2010 Page 9 of 9 Tension - Steel : 0.2998 - Breakout : 0.2821 - Pullout : 0.2440 - Sideface Blowout : N/A Shear - Steel : 0.0271 - Breakout (case 1) : 0.0269 - Breakout (case 2) : 0.0420 - Breakout (case 3) : 0.0121 - Pryout : 0.0082 V.Max(0.04) <= 0.2 and T.Max(0.3) <= 1.0 [Sec D.7.1] Interaction check: PASS Use 3/4" diameter F1554 GR. 36 Heavy Hex Bolt anchor(s) with 24 in. embedment about:blank 1/5/2010 Structures West 8'x8' Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: 85 MPH, EXPOSURE C qh=0.00256KhKztKdV"21 = Kh 0.85 Kzt 1.00 0-15 FEET Kd 0.85 0-15 FEET V 85.00 85 MPH I 1.00 13.36 psf p=qh*G*Cn = 13.63 psf G = 0.85 Cn = 1.20 ht, ft FG d, ft dia WIND LOADING ON ELEVATION: col ft'g roof 1/5/2010 Page:5liD CU' 2259 Hoag AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 15.50 2.00 13.63 422.55 10.00 4225.49 Column 0.50 10.00 13.63 68.15 5.00 340.77 FOOTING 0.00 0.00 13.63 0.00 0.00 0.00 H RESULTANT ARM = M/LOAD TOTAL = ASSUMPTIONS: SOILS: CLASS 3 MATERIAL PER IBC TABLE NO.1804.2 SOIL BEARING= 1500 LATERAL BEARING = 250 LBS/SQ.FT/FT. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 490.70 9.31 CALCULATE FOOTING DEPTH (d) PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP Wind Load: Tension Load P= 490.70 LBS P= 300.00 LBS h = 9.31 FT. h = 10.00 FT. S = 250.00 #/FT"2/FT. OF DEPTH S = 250.00 #/FT"2/FT. OF DEPTH b = 3.00 FT. b = 3.00 FT. A= 2.34P/S1b = 2 A=2.34P/S1b= 0.936 d = 0.5A (1+(4.36h/A))"112) = 4.78 FT d = 0.5A (1+(4.36h/A))"1/2) = 3.70 FT fc = fy 2500 psi 60000 psi Column Design: 6" Diameter Column M = Pxh = 4566.26 Ft-lbs Sreq'd = (M x 12)/( Fy x 1.33) Fy = Sreq'd = 1.71 inA3 Delta max = U180 = 0.67 in Ireq'd = (M*h"2)/(3*E*Delta )_ 36000 psi 11.78 inA4 USE 6" DIAMTER PC STANDARD Fy=36ksi Ixx=26.5 in^4; Sxx = 7.99 inA3 4566.26 ScottJ. Sunders, SE Title : Dsgnr: Project Desc.: Job # Steel Columrt... Lic.#::KW-06000560 Description : 6" Diameter Column Design for 8 ft x 8 ft Sail General. Information r: Steel Section Name Analysis Method : Steel Stress Grade Fy : Steel Yield E : Elastic Bending Modulus Load Combination : Pipe6STD 2006 IBC & ASCE 7-05 A-36, Carbon Steel, Fy = 36 ksi 36.0 ksi 29,000.0 ksi Allowable Stress Applied Loads Column self weight included: 190.0 lbs *Dead Load Factor AXIAL LOADS .. . Axial Load at 10.0 ft, Xecc = 4.000in, W = 0.2140 k BENDING LOADS .. Lat. Point Load at 10.0 ft creating Mx-x, W = 0.4090 k DESIGN SUMMARY ; 7 Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = Load Combination Location of max.above base At maximum location values are ... Pu : Axial Pn I Omega: Allowable Mu-x: Applied Mn-x I Omega : Allowable Mu-y : Applied Mn-y / Omega : Allowable PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base At maximum location values are . Vu : Applied Vn / Omega : Allowable Load Combination Results. Load Combination Project Notes : Printed: 5 JAN 2010,10:51AM est data12200.229912259 Hoagf 22591ioag ec6 €NERCALC, INC 1963-2€06 Vet.60221, N16994 License Owner STRUCTURES EST Code Ref : 2006 IBC, AISC Manual 13th Edition Overall Column Height 10.0 ft Top & Bottom Fixity Top Free, Bottom Fixed Brace condition for deflection (buckling) along columns : X-X (width) axis : Unbraced Length far X-X Axis buckling = 10ft, K = 2.1 Y-Y (depth) axis :Unbraced Length for Y-Y Axis buckling = 10 ft, K = 2.1 Service loads entered. Load Factors will be applied for calculations. 0.2220 :1 +D+W+H 0.0 ft 0.4040 k 58.245 k 4.090 k-ft 19.042 k-ft 0.07133 k-ft 19.042 k-ft 0.01212 :1 +D+W+H 0.0 ft 0.4090 k 33.758 k Maximum Axial +Bending Stress Ratios Stress Ratio Status Location Maximum SERVICE Load Reactions.. Top along X-X 0.0 k Bottom along X-X 0.0 k Top along Y-Y 0.0 k Bottom along Y-Y 0.4090 k Maximum SERVICE Load Deflections... Along Y-Y -0.3050 in at for load combination :W Only Along X-X -0.007966 in at for load combination :W Only 10.Oft above base 10.oft above base Maximum Shear Ratios Stress Ratio Status Location +D+L+H +D+Lr+H +D+W+H +D+0.750 Lr+O.750L+0.750 W+H +0+0.750 L+0.750 S+0.750 W+H +0.60D+W+H Maximum Reactions - tnfactored Load Combination 0.003 PASS 0.00 ft 0.003 PASS 0.00 ft 0.222 PASS 0.00 ft 0.167 PASS 0.00 ft 0.167 PASS 0.00 ft 0.221 PASS 0.00 ft 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.012 PASS 0.00 ft 0.009 PASS 0.00 ft 0.009 PASS 0.00 ft 0.012 PASS 0.00 ft Note: Only non -zero reactions are listed. X-X Axis Reaction @Base @Top Y-Y Axis Reaction @ Base @ Top W Only Maximum Deflections for Load Combinations-.Unfactored Loads Load Combination Max X-X Deflection Distance 0.409 Max. Y-Y Deflection Distance W Only -0.0079 in Steel Section Properties : t Pipe6STD 9.933 ft -0.302 in 9.933 ft Scott]. Sanders, SE Title : Dsgnr: Project Desc.: Job # Steel Column tic. #,:..KW-06000560_ _.... Description : 6" Diameter Column Design for 8 ft x 8 ft Sail Steel Section Properties : . Pipe6STD Depth = 6.625 in Web Thick Flange Width Flange Thick Area Weight Ycg 0.000 in 6.625 in 0.280 in 5.220 inA2 Iyy 19.000 plf S yy Ryy 0.000 in Project Notes : 26.50 In^4 7.99 In"3 2.250 in 26.500 inA4 7.990 103 2.250 in Printed: 5JAN 2010,1051AM FPe; cistnictwest data12200229912259Hoag12259 hoag.ec6 ENERCALC, INC. 1983- 006,Ver. 6A221, N 16984 = J License:Owner:STRUCTURES WEST. olM Loads 52.900 in"4 Loads are total entered value Mona, do not rene 1 absolute direction. Scott'. Senders, SE Title : Dsgnr: Project Desc.: Job # Project Notes : Printed: 5 JAN 2010,11:36AM Steel Base Plate Desii Lic. It: KW-06000560 Description : 314"x14" sq base plate for 8 ft x 8 file:dsMidwest batak220Q-229912259Hoagt2259hoagece NERcALc,INC 19832008. Yer, 60.22s, p4ts9947 License Owner: STRUCTURES WEST General Information H Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker Material Properties AISC Design Method Load Resistance Factor Design Steel Plate Fy = 36.0 ksi Concrete Support fc 3.0 ksi Assumed Beadng Area :Full Bearing r Column 8. Plate Column Properties Steel Section Pipe6STD Depth Width Flange Thickness Web Thickness 6.625 in 6.625 in 0.261 in Din Plate Dimensions N : Length 14.0 in B : Width 14.0 in Thickness 0.750 in Column assumed welded to base plate. Applied Loads 1 P•Y D : Dead Load ... 0.4090 k L: Live k Lr: Roof Live k S: Snow k W : Wind 0.0 k E : Earthquake ............. k H : Lateral Earth k " P " = Gravity load, "+" sign is downward. Area In lyy c : LRFD Resistance Factor Allowable Bearing Fp per J8 5.22 in"2 26.5 inA4 26.5 inA4 Support Dimensions Support width along "X" Length along "2" 30.0 in 30.0 in V•Z M-X 0.4040 k k-ft k 4.0 k-ft k k-ft k k-ft k k-ft k k-ft k k-ft "+" Moments create hgher soil pressure at+Z edge. "+" Shears push plate towards+Z edge. Anchor Bolts Anchor Bolt or Rod Descdpfon 1 112' Max of Tension or Pullout Capacity Shear Capacity Edge distance : bolt to plate Number of Bolts in each Row Number of Bolt Rows k k 1.250 in 2.0 1.0 0.60 5.10 ksi Job # Scott). Sanders, SE 'Steel Base Plate Design # s-KW-06000560 -6 Description : 3/4"x14' sq base plate for8 ftx 8 GOVERNING DESIGN LOAD CASE SUMMARY Plate Design Summary Design Method Governing Load Combination Governing Load Case Type Design Plate Size Pu : Axial Mu : Moment Load Resistance Factor Design +1, 20 D+0.50 L r+1.60 L+1.60 H Axial + Moment, L/2 < Eccentricity, Tension on Br 1'4"x11-2"x0.3I4" 0.491 k 6.400 k-ft fv : Actual Fv : Allowable = 0.60 Fy * 090 (per G2) Stress Ratio Load Comb.: +1.40D Loading Pu : Axial Design Plate Height......... Design Plate Width Will be different from entry ifpadial bearing used. Al : Plate Area AZ Support Area A21A1 Distance for Moment Calculation " m " n" X.. Lambda n' n' Lambda L = max(m, n, n") Load Comb.: +1.20D 0.093 ksi 19.440 ksi 0.005 Shear Stress OK 0.573 k 14.000 in 14.000 in 196.000 inA2 900.000 inA2 2.000 4.350 in 4.350 in 0.000 inA2 0.000 0.040 in 0.000 in 4.350 in 0.50Lr+1.60L+1.60H Loading Pu : Axial Mu: Moment ........ Eccentricity Al : Plate Area ......... A2 : Support Area J A2/A1 Calculate plate moment from bearing ... "A" : Bearing Length Mpl : Plate Moment Shear Stress Fv : Allowable Stress Ratio 0.491 k 6.400 k-ft 156.479 in 196.000 inA2 900.000 inA2 2.000 4.350 in 0.294 in 0.159 k-in 0.093 ksi 19.440 ksi 0.005 Title : Dsgnr: Project Desc.: Project Notes : Cvc' Printed. 5 JAN 2010,11:36M1 FPe; oistmctwestdal§l2200 229919259 Hoag 12259 bong ec6 ENERCAiG, INC. 1983-2008, Ver 6d221, ft16994` License Owner; STRUCTURES WEST Mu : Max. Moment tb: Max. Bending Stress Fb :Allowable: Fy' Phi Stress Ratio fu : Max. Plate Bearing Stress .... Fp : Allowable : 1.911 k-in 20.388 ksi 32.400 ksi 0.629 Bending Stress OK 3.060 ksi 3.060 ksi min( 0.85'fc'sgrt(A2/A1), 1.7* fc)*Phi Stress Ratio Tension in each Bolt Allowable Bolt Tension Stress Ratio ................. Bearing Stresses Fp : Allowable fu : Max. Bearing Pressu Stress Ratio Plate Bending Stresses Mmax =Fu*LA2/2 fb : Actual Fb : Allowable Stress Ratio Shear Stress fv : Actual Fv : Allowable Stress Ratio 1.000 Bearing Stress OK 2.901 0.000 0.000 Tension Stress OK Axial Load Only, No Moment 3.060 ksi 0.003 ksi 0.001 0.028 k-in 0.197 ksi 32.400 ksi 0.006 0.000 ksi 0.000 ksi 0.000 Axial Load + Moment; Ecc. > U2 Calculate plate moment from bolt tension ... Tension per Bolt 2.901 k Tension : Allowable 0.000 k Stress Ratio 0.000 Dist from Bolt to Col. Edge Effective Bolt Width for Bending Plate Moment from Boft Tension Bearing Stresses Fp : Allowable fu : Max. Bearing Pressu Stress Ratio Plate Bending Stresses Mmax fb : Actual Fb : Allowable Stress Ratio 3.100 in 12.400 in 1,451 k-in 3.060 ksi ( set equal to Fp ) 1.000 1.911 k-in 20.388 ksi 32.400 ksi 0.629 .ScottJ. Sanders, SE Title : Dsgnr: Project Desc.: Project Notes : Job # 021 Printed. 5 JAN 2010, 11:36AM Steel Base Plate Design Description : 3/45(14" sq base plate for 8 ft x 8 Load Comb.: +1.20D+1.60Lr+0.50L Loading Pu : Axial Mu : Moment Eccentricity Al : Plate Area A2 : Support Area 0.491 k 2.000 k-ft 48.900 in 196.000 in"2 900.000 inA2 J A21A1 2.000 Calculate plate moment from bearing ... " m " 4.350 in Bearing Stresses "A" : Bearing Length 0.098 in Fp : Allowable 3.060 ksi Mpl : Plate Moment 0.054 k-in fu : Max. Bearing Pressu (set equal to Fp ) Shear Stress Stress Ratio 1.000 fv: Actual .. 0.093 ksi Plate Bending Stresses Fv: Allowable ..... 19.440 ksi Mmax 0.650 k-in Stress Ratio 0.005 fb : Actual 6.937 ksi F e; c1stuctwest Jata12200 2299F2259 Hoagr2259hoagec6„ ENEROALC INC 19832008,Ver.60221, N.16994 License Owner ::STRUCTURES. WEST Axial Load + Moment, Ecc. > U2 Calculate plate moment from bolt tension ... Tension per Bolt Tension : Allowable Stress Ratio 0.809 k 0.000 k 0.000 Dist. from Bolt to Col. Edge 3.100 in Effective Bolt Width for Bending 12.400 in Plate Moment from Bolt Tension .. 0.405 k-in Fb : Allowable 32.400 ksi Stress Ratio 0.214 Page 1 of 9 Anchor Calculations Anchor Designer for ACI 318 (Version 4.2.0.2) Job Name : Hoag 8x8 ft Awning 1) Input Calculation Method : ACI 318 Appendix D For Uncracked Concrete Calculation Type : Analysis a) Layout Anchor : 5/8" Heavy Hex Bolt Steel Grade: F1554 GR. 36 Built-up Grout Pads : No xl Cy2 Cy1 'Nua IN IC 4ANCHARS- FOR TENSION AN 62 N �OF,iPRfSSION.. T'ER OF FOUR CORN Anchor Layout Dimensions : cxi 11 in cx2:11 in cy/:11in cy2 : 11 in bxi : 1.5 in bx2:1.5in by1:1.5in bye : 1.5 in sx1 : 12 in syt : 12 in Date/Time : 1/5/2010 11:51:29 AM Number of Anchors : 4 Embedment Depth : 24 in A MetiORS about:blank 1/5/2010 Page 2 of 9 b) Base Material Concrete : Normal weight Cracked Concrete : No Condition : B tension and shear Thickness, h : 36 in Supplementary edge reinforcement : No c) Factored Loads Load factor source : ACI 318 Section 9.2 Nua : 404 lb Vuay : 0 lb Muy : 0 Ib*ft ex : 0 in ey:0in Moderate/high seismic risk or intermediate/high design category : No Apply entire shear load at front row for breakout : No d) Anchor Parameters Anchor Model = HB62 do = 0.625 in Category = N/A hef = 23.375 in hmin = 24.75 in cac = 35.0625 in cmin = 3.75 in smin = 3.75 in Ductile = Yes 2) Tension Force on Each Individual Anchor Anchor #1 Nuai = 172.17 lb Anchor #2 Nua2 = 172.17 lb Anchor #3 Nua3 = 1985.40 lb Anchor #4 Nua4 = 1985.40 lb Sum of Anchor Tension ENua = 4315.14 lb ax = 0.00 in ay = 1.03 in e'Nx = 0.00 in e'Ny=5.04in 3) Shear Force on Each Individual Anchor fe : 2500.0 psi ` o/ : 1.40 ¢Fp : 1381.3 psi Vuax : 409 lb Mux : 4090 lb*ft about:blank 1/5/2010 Page 3 of 9 Resultant shear forces in each anchor: Anchor #1 Vuai = 102.25 lb (Vuaix = 102.25 lb , Vua1y = 0.00 lb ) Anchor #2 Vua2 = 102.25 lb (Vua2x = 102.25 lb , Vua2y = 0.00 lb ) Anchor #3 Vua3 = 102.25 lb (Vua3x = 102.25 lb , Vua3y = 0.00 lb ) Anchor #4 Vua4 = 102.25 lb (Vua4x = 102.25 lb , Vua4y = 0.00 lb ) Sum of Anchor Shear EVuax = 409.00 lb, EVuay = 0.00 lb e'ux = 0.00 in e'vy = 0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.1] Nsa = nAsefuta [Eq. D-3] Number of anchors acting in tension, n = 4 Nsa = 13100 lb (for each individual anchor) = 0.75 [D.4.4] $Nsa = 9825.00 lb (for each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.2] Ncbg = ANc/ANco'Pec,N'Ped,NPc,NWcp,NNb [Eq. D-5] Number of influencing edges = 4 hef (adjusted for edges per D.5.2.3) = 7.333 in ANco = 484.00 in2 [Eq. D-6] ANC = 1156.00 in2 ec,Nx = 1.0000 [Eq. D-9] tlj`Fec,Ny = 0.6857 [Eq. D-9] 'ec,N = 0.6857 (Combination of x-axis & y-axis eccentricity factors.) Wed,N = 1.0000 [Eq. D-10 or D-11] 'Fc,N = 1.2500 [Sec. D.5.2.6] ;RN = 1.0000 [Eq. D-12 or D-13] Nb = kc,4 f' c hef1.5 = 23830.51 lb [Eq. D-7] kc = 24 [Sec. D.5.2.6] Ncbg = 48784.12 lb [Eq. D-5] iu = 0.70 [D.4.4] 34148.89 lb (for the anchor group) ¢Ncbg = 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] about:blank 1/5/2010 Page 4 of 9 Np = BAbrgf'o [Eq. D-15] 0.6710 in2 Abrg = Non = `Po,pNp [Eq. D-14] o p = 1.4 [D.5.3.6] Non = 18788.00 lb = 0.70 [D.4.4] S Non = 13151.60 lb (for each individual anchor) 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge, cal < 0.4hef. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] Vsa = n0.6Asefuta [Eq. D-20] Vsa = 7865.00 lb (for each individual anchor) b = 0.65 [D.4.4] Vsa = 5112.25 lb (for each individual anchor) 9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2] Case 1: Anchor(s) closest to edge checked against sum of anchor shear loads at the edge In x-direction... Vcbgx = Avcx/Avcox'Pec,Vgjed,VWc,VVbx [Eq. D-22] ca1=11.00 in '4vcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] `l ec,V = 1.0000 [Eq. D-26] `Ped,V = 0.9000 [Eq. D-27 or D-28] TC V = 1.4000 [Sec. D.6.2.71 do co(cal)1-5 [Eq. D 24] Vbx = 7(le/do)o.2,\f le = 5.00 in Vbx = 15300.83 lb 19863.26 lb [Eq. D-22] Vcbgx = = 0.70 Vcbgx = 13904.28 lb (for the anchor group) about:blank 1/5/2010 Page 5 of 9 2fr In y-direction... Vcbgy = Avcy/Avcoy`Pec v`Ped,v`t`c,vVby [Eq. D-22] cal=11.00in Avcy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] `Pec,v = 1.0000 [Eq. D-26] Ped,V = 0.9000 [Eq. D-27 or D-281 Way = 1.4000 [Sec. D.6.2.7] Vby = 7(1e/d0)0.2.4 do.` fc(ca1)1.5 [Eq. D-24] le = 5.00 in Vby = 15300.83 lb Vcbgy = 19863.26 lb [Eq. D-22] = 0.70 Vcbgy = 13904.28 lb (for the anchor group) Case 2: Anchor(s) furthest from edge checked against total shear load In x-direction... = Avcx/Avcox Pec,V Ped,V Vbx [Eq. D-22] Vcbgx cal = 23.00 in Avcx = 1173.00 in2 Avcox = 2380.50 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] ed,V = 0.7957 [Eq. D-27 or D-28] LPc,V = 1.4000 [Sec. D.6.2.7] Vbx = 7(1e/do)0.2'f do 4 f c(ca1)1.5 [Eq. D-24] le = 5.00 in Vbx = 46261.30 lb Vcbgx = 25392.12 lb [Eq. D-22] = 0.70 Vcbgx = 17774.48 lb (for the entire anchor group) In y-direction... Vcbgy = Avcy/Avcoy`Pec,VWedV`Pc,VVby [Eq. D-22] cal = 23.00 in about:blank 1/5/2010 Page 6 of 9 Avcy = 1173.00 in2 Avcoy = 2380.50 in2 [Eq. D-23] Tec,V = 1.0000 [Eq. D-26] 'f`ed,v = 0.7957 [Eq. D-27 or D-28] `Pc,v = 1.4000 [Sec. D.6.2.7] Vby = 70e/do)0.2.`+� dog fc(ca1)1.5 [Eq. D-24] le = 5.00 in Vby = 46261.30 lb Vcbgy = 25392.12 lb [Eq. D-22] = 0.70 4Vcbgy = 17774.48 lb (for the entire anchor group) Case 3: Anchor(s) closest to edge checked for parallel to edge condition Check anchors at cx1 edge Vcbgx = Avcx/Avcox`Pec,V11'ed,V'Fc,VVbx [Eq. D-22] ca111.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] `1`ec,V = 1.0000 [Eq. D-26] Ted,V = 1.0000 [Sec. D.6.2.1(c)] `f'c,v = 1.4000 [Sec. D.6.2.7] Vbx = 70e/do)o.2.4 do f c(ca1)1.5 [Eq. D-24] le = 5.00 in Vbx = 15300.83 lb Vcbgx = 22070.29 lb [Eq. D-22] Vcbgy = 2 *Vcbgx [Sec. D.6.2.1(c)] Vcbgy = 44140.59 lb = 0.70 Vcbgy = 30898.41 lb (for the anchor group) Check anchors at cy1 edge Vcbgy = " vcy/" vcoyWec,VWed,VTc,VVby [Eq. D-22] cal = 11.00 in 027' about:blank 1/5/2010 Page 7 of 9 Noy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] `1`ec,V = 1.0000 [Eq. D-26] `Ped,V = 1.0000 [Sec. D.6.2.1(c)] 'Pc,V = 1.4000 [Sec. D.6.2.7] Vby = 70e/do)O.2 _! do fc(ca1)1.5 [Eq. D-24] le = 5.00 in Vby = 15300.83 lb Vcbgy = 22070.29 lb [Eq. D-22] Vcbgx = 2 * Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 44140.59 lb = 0.70 tVcbgx = 30898.41 lb (for the anchor group) Check anchors at cx2 edge Vcbgx = Avcx/Avcox`11ec,Vl1'ed,Vc,VVbx [Eq. D-22] cal = 11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] `1`ec,V = 1.0000 [Eq. D-26] 1'ed,V = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1(c)] ;iv = 1.4000 [Sec. D.6.2.7] Vbx = 70e/do)0.2 4 do / fc(cai)1.5 [Eq. D-24] le = 5.00 in Vbx = 15300.83 lb Vcbgx = 22070.29 lb [Eq. D-22] Vcbgy = 2 * Vcbgx [Sec. D.6.2.1(c)] Vcbgy = 44140.59 lb = 0.70 $Vcbgy = 30898.41 lb (for the anchor group) Check anchors at cy2 edge Vcbgy = Avcy/AvcoyTec,VTed,vTc,VVby [Eq. D-22] about:blank 1/5/2010 Page 8 of 9 cal = 11.00 in Avoy = 561.00 in2 Aycoy = 544.50 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] ed,V = 1.0000 [Sec. D.6.2.1(c)] = 1.4000 [Sec. D.6.2.7] Vby = 70e/do)0.2_! do\I fc(ca1)15 [Eq. D-24] le=5.00in Vby = 15300.83 lb Vcbgy = 22070.29 lb [Eq. D-22] 2 * Vcbgy [Sec. D.6.2.1(c)] Vcbgx = Vcbgx = 44140.59 lb = 0.70 Vcbgx = 30898.41 lb (for the anchor group) 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.3] Vcpg = kcpNcbg [Eq. D-30] kcp = 2 [Sec. D.6.3.1 ] eNx = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) eNy = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) Pec,Nx = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) t ec,Ny = 'Pec,Nr = 1.0000 (Combination of x-axis & y-axis eccentricity factors) Ncbg = (ANca/ANc)(`Pec,Nnec,N)Ncbg Ncbg = 48784.12 lb (from Section (5) of calculations) ANc = 1156.00 in2 (from Section (5) of calculations) Awe = 1156.00 in2 (considering all anchors) `ec,N = 0.6857 (from Section(5) of calculations) 71146.88 lb (considering all anchors) Ncbg = Vcpg = 142293.76 lb $ = 0.70 [D.4.4] $Vcpg = 99605.63 lb (for the anchor group) 11) Check Demand/Capacity Ratios [Sec. D.7] about:blank 1/5/2010 Page 9 of 9 Tension - Steel : 0.2021 - Breakout : 0.1264 - Pullout : 0.1510 - Sideface Blowout : N/A Shear - Steel : 0.0200 - Breakout (case 1) : 0.0147 - Breakout (case 2) : 0.0230 - Breakout (case 3) : 0.0066 - Pryout : 0.0041 V.Max(0.02) <= 0.2 and T.Max(0.2) <= 1.0 [Sec D.7.1] Interaction check: PASS Use 5/8" diameter F1554 GR. 36 Heavy Hex Bolt anchor(s) with 24 in. embedment about:blank 1/5/2010 1 .Structures West 12'x12' Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: 85 MPH, EXPOSURE C qh=0.00256KhKztKdV^21 = Kh 0.85 Kzt 1.00 0-15 FEET Kd 0.85 0-15 FEET V 85.00 85 MPH I 1.00 13.36 psf p=qh*G*Cn = 13.63 psf G = 0.85 Cn = 1.20 ASSUMPTIONS: SOILS: CLASS 3 MATERIAL PER IBC TABLE NO.1804.2 SOIL BEARING= 1500 LATERAL BEARING = 250 LBS/SQ.FT/FT. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 ht, ft FG d, ft WIND LOADING ON ELEVATION: dia col ft'g roof 1/5/2010 Page:4t%1 2259 Hoag AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 15.50 2.00 13.63 422.55 10.00 4225.49 Column 0.50 10.00 13.63 68.15 5.00 340.77 FOOTING 0.00 0.00 13.63 0.00 0.00 _ 0.00 H RESULTANT ARM = M/LOAD TOTAL = 490.70 9.31 CALCULATE FOOTING DEPTH (d) PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP Wnd Load: Tension Load P= 490.70 LBS P= 300.00 LBS h = 9.31 FT. h = 10.00 FT. S = 250.00 #/FT^2/FT. OF DEPTH S = 250.00 #/FT^2/FT. OF DEPTH b = 3.00 FT. b = 3.00 FT. A= 2.34P/S1 b = 2 A= 2.34P/S1b = 0.936 d = 0.5A (1+(4.36h/A))^1/2) = 4.78 FT fc= 2500 psi fy = 60000 psi Column Design: 6" Diameter Column M = Pxh = 4566.26 Ft-lbs d = 0.5A (1+(4.36h/A))^1/2) = 3.70 FT Sreq'd = (M x 12)/( Fy x 1.33) Fy = Sreq'd = 1.71 in^3 Delta max = L/180 = 0.67 in Ireq'd = (M*h^2)/(3*E*Delta )= 36000 psi 11.78 in^4 USE 6" DIAMTER PC STANDARD Fv=36ksi Ixx=26.5 in^4; Sxx = 7.99 in^3 4566.26 Scott]. Sanders, SE • Steel Column± Lie. #:-KW-06000560 '- ... Description : 6' Diameter Column Design for 12 "'General Information Steel Section Name : Analysis Method : Steel Stress Grade Fy : Steel Yield E : Elastic Bending Modulus Load Combination : Applied Loads x 12 ft Sail Pipe6STD 2006 IBC & ASCE 7-05 A-36, Carbon Steel, Fy = 36 ksi 36.0 ksi 29,000.0 ksi Allowable Stress Column self weight included : 190.0 lbs * Dead Load Factor AXIAL LOADS... Axial Load at 10.0 ft, Xecc = 4.000in, W = 0.4910 k BENDING LOADS... Lat Point Load at 10.0 ft creating Mx-x, W = 0.6270 k DESIGN SUMMARY Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = Load Combination Location of max.above base At maximum location values are ... Pu : Axial Pn / Omega : Allowable Mu-x : Applied Mn-x / Omega : Allowable Mu-y : Applied Mn-y I Omega : Allowable PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base At maximum location values are ... Vu : Applied Vn / Omega : Allowable oad Combination Results Load Combination Title : Dsgnr: Project Desc.: Project Notes : Job # Printed 5 JAN 2010, 10:53AM tie, c\stwcMtest data12200 229912259 Hoag12259 hoag ec6; NFJRCALC; INC t 83-2008, Ver 80221, t116994 License Owner: STRUCTURES WEST Code Ref : 2006 IBC, AISC Manual 13th Edition Overall Column Height 10.0 ft Top & Bottom Fixity Top Free, Bottom Fixed Brace condition for deflection (buckling) along columns : X-X (width) axis : Unbraced Length for X-X Axis buckling = 10ft, K = 2.1 Y-Y (depth) axis :Unbraced Length for Y-Y Axis buckling =10 ft, K = 2.1 0.3437 :1 +D+W+H 0.0 ft 0.6810 k 58.245 k 6.270 k-ft 19.042 k-ft 0.1637 k-ft 19.042 k-ft 0.01857 :1 +D+W+H 0.0 ft 0.6270 k 33.758 k Service loads entered. Load Factors will be applied for calculations. Maximum SERVICE Load Reactions .. Top along X-X Bottom along X-X Top along Y-Y Bottom along Y-Y 0.0 k 0.0 k 0.0 k 0.6270 k Maximum SERVICE Load Deflections ... Along Y-Y -0.4676 in at • for load combination :W Only Along X-X -0.01828 in at for load combination :W Only Maximum Axial +Bending Stress Ratios Stress Ratio Status Location Maximum Shear Ratios Stress Ratio Status Location 10.0ft above base 10.0ft above base +D+L+H +D+Lr+H +D+W+H +D+0.750 Lr+0.750L+0.750W+H +D+0.750 L+0.7 50 S +0.750 W+H +0.60D+W+H Maximum Reactions - Unfactored Load Combination 0.003 0.003 0.344 0.258 0.258 0.343 PASS PASS PASS PASS PASS PASS X-X Axis Reaction @ Base @Top 0.00 ft 0.000 PASS 0.00 ft 0.00 ft 0.000 PASS 0.00 ft 0.00 ft 0.019 PASS 0.00 ft 0.00 ft 0.014 PASS 0.00 ft 0.00 ft 0.014 PASS 0.00 ft 0.00 ft 0.019 PASS 0.00 ft Note: Only non -zero reactions are listed. Y-Y Axis Reaction @ Base @ Top W Only Maximum Deflections for Load Combinations - Unfactored Loads Load Combination Max. X-X Deflection Distance 0.627 Max. Y-Y Deflection Distance W Only -0.0180 in 9.933 ft Steel Section Properties : Pipe6STD -0.463 in 9.933 ft Scott]. Sanders, SE Title : Dsgnr: Project Desc.: Project Notes : Job it 1247 Printed: 5 JAN 2010, 10:53AM Steel Column Description : 6' Diameter Column Design for 12 ftx 12 ft Sail Steel Section Properties : Pipe6STD Depth = 6.625 in Ixx Web Thick Flange Width Flange Thick Area Weight Ycg 0.000 in Sxx 6.625 in R xx 0.280 in 5.220 inA2 I yy 19.000 plf S yy Ryy 0.000 in 26.50 ing4 7.99 inA3 2.250 in 26.500 inA4 7.990 inA3 2.250 in e:cls0roeMestdafa\2290?29912259 Heag12259 hoag.ec6 ENERCALG,INC. 19832006, Ver.60221, Iti 6994 License Owner STRUCTURES WEST J abbe Loads 52.900 inA4 Loads are total entered value. An -ow do not reflect absolute direction. Scott]. Sanders, SE Title : Dsgnr: Project Desc.: Job # SteelBase Plateinesign Lrc. #: KW-06000560 Description : 3/41x14" sq base plate for 12 ft x 12 ft General Information Project Notes : Printed 5 JAN 2010,11:37AM File c:Ashactwestdatat2200-229912259 Hoagl225g hoagec6.,i ENERCALG INC 1983 2008, Ver. $9.221, Nt16994 License Owner : STRUCTURES WEST Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker Material Properties AISC Design Method Load Resistance Factor Design Steel Plate Fy 36.0 ksi Concrete Support fc = 3.0 ksi Assumed Bearing Area : Full Bearing Column & Plate Column Properties Steel Section : Pipe6STD Depth Width Flange Thickness Web Thickness 6.625 in 6.625 in 0.261 in 0 in Plate Dimensions N : Length 14.0 in B : Width 14.0 in Thickness 0.750 in Column assumed welded to base plate. L Applied Loads P-Y D : Dead Load ....... 0.6810 k L : Live 0.0 k Lr : Roof Live 0.0 k S:Snow 0.0 k W : Wind ... 0.0 k E: Earthquake 0.0 k H : Lateral Earth 0.0 k " P " = Gravity load, "+" sign is downward. Area Ixx lyy cb c : LRFD Resistance Factor Allowable Bearing Fp per J8 5.22 inA2 26.5 inA4 26.5 inA4 Support Dimensions Support width along'X" Length along "Z V-Z M-X 0.6270 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 30.0 in 30.0 in 0.0 k-ft 6.270 k-ft 0.0 k-ft 0.0 k-ft 0.0 k-ft 0.0 k-ft 0.0 k 0.0 k-ft "+' Moments create higher soil pressure at+Z edge. "+" Shears push plate towards+Z edge. Anchor Bolts Anchor Bolt or Rod Description 1 1 /2" Max of Tension or Pullout Capacity Shear Capacity Edge distance : bolt to plate.. Number of Bolts in each Row Number of Bolt Rows 0.0 k 0.0 k 1.250 in 2.0 1.0 0.60 5.10 ksi Scott]. Sanders, SE Tie: Dsgnr: Project Desc.: Job# / $ S Steel' Base Plate Lie. lit ;:--KW-06000560 Description : Design'; 3/4"x14" sq base plate for 12 ft x 12 ft Project Notes : Printed: 5 JAN 2010,11:37AM Hle. clstructwest data12200 2299K259 Hoagl2259 hoagec6. ENERCALG, INc. 1988 2008 Ver� 80.221, N:16994 icense Owner: STRUCTURES WEST. GOVERNING DESIGN LOAD CASE SUMMARY Plate Design Summary Design Method Governing Load Combination Governing Load Case Type Design Plate Size Pu : Axial Mu : Moment Load Resistance Factor Design +1.20D+0.50Lr+1.60L+1.60H Axial + Moment, L/2 < Eccentricity, Tension on Br 1'-2" x 1'-2" x 0.3/4" 0.817 k 10.032 k-ft N: Actual ... Fv : Allowable = 0.60 * Fy * 090 (per G2) Stress Ratio Load Comb.: +1.40D Loading Pu : Axial .. Design Plate Height Design Plate Width 0.144 ksi 19.440ksi 0.007 Shear Stress OK 0.953k 14.000 in 14.000 in Will be different from entry if partial bearing used. Al : Plate Area.. 196.000 inA2 A2: Support Area . 900.000 inA2 A2/A1 2.000 Distance for Moment Calculation m" 4.350 in n " 4.350 in X 0.000 inA2 Lambda .. 0.000 n' 0.070 in n' Lambda 0.000 in L = max(m, n, n") 4.350 in Load Comb. : +1.20D+0 50Lr+1.60L+1.60H Loading Pu: Axial 0.817 k Mu: Moment........ 10.032 k-ft Eccentricity 147.313 in Al : Plate Area 196.000 inA2 A2 : Support Area 900.000 inA2 A2IA1 2.000 Calculate plate moment from beadnq . . ' m4.350 in 'A" : Bearing Length 0.464 in Mpl : Plate Moment 0.248 k-in Shear Stress N: Actual 0.144 ksi Fv: Allowable 19.440 ksi Stress Ratio . 0.007 Mu : Max. Moment fb : Max. Bending Stress Fb : Allowable : Fy' Phi Stress Ratio , fu : Max. Plate Bearing Stress .... Fp : Allowable : 2.976 k-in 31.744 ksi 32.400 ksi 0.980 Bending Stress OK 3.060 ksi 3.060 ksi min( 0.85rc'sgrt(A2/A1), 1.7* f c)*Phi Stress Ratio Tension in each Bolt Allowable Bolt Tension Stress Ratio Bearing Stresses Fp : Allowable fu : Max. Bearing Pressu Stress Ratio Plate Bending Stresses Mmax=Fu*LA2/2 fb : Actual Fb : Allowable .... Stress Ratio Shear Stress N: Actual .. Fv : Allowable Stress Ratio 1.000 Bearing Stress 0K 4.557 0.000 0.000 Tension Stress 0K - Axial Load Only, No Moment 3.060 ksi 0.005 ksi 0.002 0.046 k-in 0.327 ksi 32.400 ksi 0.010 0.000 ksi 0.000 ksi 0.000 Axial Load + Moment, Ecc. > L/2 Calculate plate moment from bolt tension .. . Tension per Bolt 4.557 k Tension : Allowable 0.000 k Stress Ratio 0.000 Dist from Bolt to Col. Edge Effective Bolt Width for Bending Plate Moment from Bolt Tension 3.100 in 12.400 in 2.278 k-in Bearing Stresses Fp : Allowable 3.060 ksi fu : Max. Bearing Pressu ( set equal to Fp) Stress Ratio 1.000 Plate Bending Stresses Mmax fb : Actual Fb : Allowable Stress Ratio 2.976 k-in 31.744 ksi 32.400 ksi 0.980 kora Sanders, SE omLL Nan Title : Dsgnr: Project Desc.: Project Notes : Job # Printed 5 JAN 2010, 11:37AM Steel Base PlateDesign''' Description : 314"x14" sq base plate for 12 ftx 12 ft Load Comb.: +1.20D+1.60Lr+0.50L Loading Pu: Axial 0.817 k Mu: Moment........ 3.135 k-ft Eccentricity.. 46.035 in Al : Plate Area 196.000 inA2 A2 : Support Area 900.000 inA2 J A21A1 2.000 Calculate plate moment from bearing .. . 4.350 in "A": Bearing Length 0.156 in Mpl : Plate Moment 0.085 k-in Shear Stress fv:Actual 0.144 ksi Fv: Allowable 19.440 ksi Stress Ratio 0.007 File: cistructwestdata12200-229912259 Hoag12259 hoag ec6 NERCnI C INC. Ve[ 6.0221, N 1b894 License Owner STRUCTURES WEST Axial Load + Moment, Ecc. > L/2 Calculate plate moment from bolt tension .. . Tension per Bolt 1.258 k Tension : Allowable 0.000 k Stress Ratio 0.000 Dist. from Bolt to Cot Edge Effective Bolt Width for Bending Plate Moment from Bolt Tension 3.100 in 12.400 in 0.629 k-in Bearinq Stresses Fp : Allowable 3.060 ksi fu : Max. Bearing Pressu ( set equal to Fp ) Stress Ratio 1.000 Plate Bending Stresses Mmax 1.023 k-in fb :Actual 10.914 ksi Fb : Allowable 32.400 ksi Stress Ratio 0.337 Page 1 of 9 �0 2� Anchor Calculations Anchor Designer for ACI 318 (Version 4.2.0.2) Job Name : Hoag 12x12 ft Awning 1) Input Calculation Method : ACI 318 Appendix D For Uncracked Concrete Calculation Type : Analysis a) Layout Anchor : 5/8" Heavy Hex Bolt Number of Anchors : 4 Steel Grade: F1554 GR. 36 Embedment Depth : 24 in Built-up Grout Pads : No s 4 ANCHORS 'Nuo IS POSITIVE FOR TENSION AND NEGATIVE FOR COMPRESSION..... • INDICATES CENTER OF FOUR CORNER ANC8ORS Anchor Layout Dimensions : cx1 : 11 in cx2 : 11 in cs,1 : 11 in cy2 : 11 in bx1:1.5in bx2:1.5in by�:1.5in bye : 1.5 in sx1 : 12 in sy1 : 12 in Date/Time : 1/5/2010 11:52:37 AM about:blank 1/5/2010 b) Base Material Concrete : Normal weight Cracked Concrete : No Condition : B tension and shear Thickness, h : 36 in Supplementary edge reinforcement : No c) Factored Loads Load factor source : ACI 318 Section 9.2 Nua : 681 lb Vuay : 0 lb Muy : 0 Ib*ft ex : 0 in ey : 0 in Moderate/high seismic risk or intermediate/high design category : No Apply entire shear load at front row for breakout : No d) Anchor Parameters Anchor Model = HB62 do = 0.625 in Category = N/A hef = 23.375 in hmin = 24.75 in cac = 35.0625 in cmin = 3.75 in smin = 3.75 in Ductile = Yes 2) Tension Force on Each Individual Anchor Anchor #1 Nuai = 181.16 lb Anchor #2 Nua2 = 181.16 lb Anchor #3 Nua3 = 459.13 lb Anchor #4 Nua4 = 459.13 lb Sum of Anchor Tension ENua = 1280.58 lb ax = 0.00 in ay = 1.03 in e'Nx = 0.00 in e'Ny = 2.60 in 3) Shear Force on Each Individual Anchor Page 2 of 9 C12g fc : 2500.0 psi To': 1.40 yliFP : 1381.3 psi Vuax : 627 lb Mux : 627 lb*ft about:blank 1/5/2010 Page 3 of 9 C Sq Resultant shear forces in each anchor: Anchor #1 Vuai = 156.75 lb (Vuaix = 156.75 lb , Vuaiy = 0.00 lb ) Anchor #2 Vua2 = 156.75 lb (Vua2x = 156.75 lb , Vua2y = 0.00 lb ) Anchor #3 Vua3 = 156.75 lb (Vua3x = 156.75 lb , Vua3y = 0.00 lb ) Anchor #4 Vua4 = 156.75 lb (Vuaax = 156.75 lb , Vua4y = 0.00 lb ) Sum of Anchor Shear EVuax = 627.00 lb, EVuay = 0.00 lb e'vx = 0.00 in e'vy = 0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.1] Nsa = nAsefuta [Eq. D-3) Number of anchors acting in tension, n = 4 Nsa = 13100 lb (for each individual anchor) = 0.75 [D.4.4] ONsa = 9825.00 lb (for each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.2] Ncbg = ANc/ANcoPec,Nted,NWc,NWcp,NNb [Eq. D-5] Number of influencing edges = 4 hef (adjusted for edges per D.5.2.3) = 7.333 in ANco = 484.00 in2 [Eq. D-6] ANc = 1156.00 in2 `1 ec,Nx = 1.0000 [Eq. D-9] `Fec,Ny = 0.8085 [Eq. D-9] 'ec,N = 0.8085 (Combination of x-axis & y-axis eccentricity factors.) Ped,N = 1.0000 [Eq. D-10 or D-11] `Pc,N = 1.2500 [Sec. D.5.2.6] `Pcp,N = 1.0000 [Eq. D-12 or D-13] Nb = kc lf f' c hef1.5 = 23830.51 lb [Eq. D-7] kc = 24 [Sec. D.5.2.6] Ncbg = 57525.04 lb [Eq. D-5] = 0.70 [D.4.4] (1)Ncbg = 40267.53 lb (for the anchor group) 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] about:blank 1/5/2010 Page 4 of 9 Np = BAbrgf 'c [Eq. D-15] Abrg = 0.6710 in2 Npn = `Yc,PNp [Eq. D-14] Y'c p = 1.4 [D.5.3.6] Npn = 18788.00 lb 4) = 0.70 [D.4.4] ( Npn = 13151.60 lb (for each individual anchor) C 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge, cal < 0.4hef. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] Vsa = n0.6Asefuta [Eq. D-20] Vsa = 7865.00 lb (for each individual anchor) = 0.65 [D.4.4] $ Vsa = 5112.25 lb (for each individual anchor) 9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2] Case 1: Anchor(s) closest to edge checked against sum of anchor shear loads at the edge In x-direction... Vcbgx = Avcx/Avcoxtec,VWed,VPc,VVbx [Eq. D-22] cal = 11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] Tec,V = 1.0000 [Eq. D-26] `I ed,V = 0.9000 [Eq. D-27 or D-28] ;,V = 1.4000 [Sec. D.6.2.7] Vbx = 7(1e/do)o.2 do fc(ca1)1.5 [Eq. D 24] 1e=5.00in Vbx = 15300.83 lb 19863.26 lb [Eq. D-22] Vcbgx = = 0.70 $Vcbgx = 13904.28 lb (for the anchor group) about:blank 1/5/2010 Page 5 of 9 In y-direction... c Vcbgy = vcy/Avcoytec,V ed,V`f c,vVby [Eq. D-22] cal = 11.00 in Avcy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] Pec,V = 1.0000 [Eq. D-26] ed,v = 0.9000 [Eq. D-27 or D-28] `Pc,V = 1.4000 [Sec. D.6.2.7] Vby = 7(1e/do)0.2 do fc(ca1)1.5 [Eq. D-24] le = 5.00 in Vby = 15300.83 lb Vcbgy = 19863.26 lb [Eq. D-22] (I) = 0.70 Vcbgy = 13904.28 lb (for the anchor group) Case 2: Anchor(s) furthest from edge checked against total shear load In x-direction... Vcbgx = Avcx/AvcaxtPec,VtPedVtPc,VVbx [Eq. D-22] cap = 23.00 in Avcx = 1173.00 in2 Ave= = 2380.50 in2 [Eq. D-23] Tec,V = 1.0000 [Eq. D-26] Ped,V = 0.7957 [Eq. D-27 or D-28] `Pc,V = 1.4000 [Sec. D.6.2.7] Vbx = 70e/do)02 _! do fc(ca1)1.5 [Eq. D-24] le = 5.00 in V Vbx = 46261.30 lb Vcbgx = 25392.12 lb [Eq. D-22] = 0.70 17774.48 lb (for the entire anchor group) �Vcbgx = In y-direction... Vcbgy = Avcy/Avcoygjec,V'Ped,VWc,VVby [Eq. D-22] cal = 23.00 in about:blank 1/5/2010 Page 6 of 9 C qz Avcy = 1173.00 in2 Avcoy = 2380.50 in2 [Eq. D-23] `Pec,v = 1.0000 [Eq. D-26] WedV = 0.7957 [Eq. D-27 or D-28] Tc,v = 1.4000 [Sec. D.6.2.7] Vby = 70e/do)0.2 doh' pc(ca1)1.5 [Eq. D-24] le = 5.00 in Vby = 46261.30 lb Vcbgy = 25392.12 lb [Eq. D-22] = 0.70 Vcbgy = 17774.48 lb (for the entire anchor group) Case 3: Anchor(s) closest to edge checked for parallel to edge condition Check anchors at cx1 edge Vcbgx = Avcx/AvcoxWec,VWed,VIPc,VVbx [Eq. D-22] cal = 11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] `Ped,V = 1.0000 [Sec. D.6.2.1(c)] `Yc V = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/do)o.2 do fc(ca1)1.5 [Eq. D-24] le = 5.00 in Vbx = 15300.83 lb 22070.29 lb [Eq. D-22] Vcbgx = = 2 * Vcbgx [Sec. D.6.2.1(c)] Vcbgy = 44140.59 lb Vcbgy = 0.70 Vcbgy = 30898.41 lb (for the anchor group) Check anchors at cy1 edge = ' nvcy/Avcoy`Pec,v`Ped,v`Pc VVby [Eq. D-22] Vcbgy cal = 11.00 in about:blank 1/5/2010 Page 7 of 9 Avcy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] Ped,V = 1.0000 [Sec. D.6.2.1(c)] To/ = 1.4000 [Sec. D.6.2.7] Vby = 70e/d0)0.2,4 dog% fc(ca1)1.5 [Eq. D-24] le = 5.00 in Vby = 15300.83 lb Vcbgy = 22070.29 lb [Eq. D-22] Vcbgx = 2 * Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 44140.59 lb = 0.70 +Vcbgx = 30898.41 lb (for the anchor group) Check anchors at cx2 edge Vcbgx = Avcx/AvcoxTec,Vted,VkPc,VVbx [Eq. D-22] cal=11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. 0-23] 'Pec,V = 1.0000 [Eq. D-26] Ped,V = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1(c)] `Pc,V = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/do)0.2 ,f doV fc(ca1)1.5 [Eq. D-24] le = 5.00 in Vbx = 15300.83 lb Vcbgx = 22070.29 lb [Eq. D-22] Vcbgy = 2* Vcbgx [Sec. D.6.2.1(c)] Vcbgy = 44140.59 lb = 0.70 $Vcbgy = 30898.41 lb (for the anchor group) Check anchors at cy2 edge Avcy/Avcay`Pec, Ped,V`Pc,VVby [Eq. D-22] Vcbgy about:blank 1/5/2010 Page 8 of 9 cal = 11.00 in Aycy = 561.00 in2 '°4cay = 544.50 in2 [Eq. D-23] Tec,V = 1.0000 [Eq. D-26] ed,V = 1.0000 [Sec. D.6.2.1(c)] tc,v = 1.4000 [Sec. D.6.2.7] Vby = 7(1e/d0)0.211 do fc(ca1)1.5 [Eq. D-24] le = 5.00 in Vby = 15300.83 lb Vcbgy = 22070.29 lb [Eq. D-22] Vcbgx = 2 *Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 44140.59 lb = 0.70 (Vcbgx = 30898.41 lb (for the anchor group) 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.3] Vcpg = kcpNcbg [Eq. D-30] kcp = 2 [Sec. D.6.3.1 ] eNx = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) eNy = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) tec,Nx = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) N ec,Ny = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) ec,N' = 1.0000 (Combination of x-axis & y-axis eccentricity factors) (ANca/ANc)(Wec,N'Tec,N)Ncbg Ncbg Ncbg = 57525.04 lb (from Section (5) of calculations) ANc = 1156.00 in2 (from Section (5) of calculations) ANca = 1156.00 in2 (considering all anchors) `1'ec,N = 0.8085 (from Section(5) of calculations) Ncbg = 71146.88 lb (considering all anchors) Vcpg = 142293.76 lb = 0.70 [D.4.4] $Vcpg = 99605.63 lb (for the anchor group) 11) Check Demand/Capacity Ratios [Sec. D.7] about:blank 1/5/2010 Page 9 of 9 Tension - Steel : 0.0467 - Breakout : 0.0318 - Pullout : 0.0349 - Sideface Blowout : N/A Shear - Steel : 0.0307 - Breakout (case 1) : 0.0225 - Breakout (case 2) : 0.0353 - Breakout (case 3):0.0101 - Pryout : 0.0063 V.Max(0.04) a 0.2 and T.Max(0.05) <= 1.0 [Sec D.7.1] interaction check: PASS Use 5/8" diameter F1554 GR. 36 Heavy Hex Bolt anchor(s) with 24 in. embedment about:blank 1/5/2010 Structures West 26'x13' Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: 85 MPH, EXPOSURE C qh=0.00256KhKztKdV^21 = Kh 0.85 Kzt 1.00 0-15 FEET Kd 0.85 0-15 FEET V 85.00 85 MPH I 1.00 13.36 psf p=qh*G*Cn = 13.63 psf G = 0.85 Cn = 1.20 ht, ft FG d, ft dia WIND LOADING ON ELEVATION: col ft'g roof 1/5/2010 ,t Pager tltc 2259 Hoag AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 15.50 2.00 13.63 422.55 10.00 4225.49 Column 0.50 10.00 13.63 68.15 5.00 340.77 FOOTING 0.00 0.00 13.63 0.00 0.00 0.00 H RESULTANT ARM = M/LOAD TOTAL = ASSUMPTIONS: SOILS: CLASS 3 MATERIAL PER IBC TABLE NO.1804.2 SOIL BEARING= 1500 LATERAL BEARING = 250 LBS/SQ.FT/FT. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 490.70 9.31 CALCULATE FOOTING DEPTH (d) PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP Wind Load: Tension Load P= 490.70 LBS P= 300.00 LBS h = 9.31 FT. h = 10.00 FT. S = 250.00 #/FTA2/FT. OF DEPTH S = 250.00 #/FT^2/FT. OF DEPTH b = 3.00 FT. b = 3.00 FT. A=2.34P/Stb= 2 A= 2.34P/S1b = 0.936 d = 0.5A (1+(4.36h/A))A1/2) = 4.78 FT d = 0.5A (1+(4.36h/A))A1/2) = 3.70 FT fc = fy = 2500 psi 60000 psi Column Design: 6" Diameter Column M = Pxh = 4566.26 Ft-lbs Sreq'd = (M x 12)/( Fy x 1.33) Fy = Sreq'd = 1.71 inA3 Delta max = L/180 = 0.67 in Ireq'd = (M*hA2)/(3*E*Delta )_ 36000 psi 11.78 inA4 USE 6" DIAMTER PC STANDARD Fv=36ksi Ixx=26.5 in^4; Sxx = 7.99 in^3 4566.26 Scott". Sanders, SE nw� Title : Dsgnr: Project Desc.: Project Notes : Job # Printed: 5 JAN 2010. 10:55AM Steel Column Description : 6" Diameter Column Design for 26 General Information Steel Section Name : Analysis Method Steel Stress Grade Fy : Steel Yield E : Elastic Bending Modulus Load Combination Applied Loads x 13 ft Sail Pipe6STD 2006 IBC & ASCE 7-05 A-36, Carbon Steel, Fy = 36 ksi 36.0 ksi 29,000.0 ksi Allowable Stress Column self weight included : 190.0 lbs * Dead Load Factor AXIAL LOADS .. . Axial Load at 10.0 ft, Xecc = 4.000in, W =1.20 k BENDING LOADS... Lat. Point Load at 10.0 ft creating Mx-x, W = 0.6540 k DESIGN SUMMARY Bending & Shear Check Results PASS Max, Axial+Bending Stress Ratio = Load Combination Location of max.above base At maximum location values are .. Pu : Axial Pn / Omega : Allowable Mu-x : Applied Mn-x / Omega : Allowable Mu-y : Applied Mn-y l Omega : Allowable PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base At maximum location values are... Vu : Applied Vn / Omega : Allowable Load Combination Results Load Combination Ella; 6slructwestp4a122,.p0229912259 Hoag 12259 hoag ec6 ENERCALC,, INC.1983-2098,Ver 6.0221,"N16994 License Owner - STRUCTURES WEST Code Ref : 2006 IBC, AISC Manual 13th Edition Overall Column Height 10.0 ft Top & Bottom Fixity Top Free, Bottom Fixed Brace condition for deflection (buckling) along columns : X-X (width) axis : Unbraced Length forX-X Axis buckling =10ff, K = 2.1 Y-Y (depth) axis :Unbraced Length for Y-Y Axis buckling = 10 ft, K = 2.1 Service loads entered. Load Factors will be applied for calculations. 0.3764 : 1 +D+W+H 0.0 ft 1.390 k 58.245 k 6.540 k-ft 19.042 k-ft 0.40 k-ft 19.042 k-ft 0.01937 :1 +D+W+H 0.0 ft 0.6540 k 33.758 k Maximum Axial + Bendino Stress Ratios Stress Ratio Status Location Maximum SERVICE Load Reactions.. Top along X-X 0.0 k Bottom along X-X 0.0 k Top along Y-Y 0.0 k Bottom along Y-Y 0.6540 k Maximum SERVICE Load Deflections... Along Y-Y -0.4877 in at for load combination :W Only Along X-X -0.04467 in at for load combination :W Only Maximum Shear Ratios Stress Ratio Status +D+L+H +D+Lr+H +0+W+H +D+0.750 Lr+0.750 L+0.750 W+H +D+0.750 L+0.7505+0.750 W+H +0.6DD+W+H Maximum Reactions - Unfactored Load Combination 0.003 PASS 0.00 ft 0.003 PASS 0.00 ft 0.376 PASS 0.00 ft 0.283 PASS 0.00 ft 0.283 PASS 0.00 ft 0.376 PASS 0.00 ft X-X Axis Reaction @ Base @ Top Location 10.0ft above base 10.0ft above base 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.019 PASS 0.00 ft 0.015 PASS 0.00 ft 0.015 PASS 0.00 ft 0.019 PASS 0.00 ft Note: Only non -zero reactions are listed. Y-Y Axis Reaction @ Base @ Top W Only Maximum Deflections for Load Combinations UnfactoreciLoads" Load Combination Max. X-X Deflection Distance W Only 0.654 Max. Y-Y Deflection Distance Steel Section Properties. : -0.0441 in Pipe6STD 9.933 ft -0.483 in 9.933 ft Scott). Sanders, SE Title : Dsgnr: Project Desc.: Job # Project Notes : Printed: 5 JAN 2010, 10:55AM Steel Column tfc: # , KW-06000560 '! Description : 6" Diameter Column Design for 26 ft x 13 ft Sail Steel Section Properties : Pipe6STD Depth = 6.625 in I xx Web Thick Flange Width Flange Thick Area Weight Ycg 0.000 in S rx 6.625 in R xx 0.280 in 26.50 in"4 7.99 inA3 2.250 in 5.220 inA2 I yy = 26.500 inA4 19.000 plf S yy = 7.990 inA3 R yy = 2.250 in 0.000 in J tructNrestdata12200229917259Moagl2259hoagec6 NERbAlt INC 19834008 Ver: 6:022t„ N:16994 License: Owner: STRUCTURES EST 52.900 inA4 Loads are total entered value. Mow do not reflect absolute direction. Job # Scott. Sanders, SE Steel Base Plate Des Lic. #'<: KW-00000560 1 Description : al4'x14" sq base plate for 26 ft x 13 ft General Information Title : Dsgnr: Project Desc.: Project Notes : Printed: 5 JAN 2010, 11:39AM Filerctstruchvest data12200-22992259 Hoagk2259 hoag ec6 ENERCALC, INC 1983"2008, Ver.6.0221, 11:16994'1 License Owner ::STRUCTURES; WEST Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker Material Properties AISC Design Method Load Resistance Factor Design Steel Plate Fy = 36.0 ksi Concrete Support fc 3.0 ksi Assumed Bearing Area :Full Bearing Column & Plate Column Properties Steel Section : Pipe6STD Depth 6.625 in Width 6.625 in Flange Thickness 0.261 in Web Thickness 0 in Plate Dimensions N : Length 14.0 in B:Width 14.0 in Thickness 1.0 in Column assumed welded to base plate. Applied Loads P•Y D : Dead Load 1.390 k L: Live 0.0k Lr: Roof Live ......... 0.0 k S: Snow 0.0 k W:Wind 0.0k E: Earthquake 0.0 k H: Lateral Earth .. 0.0 k P "= Gravity load, '+' sign is downward. Area Ixx lyy (13 c : LRFD Resistance Factor Allowable Bearing Fp per J8 5.22 inA2 26.5 inA4 26.5 inA4 Support Dimensions Support width along "X' Length along'Z' V-Z M-X 0.6540 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k "+" Moments create higher soil pressure at+Z edge. "+' Shears push plate towards +Z edge. 30.0 in 30.0 in Anchor Bolts Anchor Bolt or Rod Description 1 1 /2' Max of Tension or Pullout Capacity Shear Capacity Edge distance: bolt to plate Number of Bolts in each Row Number of Bolt Rows 0.0 k 0.0 k 1.250 in 2.0 1.0 0.0 k-ft 6.540 k-ft 0.0 k-ft 0.0 k-ft 0.0 k-ft 0.0 k-ft 0.0 k-ft 0.60 5.10 ksi Scott]. ;'enders, SE Title : Dsgnr: Project Desc.: Project Notes : Job # co Printed: 5 JAN 2010,11:39AM le: c1.seuctwest data\2200-229912259 Hoagt2259hoagec6, `r ENERCALC, INC ,1983 2008 Vert 0 221, N: 6994:a{ license Owner : STRUCTURES WEST.. Description : 3/4"x14" sq base plate for 26 ft x 13 ft GOVERNING DESIGN LOAD CASE SUMMARY Plate Design Summary Design Method Governing Load Combination Governing Load Case Type Design Plate Size Pu : Axial Mu : Moment Load Resistance Factor Design +1.20D+0.50Lr+1.60 L+1.60H Axial + Moment, L/2 < Eccentricity, Tension on Br 1' 2" x 11-2" x 1" fv: Actual ... Fv : Allowable = 0.60 * Fy * 090 (per G2) Stress Ratio Load Comb.: +1.40D Loading Pu : Axial ......... Design Plate Height Design Plate Width WM be different from entry [partial bearing used. Al : Plate Area A2: Support Area A2/A1 Distance for Moment Calculation ' m " n" X 1.668 k 10.464 k-ft 0.150 ksi 19.440ksi 0.008 Shear Stress OK 1.946 k 14.000 in 14.000 in 196.000 in^2 900.000 inn2 2,000 4.350 in 4.350 in 0.000 inn2 Lambda 0.000 n' 0.130 in n"Lambda 0.000 in L = max(m, n, n") 4.350 in Load Comb. : +1.20D+0.50Lr+1.60L+1.60H Loading Pu : Axial Mu: Moment........ Eccentricity Al : Plate Area A2 : Support Area 1.668 k 10.464 k-ft 75.281 in 196.000 inA2 900.000 in02 ./ A2IA1 2.000 Calculate plate moment from bearing .. . "m" 4.350 in 'A" :Bearing Length 0.501 in Mpl : Plate Moment 0.267 k-in Shear Stress fv: Actual 0.150 ksi Fv : Allowable 19.440 ksi Stress Ratio 0.008 Mu : Max. Moment fb : Max. Bending Stress Fb : Allowable : Fy*Phi Stress Ratio 0.594 Bending Stress OK fu : Max. Plate Bearing Stress .... 3.060 ksi Fp: Allowable: 3.060 ksi min( 0.85*fc*sgrt(A21A1), 1.7*tc)Phi Stress Ratio Tension in each Bolt Allowable Bolt Tension .. Stress Ratio Bearing Stresses Fp : Allowable fu : Max. Bearing Pressu Stress Ratio Plate Bending Stresses Mmax= Fu*LA2/2 fb : Actual Fb : Allowable Stress Ratio Shear Stress fv : Actual Fv : Allowable Stress Ratio 3.209 k-in 19.256 ksi 32.400 ksi 1.000 Bearing Stress OK 4.537 0.000 0.000 Tension Stress OK Axial Load Only, No Moment 3.060 ksi 0.010 ksi 0.003 0.094 k-in 0.376 ksi 32.400 ksi 0.012 0.000 ksi 0.000 ksi 0.000 Axial Load + Moment, Ecc. > L/2 Calculate plate moment from bolt tension .. . Tension per Bolt 4.537 k Tension : Allowable 0.000 k Stress Ratio 0.000 Dist from Bolt to Col. Edge Effective Bolt Width for Bending Plate Moment from Bolt Tension .. 3.100 in 12.400 in 2.268 k-in Bearing Stresses Fp : Allowable 3.060 ksi fu : Max. Bearing Pressu ( set equal to Fp ) Stress Ratio 1.000 Plate Bending Stresses Mmax fb : Actual Fb : Allowable Stress Ratio 3.209 k-in 19.256 ksi 32.400 ksi 0.594 ScottJ. Sanders, SE Title : Dsgnr: Project Desc.: Project Notes : Job # e,6 Printed: 5 JAN 2010, 11:39ANI Steel Base PlateDesign Description : 3l4"x14' sq base plate for 26 ft x 13 ft Load Comb.: +1.200+1.60Lr+0.50L c lskuctwest data12200 2299X2259 Hoag12259 haag ec6 `e. ENERCALC.. INa t983-20ge, veh 6 b 221. K i6994 ,. License Owner': STRUCTURES WEST Axial Load + Moment, Ecc. > L/2 Loading Calculate plate moment from bolt tension ... Pu : Axial ......... 1.668 k Tension per Bolt Mu: Moment........ 3.270 k-ft Tension : Allowable Eccentricity 23.525 in Stress Ratio Al : Plate Area 196.000 inA2 A2 : Support Area 900.000 inA2 Dist. from Bolt to Col. Edge J A2/A1 ... 2.000 Effective Bolt Width for Bending Plate Moment from Bolt Tension Calculate plate moment from bearing ... 'm" 'A" : Bearing Length Mpl : Plate Moment Shear Stress fv : Actual Fir : Allowable Stress Ratio 0.150 ksi 19.440 ksi 0.008 1.090 k 0.000 k 0.000 3.100 in 12.400 in 0.545 k-in 4.350 in Bearing Stresses 0.180 in Fp : Allowable 3.060 ksi 0.098 k-in fu : Max. Bearing Pressu (set equal to Fp ) Stress Ratio 1.000 Plate Bending Stresses Mmax fe : Actual Fb: Allowable Stress Ratio 1.179 k-in 7.075 ksi 32.400 ksi 0.218 Scott]. Sanders, SE • Title : Dsgnr: Project Desc.: Project Notes : Job # C 6 Printed: 5 JAN 2010. 11:41AM Steel Base Plate Design Lie # i KW-0600056i) Description : 1° thick x 14" sq base plate for 26 ft x 13 ft General information t7e cishuawestdatat2299229912289 Hoagt2259`hoag.ec6, ENERCALC, INCi 1983-2008'Ver 60.221„N:16994_ License Owner;: -STRUCTURES: WEST Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker Material Properties AISC Design Method Load Resistance Factor Design Steel Plate Fy = 36.0 ksi Concrete Support fc = 3.0 ksi Assumed Bearing Area :Full Bearing 1 Column & Plate Column Properties Steel Section Pipe6STD Depth 6.625 in Width 6.625 in Flange Thickness 0.261 in Web Thickness in Plate Dimensions N : Length 14.0 in B : Width 14.0 in Thickness 1.0 in Column assumed welded to base plate. Applied Loads Area Ixx IYY : LRFD Resistance Factor Allowable Bearing Fp per JB 5.22 inA2 26.5 inA4 26.5 inA4 Support Dimensions Support width along'X" Length along P-Y D : Dead Load 1.390 k L:Live k Lr: Roof Live......... k S: Snow k W: Wind k E : Earthquake k H: Lateral Earth k V-Z M-X 30.0 in 30.0 in 0.6540 k k-ft k 6.540 k-ft k k-ft k k-ft k k-ft k k-ft k k-ft ' P"= Gravity load, '+' sign is downward. "+" Moments create higher soil pressure at+Z edge. '+' Shears push plate towards +Z edge. Anchor Bolts Anchor Bolt or Rod Description 1 1/2" Max of Tension or Pullout Capacity Shear Capacity Edge distance : bolt to plate Number of Bolts in each Row Number of Bolt Rows k k 1.250 in 2.0 1.0 0.60 5.10 ksi ,ScottJ. Sanders, SE Steel Base Plate Design Description : 1" thick x 14" sq base plate for 26 ft x 13 ft GOVERNING DESIGN LOAD CASE SUMMARY Plate Design Summary Design Method Governing Load Combination Governing Load Case Type Design Plate Size Pu : Axial Mu : Moment Title : Dsgnr. Project Desc.: Project Notes : Load Resistance Factor Design +1.20D-+0.50 Lr+1.60L+1.60H Axial + Moment, L12 < Eccentricity, Tension on & 1'-2"x1'-2"x1" 1.668 k 10.464 k-ft Actual Fv : Allowable = 0.60 " Fy " 090 (per G2) Stress Ratio Load Comb.: +1.40D Loading Pu : Axial Design Plate Height Design Plate Width Will be different from entry iipari!al bearing used. Al : Plate Area A2: Support Area - / A2/A1 Distance for Moment Calculation "m" n" Lambda n' n' * Lambda 0.150 ksi 19.440 ksi 0.008 Shear Stress 0K 1.946 k 14.000 in 14.000 in 196.000 inA2 900.000 inA2 2.000 4.350 in 4.350 in 0.000 inA2 0.000 0.130 in 0.000 in L = max(m, n, n") . 4.350 in Load Comb.: +1.20D+0"50Lr+1.60L+1.60H Loading Pu : Axial Mu : Moment........ Eccentricity Al : Plate Area ......... A2: Support Area Calculate plate moment from bearing m... 'A" : Bearing Length Mpl : Plate Moment Shear Stress fv: Actual 0.150 ksi Fy : Allowable 19.440 ksi Stress Ratio . 0.008 1.668 k 10.464 k-ft 75.281 in 196.000 inA2 900.000 inA2 2.000 4.350 in 0.501 in 0.267 k-in Job # Printed: 5 JAN 2010,11,41Md fie ckimctwestdala\2200-2299t2259 Boeg122S9 hoot.ec6F,' ENER C.Itt 19832008,Ver. 6.6.221, N:16994.. License Owner STRUCTURES WEST Mu : Max. Moment tb : Max. Bending Stress Fb : Allowable : Fy"Phi Stress Ratio .. 0.594 fu : Max. Plate Bearing Stress .... Fp : Allowable : 3.209 k-in 19.256 ksi 32.400 ksi Bending Stress OK 3.060 ksi 3.060 ksi min( 0.851 c*sgrt(A2/A 1), 1.7* f c)Phi Stress Ratio Tension in each Bolt .... Allowable Bolt Tension Stress Ratio Bearing Stresses Fp : Allowable fu : Max. Bearing Pressu Stress Ratio Plate Bending Stresses Mmax = Fu ` LA2 / 2 fb : Actual Fb : Allowable Stress Ratio Shear Stress fv : Actual Fv: Allowable Stress Ratio 1.000 Bearing Stress OK 4.537 0.000 0.000 Tension Stress OK Axial Load Only, No Moment 3.060 ksi 0.010 ksi 0.003 0.094 k-in 0.376 ksi 32.400 ksi 0.012 0.000 ksi 0.000 ksi 0.000 Axial Load + Moment, Ecc. > U2 Calculate plate moment from bolt tension .. . Tension per Bolt 4.537 k Tension :Allowable 0.000 k Stress Ratio 0.000 Dist. from Bolt to Col. Edge Effective Bolt Width for Bending Plate Moment from Bolt Tension 3.100 in 12.400 in 2.268 k-in Bearing Stresses Fp : Allowable 3.060 ksi fu : Max. Bearing Pressu (set equal to Fp) Stress Ratio 1.000 Plate Bending Stresses Mmax fb : Actual Fb: Allowable Stress Ratio 3.209 k-in 19.256 ksi 32.400 ksi 0.594 Scott/. 4anders, SE Steel Base Plate Desi KW-06000560 _. Description : 1"thick x 14" sq base plate for 26 ftx 13 ft Load Comb.: +1.2OD+1.6OLr+O.5OL Loading Pu : Axial 1.668 k Mu : Moment 3.270 k-ft Eccentricity 23.525 in Al : Plate Area 196.000 inA2 A2: Support Area 900.000 inA2 A21A1 2.000 Calculate plate moment from bearing .. . "A" : Bearing Length Mpl : Plate Moment Shear Stress Fv : Allowable Stress Ratio Title : Dsgnr: Project Desc.: Project Notes : Job IS Printed: 5 JAN 2010,17 41AM File; clstractwestdata12200-2299\2250 Hoag122591aag.ec6 ENERCALC,, 1NC. 1983-2008.Ye- 60221, t416994 License Owner: STRUCTURES WEST Axial Load + Moment, Ecc. > U2 Calculate plate moment from bolt tension .. . Tension per Bolt Tension : Allowable Stress Ratio Dist. from Bolt to Col. Edge Effective Bolt Width for Bending Plate Moment from Bolt Tension ....... 1.090 k 0.000 k 0.000 3.100 in 12.400 in 0.545 k-in 4.350 in Bearing Stresses 0.180 in Fp : Allowable 3.060 ksi 0.098 k-in fu : Max. Bearing Pressu (set equal to Fp ) Stress Ratio 1.000 0.150 ksi 19.440 ksi 0.008 Plate Bending Stresses Mmax fb : Actual Fb : Allowable Stress Ratio 1.179 k-in 7.075 ksi 32.400 ksi 0.218 Page 1 of 9 Cys Anchor Calculations Anchor Designer for ACI 318 (Version 4.2.0.2) Job Name : Hoag 26x13 ft Awning 1) Input Calculation Method : ACI 318 Appendix D For Uncracked Concrete Calculation Type : Analysis a) Layout Anchor : 3/4" Heavy Hex Bolt Steel Grade: F1554 GR. 36 Built-up Grout Pads : No sx1 Cyl 4ANCHO_ FOR TENSION AND.NEGAT1VE FOR GIPRESS1ON: OF FOUR CORNER AN Date/Time : 1/5/2010 11:53:55 AM Number of Anchors : 4 Embedment Depth : 24 in Anchor Layout Dimensions : cxl : 11 in cx2 : 11 in cy� : 11 in cy2 : 11 in bx1:1.5in bx2 : 1.5 in byt:1.5in bye : 1.5 in sx� : 12 in syi : 12 in about:blank 1/5/2010 Page 2 of 9 b) Base Material Concrete : Normal weight Cracked Concrete : No Condition : B tension and shear Thickness, h : 36 in Supplementary edge reinforcement : No c) Factored Loads Load factor source : ACI 318 Section 9.2 Nua : 1390 lb Vuay : 0 lb Muy : 0 Ib*ft ex:0in ey:0in Moderate/high seismic risk or intermediate/high design category : No Apply entire shear load at front row for breakout : No d) Anchor Parameters Anchor Model = HB75 do = 0.75 in Category = N/A hef = 23.25 in hmin = 24.75 in cac = 34.875 in cmin = 4.5 in smin = 4.5 in Ductile = Yes 2) Tension Force on Each Individual Anchor Anchor #1 Nuai = 417.76 lb Anchor #2 Nua2 = 417.76 lb Anchor #3 Nua3 = 3386.29 lb Anchor #4 Nua4 = 3386.29 lb Sum of Anchor Tension ENua = 7608.09 lb ax = 0.00 in ay = 1.22 in e'Nx = 0.00 in e'Ny = 4.68 in 3) Shear Force on Each Individual Anchor C�� fc : 2500.0 psi c,V . 1.40 +Fp : 1381.3 psi Vuax : 654 lb Mux : 6540 lb*ft about:blank 1/5/2010 Page 3 of 9 Resultant shear forces in each anchor: Anchor #1 Vua1 = 163.50 lb (Vua1x = 163.50 lb , Vua1y = 0.00 lb ) Anchor #2 Vua2 = 163.50 lb (Vua2x = 163.50 lb , Vua2y = 0.00 lb ) Anchor #3 Vua3 = 163.50 lb (Vua3x = 163.50 lb , Vua3y = 0.00 lb ) Anchor #4 Vua4 = 163.50 lb (Vua4x = 163.50 lb , Vua4y = 0.00 lb ) Sum of Anchor Shear EVuax = 654.00 lb, EVuay = 0.00 lb e'vx=0.00in e'vy = 0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.1] Nsa = nAsefuta [Eq. D-3] Number of anchors acting in tension, n = 4 Nsa = 19370 lb (for each individual anchor) = 0.75 [D.4.4] Nsa = 14527.50 lb (for each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.2] Ncbg = `�NcIANco f ec,N`Ped,N�'c,N`icp,NNb [Eq. D-5] Number of influencing edges = 4 hef (adjusted for edges per D.5.2.3) = 7.333 in ANco = 484.00 in2 [Eq. D-6] ANc = 1156.00 in2 ec,Nx = 1.0000 [Eq. D-9] `l'ec,Ny = 0.7014 [Eq. D-9] We" = 0.7014 (Combination of x-axis & y-axis eccentricity factors.) f ed,N = 1.0000 [Eq. D-10 or D-11] Y c N = 1.2500 [Sec. D.5.2.6] `I`cp,N = 1.0000 [Eq. D-12 or D-13] Nb = kc'sf f' c hef1.5 = 23830.51 lb [Eq. D-71 kc = 24 [Sec. D.5.2.6] Ncbg = 49904.79 lb [Eq. D-5] 4) = 0.70 [D.4.4] (I)Ncbg = 34933.35 lb (for the anchor group) 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] about:blank 1/5/2010 Page 4 of 9 Np = 8Abrgf'c [Eq. D-15] = 0.9110 in2 Abrg Npn ='Pc,PNp [Eq. D-14] LPc p = 1.4 [D.5.3.6] Npn = 25508.00 lb = 0.70 [D.4.4] Npn = 17855.60 lb (for each individual anchor) 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge, cal < 0.4hef. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] Vsa = n0.6Asefuta [Eq. D-20] Vsa = 11625.00 lb (for each individual anchor) = 0.65 [D.4.4] Vsa = 7556.25 lb (for each individual anchor) 9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2] Case 1: Anchor(s) closest to edge checked against sum of anchor shear loads at the edge In x-direction... Vcbgx = Avcx/AvcoxWec,Vted,VTc,VVbx [Eq. D-22] cal = 11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] 1 ec,V = 1.0000 [Eq. D-26] `Ped,V = 0.9000 [Eq. D-27 or D-28] c,v = 1.4000 [Sec. D.6.2.7] Vbx = 70e/do)0.2\I dof c(ca-l) 1e=6.00in Vbx = 16761.22 lb Vcbgx = 21759.11 lb [Eq. D-22] = 0.70 4)Vcbgx = 15231.38 lb (for the anchor group) 5 [Eq. D-24] about:blank 1/5/2010 Page 5 of 9 p � 9 In y-direction... Vcbgy = Avcy/AvcoyWec,Vted VWc VVby [Eq. D-22] cal = 11.00 in Avcy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] `1'ec,V = 1.0000 [Eq. D-26] `Ped,v = 0.9000 [Eq. D-27 or D-28] tc,V = 1.4000 [Sec. D.6.2.7] Vby = 7(1e/do)o.2.4 do 4 f c(oa1)1.5 [Eq. D-24] le = 6.00 in Vby = 16761.22 lb Vcbgy = 21759.11 lb [Eq. D-22] = 0.70 O Vcbgy = 15231.38 lb (for the anchor group) Case 2: Anchor(s) furthest from edge checked against total shear load In x-direction... Vcbgx = Avcx/AvcoxPec,VWedVTc,VVbx [Eq. D-22] cal = 23.00 in Avcx = 1173.00 in2 Avcox = 2380.50 in2 [Eq. D-23] Tec,V = 1.0000 [Eq. D-261 ed,V = 0.7957 [Eq. D-27 or D-28] `Pe,v = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/do)0.2 dot fc(ca1)1.5 [Eq. D 24) le = 6.00 in Vbx = 50676.71 lb Vcbgx = 27815.67 lb [Eq. D-22] = 0.70 Vcbgx = 19470.97 lb (for the entire anchor group) In y-direction... Vcbgy = Avcy/AvcoyWec,V`Yed,V`Pc,vVby [Eq. D-22] cal = 23.00 in about:blank 1/5/2010 Page 6 of 9 fr° Avcy = 1173.00 in2 ' vcoy = 2380.50 in2 [Eq. D-23] `1'ec,v = 1.0000 [Eq. D-26] f ed,V = 0.7957 [Eq. D-27 or D-28] Y c,V = 1.4000 [Sec. D.6.2.7] Vby = 7(1e/do)0.2. dog fc(ca1)1.5 [Eq. D-24] le = 6.00 in Vby = 50676.71 lb Vcbgy = 27815.67 lb [Eq. D-22] =0.70 Vcbgy = 19470.97 lb (for the entire anchor group) Case 3: Anchor(s) closest to edge checked for parallel to edge condition Check anchors at cx1 edge Vcbgx = Avcx/Avcox'Pec,VWed,V`Pc,VVbx [Eq. D-22] =11.00 in cal Avcx = 561.00 in2 Aycox = 544.50 in2 [Eq. D-23] Tec,v = 1.0000 [Eq. D-26] Y ed,V = 1.0000 [Sec. D.6.2.1(c)] Tot = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/do)0.2 j do Al f c(ca1)1.5 [Eq. D-24] le = 6.00 in Vbx = 16761.22 lb 24176.79 lb [Eq. D-22] Vcbgx = Vcbgy = 2 * Vcbgx [Sec. D.6.2.1(c)] Vcbgy = 48353.59 lb (I) = 0.70 $Vcbgy = 33847.51 lb (for the anchor group) Check anchors at cy1 edge Vcbgy = Avcy/AvcoyPec,VWed,V 1 c,VVby [Eq. D-22] cal = 11.00 in about:blank 1/5/2010 Page 7 of 9 Avcy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] '1`ec,V = 1.0000 [Eq. D-26] Ped,V = 1.0000 [Sec. D.6.2.1(c)] `Pc v = 1.4000 [Sec. D.6.2.7] Vby = 7(le/do)0.2 1] dolt fc(ca1) 5 [Eq. D-24] le = 6.00 in Vby = 16761.22 lb Vcbgy = 24176.79 lb [Eq. D-22] Vcbgx = 2 * Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 48353.59 lb = 0.70 4)Vcbgx = 33847.51 lb (for the anchor group) Check anchors at cx2 edge Vcbgx = Avcx/Avcox'1'ec,v1 ed,1 cal = 11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] '1`ec,V = 1.0000 [Eq. D-26] 1 ed,V = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1(c)] Wc,V = 1.4000 [Sec. D.6.2.7] Vbx = 70e/do)0.2V do.," fo(ca1)1.5 [Eq. D-24] le = 6.00 in Vbx = 16761.22 lb Vcbgx = 24176.79 lb [Eq. D-22] Vcbgy = 2 * Vcbgx [Sec. D.6.2.1(c)] Vcbgy = 48353.59 lb = 0.70 4)Vcbgy = 33847.51 lb (for the anchor group) Check anchors at cy2 edge Vcbgy = Avcy/Avcoyll'ec,V`I'ed,Vtc,VVby [Eq. D-22] x [Eq. D-221 about:blank 1/5/2010 Page 8 of 9 e (pZ cal = 11.00 in Aycy = 561.00 in2 Aycoy = 544.50 in2 [Eq. D-23] `1'ec,V = 1.0000 [Eq. D-26] `Ped,V = 1.0000 [Sec. D.6.2.1(c)] To = 1.4000 [Sec. D.6.2.7] Vby 70e/do)0.2.,J do,/ fc(ca1)1.5 [Eq. D-24] le = 6.00 in Vby = 16761.22 lb Vcbgy = 24176.79 lb [Eq. D-22] Vcbgx = 2 * Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 48353.59 lb $ = 0.70 (IVcbgx = 33847.51 lb (for the anchor group) 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.3] Vcpg = kcpNcbg [Eq. D-30] kcp = 2 [Sec. D.6.3.1] eNx = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) eNy = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) Pec,Nx = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) `t ec,Ny = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) Pec,N' = 1.0000 (Combination of x-axis & y-axis eccentricity factors) Ncbg = (ANca/ANc)N'ec,N'N'ec,N)Ncbg Ncbg = 49904.79 lb (from Section (5) of calculations) ANc = 1156.00 in2 (from Section (5) of calculations) ANca = 1156.00 in2 (considering all anchors) Tec,N = 0.7014 (from Section(5) of calculations) Ncbg = 71146.88 lb (considering all anchors) Vcpg = 142293.76 lb = 0.70 [D.4.4] +Vcpg = 99605.63 lb (for the anchor group) 11) Check Demand/Capacity Ratios [Sec. D.7] about:blank 1/5/2010 Page 9pof 9 fr Tension - Steel : 0.2331 - Breakout : 0.2178 - Pullout : 0.1896 - Sideface Blowout : N/A Shear - Steel : 0.0216 - Breakout (case 1) : 0.0215 - Breakout (case 2) : 0.0336 - Breakout (case 3):0.0097 - Pryout : 0.0066 V.Max(0.03) <= 0.2 and T.Max(0.23) <= 1.0 [Sec D.7.1] Interaction check: PASS Use 3/4" diameter F1554 GR. 36 Heavy Hex Bolt anchor(s) with 24 in. embedment about:blank 1/5/2010 .Structures West Tributary Load from 13'x14' and 16'x14' Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: 85 MPH, EXPOSURE C qh=0.00256KhKztKdV^21 = Kh Kzt Kd V p=qh*G*Cn 0.85 1.00 0-15 FEET 0.85 0-15 FEET 85.00 85 MPH 1.00 13.36 psf = 13.63 psf G = 0.85 Cn = 1.20 ht, ft FG d, ft WIND LOADING ON ELEVATION: col roof 1/5/2010 ti Page:E C (.01 2259 Hoag AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 15.50 2.00 13.63 422.55 10.00 4225.49 Column 0.50 10.00 13.63 68.15 5.00 340.77 FOOTING 0.00 0.00 13.63 0.00 0.00 0.00 H RESULTANT ARM = M/LOAD TOTAL = ASSUMPTIONS: SOILS: CLASS 3 MATERIAL PER IBC TABLE NO.1804.2 SOIL BEARING= 1500 LATERAL BEARING = 250 LBS/SQ.FT/FT. OF DEPTH CALCULATE FOOTING DEPTH (d) Wind Load: P= 490.70 LBS h = 9.31 FT. S = 250.00 #/FTA2/FT b = 3.00 FT. A=2.34P/S1b= 2 d = 0.5A (1+(4.36h/A))^1/2) = fc = fy = 2500 psi 60000 psi USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 PER IBC 1805.7.2.1 NON -CONSTRAINED AT TOP Tension Load P= 300.00 h = 10.00 OF DEPTH S = 250.00 b = 3.00 FT. A= 2.34P/S1b = 0.936 4.78 FT d = 0.5A (1+(4.36h/A))^1/2) = Column Design: 6" Diameter Column M = Pxh = 4566.26 Ft-lbs Sreq'd = (M x 12)/( Fy x 1.33) Fy = Sreq'd = 1.71 in^3 Delta max = L/180 = 0.67 in Ireq'd = (M*h^2)/(3*E*Delta )= 36000 psi 490.70 9.31 LBS FT. #/FTA2/FT. OF DEPTH 3.70 FT 11.78 inA4 USE 6" DIAMTER PC STANDARD Fy=36ksi Ixx=26.5 in^4; Sxx = 7.99 in^3 4566.26 ScottJ. Sanders, SE Title : Dsgnr: Project Desc.: Project Notes : Job # ens Printed: 5 JAN 2010,11:07AM Steel Colutrt. Lrc.. #. KW-06000560 Description : 6" Diameter Column Des General Information Steel Section Name : Analysis Method : Steel Stress Grade Fy :Steel Yield E: Elastic Bending Modulus Load Combination : n for 16X14+13X14ft Sail Pipe6STD 2006 IBC & ASCE 7-05 A-36, Carbon Steel, Fy = 36 ksi 36.0 ksi 29,000.0 ksi Allowable Stress Applied Loads Column self weight included . 190.0 lbs * Dead Load Factor AXIAL LOADS... Axial Load at 10.0 ft, Xecc = 4.000in, W = 1.40 k BENDING LOADS... Lat. Point Load at 10.0 ft creating Mx-x, W = 0.7340 k DESIGN SUMMARY tfe: cisfrucNrestdala12200-229912259 koag12259tioag ec6 ENERCALC, WC. 1963-20008, Ver.60.221, N 16994- License Owner :STRUCTURES WEST! Code Ref : 2006 IBC, AISC Manual 13th Edition Overall Column Height 10.0 ft Top & Bottom Fixity Top Free, Bottom Fixed Brace condition for deflection (buckling) along columns : X-X (width) axis : Unbraced Length for X-X Axis buckling = 10ft, K = 2.1 Y-Y (depth) axis :Unbraced Length for Y-Y Axis buckling = 10 ft, K = 2.1 Service loads entered. Load Factors will be applied for calculations. Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = Load Combination Location of max.above base At maximum location values are ... Pu : Axial Pn I Omega : Allowable Mu-x : Applied Mn-x / Omega : Allowable Mu-y : Applied Mn-y I Omega : Allowable PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base At maximum location values are .. . Vu : Applied Vn / Omega :Allowable Load Combination Results. Load Combination 0.4236 : 1 +D+W+H 0.0 ft 1.590 k 58.245 k 7.340 k-ft 19.042 k-ft 0.4667 k-ft 19.042 k-ft 0.02174 :1 +D+W+H 0.0 ft 0.7340 k 33.758 k Maximum Axial + Bending Stress Ratios Stress Ratio Status Location Maximum SERVICE Load Reactions .. Top along X-X Bottom along X-X Top along Y-Y Bottom along Y-Y 0.0 k 0.0 k 0.0 k 0.7340 k Maximum SERVICE Load Deflections ... Along Y-Y -0.5474 in at for load combination :W Only Along X-X -0.05211 in at for load combination :W Only Maximum Shear Ratios Stress Ratio Status Location +D+L+H +D+Lr+H +D+W+H +D+0.750Lr+0.750L+0.750W+H +D+0.750L+0.7505+0.750W+H +0.60D+W+H Maximum Reactions - Unfactored Load Combination 0.003 0.003 0.424 0.318 0.318 0.423 PASS PASS PASS PASS PASS PASS X-X Axis Reaction @ Base @Top 0.00 ft 0.00 ft 0.00 ft 0.00 ft 0.00 ft 0.00 ft 0.000 0.000 0.022 0.016 0.016 0.022 Y-Y Axis Reaction @ Base @ Top PASS PASS PASS PASS PASS PASS 10.0ft above base 10.0ft above base 0.00 ft 0.00 ft 0.00 ft 0.00 ft 0.00 ft 0.00 ft Note: Only non -zero reactions are listed. W Only MaximumDeflections for Load Combinations Unfactored Loads Load Combination Max. X-X Deflection Distance M 0.734 Y-Y Deflection Distance W Only Steel Section Properties; -0.0514 in Pipe6STD' 9.933 ft -0.542 in 9.933 ft ScottJ. Sanders, SE .~Ye. yMntan Title : Dsgnr: Project Desc.: Project Notes : Job # 61 Printed: 5 JAN 2010, 11:O7AA1 S#eel Column Lie. # : KW-06000560 Description : 6" Diameter Column Design for 16X14+13X14ft Sail Steel Section Properties : Pipe6STD Depth = 6.625 in Ixx Web Thick = 0.000 in S xx Flange Width = 6.625 in R xx Flange Thick = 0.280 in Area = 5.220 inA2 lyy Weight = 19.000 plf S yy R yy Yog 0.000 in 26.50 inA4 7.99 inA3 2.250 in 26.500 inA4 7.990 inA3 2.250 in J shUct.0642204.294t225@ Hoag12259 hoag ec6. ENERCALC,JNC. 1983-2006Ver6A:221 N"16994— License Owner; STRUCTURES WEST 52.900 ing Loads are total entered value. Arrows do not reflect absolute direction. Scott]. Sanders, SE youlAbonpositi Steel Base Plate Design Lrc-#:.KW-06000560 ". Description ck x14" sq base plate for 16x14 +13x14 Genera! Information Tide : Dsgnr: Project Desc.: Project Notes Job# I(e? Printed: 5JAN2e13, 1:18PM Filevc:lst cflvestdata\2200229912259Hoagk2Z59.trcagec6 • .ENERCALC tNC. 1983-2008 Ver6922t,_'N1B994_-. cense Owner;: STRUCTURES. WEST Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker Material Properties AISC Design Method Load Resistance Factor Design Steel Plate Fy = 36.0 ksi ConcreteSupportfc = 3.0 ksi Assumed Bearing Area :Full Bearing Column & Plate Column Properties Steel Section : Pipe6STD Depth 6.625 in Width 6.625 in Flange Thickness 0.261 in Web Thickness in Plate Dimensions N : Length 14.0 in B: Width 14.0 in Thickness 1.0 in Column assumed welded to base plate. Area lxx lyy c : LRFD Resistance Factor Allowable Bearing Fp per J8 5.22 inA2 inA4 inA4 Support Dimensions Support width along "X" Length along "Z' 30.0 in 30.0 in Applied Loads P-Y D : Dead Load 1.590 k L: Live....... k Lr : Roof Live k S: Snow k W: Wind k E : Earthquake k H : Lateral Earth k P"= Gravity load, "+" sign is downward. V-Z M-X 0.7340 k k-ft k 7.40 k-ft k k-ft k k-ft k k-ft k k-ft k k-ft "+" Moments create higher soil pressure at+Z edge. "+" Shears push plate towards+Z edge. Anchor Bolts Anchor Bolt or Rod Description 1 1 /2" Max of Tension or Pullout Capacity Shear Capacity Edge distance : bolt to plate Number of Bolts in each Row Number of Bolt Rows.. k k 125r0 in 2.0 1.0 0.60 5.10 ksi Scott" sanders, S£ Title : Dsgnr: Project Desc.: Project Notes : Job # Ctig Printed: 5 JAN 2010, 1:18P61 ;Steel Base Plate Desi Description : Vthick x14" sq base plate for 16x14 + 13x14 File. c.IstrKtwestdata'2200-229912259Hoagl2259 hoag ec6..1 ENERCA1A lN6r't983-20 Ver. 60221, N16994 License Owner : STRUCTURES WEST GOVERNING DESIGN LOAD CASE SUMMARY Plate Design Summary Design Method Governing Load Combination Governing Load Case Type Design Plate Size Pu : Axial Mu : Moment Load Resistance Factor Design +1.20D+0.50Lr+1.60L+1.60H Axial + Moment, L/2 < Eccentricity, Tension on Bc 1'-2" x 1' 2" x 1" 1.908 k 11.840 k-ft fv : Actual Fv : Allowable = 0.60 ` Fy * 090 (per G2) Stress Ratio Load Comb.: +1.40D Loading Pu : Axial Design Plate Height Design Plate Width 0.169 ksi 19.440ksi 0.009 Shear Stress OK 2.226 k 14.000 in 14.000 in Will be different from entry if partial bearing used. Al : Plate Area 196.000 inA2 A2: Support Area A21A1 Distance for Moment Calculation " m ' 4.350 in " n " 4.350 in X 0.000 inA2 Lambda 0.000 n' 0.150 in n" Lambda .. 0.000 in L = max(m, n, n") .. 4.350 in 900.000 inA2 2.000 Load Comb. : +1.20D+0.50Lr+1,60L+1.60H Loading Pu : Axial Mu : Moment Eccentricity Al :Plate Area A2 : Support Area A21A1 2.000 Calculate plate moment from bearing .. . "A":Bearing Length Mpl : Plate Moment Shear Stress fv : Actual Fv: Allowable Stress Ratio 1.908 k 11.840 k-ft 74.465 in 196.000 in"2 900.000 inA2 4.350 in 0.569 in 0.302 k-in 0.169 ksi 19.440 ksi 0.009 Mu : Max. Moment Po : Max. Bending Stress ............... Fb : Allowable : Fy*Phi Stress Ratio .. 0.671 Bending Stress OK fu: Max. Plate Bearing Stress 3.060 ksi Fp : Allowable : 3.060 ksi 3.621 k-in 21.726 ksi 32.400 ksi min( 0.85'Pc'sgrt(A2/A1), 1.7*fc)*Phi Stress Ratio 1.000 Bearing Stress OK Tension in each Bok Allowable Bolt Tension Stress Ratio Bearing Stresses Fp : Allowable fu : Max. Bearing Pressu Stress Ratio Plate Bending Stresses Mmax = Fu *LA2/2 fb : Actual Fb : Allowable Stress Ratio Shear Stress fv: Actual Fv: Allowable Stress Ratio 5.139 0.000 0.000 Tension Stress OK Axial Load Only, No Moment 3.060 ksi 0.011 ksi 0.004 0.107 k-in 0.430 ksi 32.400 ksi 0.013 0.000 ksi 0.000 ksi 0.000 Axial Load + Moment Ecc. > L/2 Calculate plate moment from bolt tension ... Tension per Bolt 5.139 k Tension : Allowable 0.000 k Stress Ratio 0.000 Dist. from Bolt to Col. Edge Effective Bolt Width for Bending Plate Moment from Bolt Tension 3.100 in 12.400 in 2.569 k-in Bearing Stresses Fp: Allowable ... 3.060 ksi fu : Max. Bearing Pressu (set equal to Fp) Stress Ratio 1.000 Plate Bending Stresses Mmax fb :Actual Fb: Allowable Stress Ratio 3.621 k-in 21.726 ksi 32.400 ksi 0.671 Job # Scott . Sanders, SE Title : Dsgnr: Project Desc.: Project Notes : Pdn@d: 5 JAN 2010, HARM Steel Base Plate Desig Lic. # KW-06000560 Description : 1 "thick x14" sq base plate for 16x14 +13x14 0 File: clstructwestpata122 2299V2259 fbagt2259.5oa9ecu `- ENERCALCO, INC. ts83 e1ter er.0022t N:16994% License Owner: STRUCTURES WEST:. Load Comb. : +1.20D+1.60 Lr+0.50L Axial Load + Moment, Ecc. > L/2 Loading Pu : Axial ......... Mu: Moment........ Eccentricity Al : Plate Area ......... A2: Support Area J A2/A1 Calculate plate moment from bearing ... 1.908 k 3.700 k-ft 23.270 in 196.000 inA2 900.000 inA2 2.000 Calculate plate moment from bolt tension .. . Tension per Bolt Tension : Allowable Stress Ratio Dist. from Bolt to Col. Edge Effective Bolt Width for Bending Plate Moment from Bolt Tension 1.229 k 0.000 k 0.000 3.100 in 12.400 in 0.615 k-in 4.350 in Bearing Stresses "A": Bearing Length 0.204 in Fp : Allowable 3.060 ksi Mpl: Plate Moment 0.111 k-in fu : Max. Bearing Pressu (set equal to Fp) Shear Stress Stress Ratio 1.000 N: Actual... 0.169 ksi Fv: Allowable 19.440 ksi Plate Bending Stresses Mmax 1.335 k-in Stress Ratio 0.009 tb : Actual 8.013 ksi Fb : Allowable 32.400 ksi Stress Ratio 0.247 Page 1 of 9 Anchor Calculations Anchor Designer for ACI 318 (Version 4.2.0.2) Job Name : Hoag 16x14+13x14 Awning 1) Input Calculation Method : ACI 318 Appendix D For Uncracked Concrete Calculation Type : Analysis a) Layout Anchor : 3/4" Heavy Hex Bolt Number of Anchors : 4 Steel Grade: F1554 GR. 36 Embedment Depth : 24 in Built-up Grout Pads : No sx1 HORS NSION AND NEGATIVE FOR. SSION. ATESCENTER OF FOUR CORNER FNO}iORS Anchor Layout Dimensions : cxl : 11 in cx2 : 1• 1 in cyl : 11 in cy2 11 in 1.5 in bx2 : 1.5 in byt : 1• .5 in bye : 1.5 in sxt : 1• 2 in syt : 12 in 70 Date/Time : 1/5/2010 11:55:04 AM about:blank 1/5/2010 Page 2 of 9 b) Base Material Concrete : Normal weight Cracked Concrete : No Condition : B tension and shear Thickness, h : 36 in Supplementary edge reinforcement : No c) Factored Loads Load factor source : ACI 318 Section 9.2 Nua : 1590 lb Vuay : 0 lb MUy : 0 lb*ft ex:0in e:0in Moderate/high seismic risk or intermediate/high design category : No Apply entire shear load at front row for breakout : No d) Anchor Parameters Anchor Model = HB75 do = 0.75 in Category = N/A her = 23.25 in hmin = 24.75 in can = 34.875 in cmin = 4.5 in smin = 4.5 in Ductile = Yes 2) Tension Force on Each Individual Anchor Anchor #1 Nuai = 476.35 lb Anchor #2 Nua2 = 476.35 lb Anchor #3 Nua3 = 3808.01 lb Anchor #4 Nua4 = 3808.01 lb Sum of Anchor Tension ENua = 8568.71 lb ax = 0.00 in ay = 1.22 in e'Nx = 0.00 in e'Ny=4.67in 3) Shear Force on Each Individual Anchor fn : 2500.0 psi Tc,V : 1.40 (I)Fp : 1381.3 psi Vuax : 734 lb Mux : 7340 lb*ft about:blank 1/5/2010 Page 3 of 9 C�Z Resultant shear forces in each anchor: Anchor #1 Vuai = 183.50 lb (Vuaix = 183.50 lb , Vua1y = 0.00 lb ) Anchor #2 Vua2 = 183.50 lb (Vua2x = 183.50 lb , Vua2y = 0.00 lb ) Anchor #3 Vua3 = 183.50 lb (Vua3x = 183.50 lb , Vua3y = 0.00 lb ) Anchor #4 Vua4 = 183.50 lb (Vua4x = 183.50 lb , Vua4y = 0.00 lb ) Sum of Anchor Shear EVuax = 734.00 Ib, EVuay = 0.00 lb e'vx = 0.00 in e'vy = 0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.1] Nsa = nAsefuta [Eq. D-3] Number of anchors acting in tension, n = 4 Nsa = 19370 lb (for each individual anchor) = 0.75 [D.4.4] +Nsa = 14527.50 lb (for each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.2] = ANc/ANco ec,N ed,N c,N cp,NNb [Eq. D-5j Ncbg Number of influencing edges = 4 hef (adjusted for edges per D.5.2.3) = 7.333 in ANco = 484.00 in2 [Eq. D-6] ANc = 1156.00 in2 `1 ec,Nx = 1.0000 [Eq. D-9] '1 eC Ny = 0.7022 [Eq. D-9] `1'ec,N = 0.7022 (Combination of x-axis & y-axis eccentricity factors.) ed,N = 1.0000 [Eq. D-10 or D-11] `Pc,N = 1.2500 [Sec. D.5.2.6] `Pcp,N = 1.0000 [Eq. D-12 or D-13] Nb = kct% f' c hef1.5 = 23830.51 lb [Eq. D-7] kc = 24 [Sec. D.5.2.6] Ncbg = 49956.96 lb [Eq. D-5] = 0.70 [D.4.4] Ncbg = 34969.87 lb (for the anchor group) 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] about:blank 1/5/2010 Page 4 of 9 Np = 8Abrgf'c [Eq. D-15] =0.9110in2 Abrg Nen = Y'c,pNP [Eq. D-14] Y'c P = 1.4 [D.5.3.6] Nen = 25508.00 lb = 0.70 [D.4.4] 4) Nen = 17855.60 lb (for each individual anchor) 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge, cat < 0.4hef. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] Vsa = n0.6Asefuta [Eq. D-20] Vsa = 11625.00 lb (for each individual anchor) = 0.65 [D.4.4] Vsa = 7556.25 lb (for each individual anchor) 9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2] Case 1: Anchor(s) closest to edge checked against sum of anchor shear loads at the edge In x-direction... Vcbgx = Avcx/AvcoxWec,Vg'ed,VWc,VVbx [Eq. D-22] cal = 11.00 in '4vcx = 561.00 in2 Avcex = 544.50 in2 [Eq. D-23] `ec,V = 1.0000 [Eq. D-26] ed,V = 0.9000 [Eq. D-27 or D-28] To/ = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/do)0.2 / de fc(ca1)1.5 [Eq. D-24] 1e=6.00in Vbx = 16761.22 lb Vcbgx = 21759.11 lb [Eq. D-22] = 0.70 15231.38 lb (for the anchor group) $Vcbgx = about:blank 1/5/2010 Page 5 of 9 0761 In y-direction... Vcbgy = Avcy/Avcoy`Pec,vWed,V`F`c,VVby [Eq. D-22] cal = 11.00 in Avcy = 561.00 in2 Away = 544.50 in2 [Eq. D-23] `I'ec,V = 1.0000 [Eq. D-26] `I'ed,v = 0.9000 [Eq. D-27 or D-281 Y'c,V = 1.4000 [Sec. D.6.2.7] Vby = 70e/do)o.2.4 do-4 cc(cal)1-5 [Eq. D-24] le = 6.00 in Vby = 16761.22 lb Vcbgy = 21759.11 lb [Eq. D-22] = 0.70 Vcbgy = 15231.38 lb (for the anchor group) Case 2: Anchor(s) furthest from edge checked against total shear load In x-direction... Vcbgx = Avcx/Avcox'Pec,V`Ped,vWc,VVbx [Eq. D-22] cal = 23.00 in Avcx = 1173.00 in2 Avcox = 2380.50 in2 [Eq. D-23] 11ec,v = 1.0000 [Eq. D-26] `Ped,v = 0.7957 [Eq. D-27 or D-28] Tc,V = 1.4000 [Sec. D.6.2.7] Vbx = 70e/do)0.2 ,J do _ ! fc(ca1) 1e=6.00in Y Vbx = 50676.71 lb Vcbgx = 27815.67 lb [Eq. D-22] = 0.70 +Vcbgx = 19470.97 lb (for the entire anchor group) In y-direction... Vcbgy = Avcy/AvcoyTec,V`I'ed,VTc,VVby [Eq. D-22] = 23.00 in cal 5 [Eq. D-24] about:blank 1/5/2010 Page 6 of 9 Avcy = 1173.00 in2 Avcoy = 2380.50 in2 [Eq. D-23] Wec,V = 1.0000 [Eq. D-26] `f`ed,V = 0.7957 [Eq. D-27 or D-28] ;iv = 1.4000 [Sec. D.6.2.7] Vby = 7(le/do)0.2 d0J fc(ca1)1.5 [Eq. D-24] le = 6.00 in Vby = 50676.71 lb Vcbgy = 27815.67 lb [Eq. D-22] = 0.70 Vcbgy = 19470.97 lb (for the entire anchor group) Case 3: Anchor(s) closest to edge checked for parallel to edge condition Check anchors at cx1 edge n Vcbgx = vcx/'4vcoxTec,Vilied,Vc, cal = 11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] ed,V = 1.0000 [Sec. D.6.2.1(c)] `Pc,V = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/do)o.24 do4 fc(ca1)1.5 [Eq. D-24] le = 6.00 in Vbx = 16761.22 lb Vcbgx = 24176.79 lb [Eq. D-22] Vcbgy = 2 *Vcbgx [Sec. D.6.2.1(c)] Vcbgy = 48353.59 lb = 0.70 SVcbgy = 33847.51 lb (for the anchor group) Check anchors at cyl edge Vcbgy = Avcy/AvcoyWec,V'ed,V`Pc,VVby [Eq. D-22] cal = 11.00 in x [Eq. D-22] about:blank 1/5/2010 Page 7 of 9 Avcy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] Wec,V = 1.0000 [Eq. D-26] Ted,V = 1.0000 [Sec. D.6.2.1(c)] Pc,v = 1.4000 [Sec. D.6.2.7] Vby = 7(le/do)0.2__! do fc(ca1)1.5 [Eq. D-24] le = 6.00 in Y Vby = 16761.22 lb Vcbgy = 24176.79 lb [Eq. D-22] Vcbgx = 2 * Vcbgy [Sec. D.6.2.1(c)] 48353.59 lb Vcbgx = = 0.70 Vcbgx = 33847.51 lb (for the anchor group) Check anchors at cx2 edge Vcbgx = Avcx/Avcox'Pec,V4fed,VPc,VVbx [Eq. D-22] cal = 11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] ed,V = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1(c)] ;iv = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/do)0.2„4 do'j fc(ca1)1.5 [Eq. D-24] le = 6.00 in Vbx = 16761.22 lb Vcbgx = 24176.79 lb [Eq. D-22] 2* Vcbgx [Sec. D.6.2.1(c)] Vcbgy = Vcbgy = 48353.59 lb = 0.70 33847.51 lb (for the anchor group) Vcbgy = Check anchors at cy2 edge Vcbgy = Avcy/AvcoyWec,VWed,VWc,vVby [Eq. D-22] about:blank 1/5/2010 Page 8 of 9 77 cal = 11.00 in Avcy = 561.00 in2 ' Vcoy = 544.50 in2 [Eq. D-23] `l'ec,v = 1.0000 [Eq. D-26] `f ed,V = 1.0000 [Sec. D.6.2.1(c)] Tot = 1.4000 [Sec. D.6.2.7] Vby = 7(1e/do)0.2 _ f do f c(ca1)1.5 [Eq. D-24] le = 6.00 in Vby = 16761.22 lb Vcbgy = 24176.79 lb [Eq. D-22] Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 2 Vcbgx = 48353.59 lb = 0.70 (1)Vcbgx = 33847.51 lb (for the anchor group) 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.3] Vcpg = kcpNcbg [Eq. D-30] kcp = 2 [Sec. D.6.3.1] eNx = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) eNy = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) `f ec,Nx = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) `Pec,Ny = N'ec,M = 1.0000 (Combination of x-axis & y-axis eccentricity factors) Ncbg = (ANca/ANc)(Wec,N 'ec,N)Ncbg Ncbg = 49956.96 lb (from Section (5) of calculations) ANc = 1156.00 in2 (from Section (5) of calculations) ANca = 1156.00 in2 (considering all anchors) `l'ec,N = 0.7022 (from Section(5) of calculations) Ncbg = 71146.88 lb (considering all anchors) Vcpg = 142293.76 lb = 0.70 [D.4.4] (IVcpg = 99605.63 lb (for the anchor group) 11) Check Demand/Capacity Ratios [Sec. D.7] about:blank 1/5/2010 Page 9 of 9 Tension - Steel : 0.2621 - Breakout : 0.2450 - Pullout : 0.2133 - Sideface Blowout : N/A Shear - Steel : 0.0243 - Breakout (case 1) : 0.0241 - Breakout (case 2) : 0.0377 - Breakout (case 3) : 0.0108 Pryout : 0.0074 V.Max(0.04) <= 0.2 and T.Max(0.26) <= 1.0 [Sec D.7.1] Interaction check: PASS Use 3/4" diameter F1554 GR. 36 Heavy Hex Bolt anchor(s) with 24 in. embedment cIs about:blank 1/5/2010 'Structures West Tributary Load from 12'x12' and 12'x12' Canopy 2006 IBC ASSUMPTIONS: WIND LOAD: 85 MPH, EXPOSURE C qh=0.00256KhKztKdVA21 = Kh Kzt Kd V p=qh*G*Cn 0.85 1.00 0-15 FEET 0.85 0-15 FEET 85.00 85 MPH 1.00 13.36 psf = 13.63 psf G = 0.85 Cn = 1.20 ht, ft FG d, ft dia WIND LOADING ON ELEVATION: col ft'g roof 1/5/2010 Pager egg 2259 Hoag AREA WIDTH HT WIND LOAD M ARM M FT FT PSF LBS FT FT-LBS Roof 12.00 2.00 13.63 327.14 10.00 3271.35 Column 0.50 10.00 13.63 68.15 5.00 340.77 FOOTING 0.00 0.00 13.63 0.00 0.00 0.00 H RESULTANT ARM = M/LOAD TOTAL = ASSUMPTIONS: SOILS: CLASS 3 MATERIAL PER IBC TABLE NO.1804.2 SOIL BEARING= 1500 LATERAL BEARING = 250 LBS/SQ.FT/FT. OF DEPTH USE TWO TIMES TABLE VALUES PER IBC 1804.3.1 CALCULATE FOOTING DEPTH (d) PER IBC 1805.7.2.1 Wind Load: P= 395.29 LBS h = 9.14 FT. S = 250.00 #/FT^2/FT. OF DEPTH b = 3.00 FT. A=2.34P/S1b= 1 d = 0.5A (1+(4.36h/A))"1/2) = 4.18 FT fc = fy = 2500 psi 60000 psi Column Design: 6" Diameter Column M = Pxh = 3612.116 Ft-lbs NON -CONSTRAINED AT TOP Tension Load P= 300.00 h = 10.00 S = 250.00 b = 3.00 A= 2.34P/S 1 b = d = 0.5A (1+(4.36h/A))^1/2) = Sreq'd = (M x 12)/( Fy x 1.33) Fy Sreq'd = 1.35 inA3 Delta max = L/180 = 0.67 in Ireq'd = (M*h^2)/(3*E*Delta )= 395.29 9.14 LBS FT. #/FTA2/FT. OF DEPTH FT. 0.936 3.70 FT 36000 psi 8.9861 in^4 USE 6" DIAMTER PC STANDARD Fy=36ksi Ixx=26.5 inA4; Sxx = 7.99 inA3 3612.12 ,ScottJ. Sanders, SE Title : Dsgnr: Project Desc.: Job # Project Notes : Printed: 5 JAN 2010,11.12AM Steel Column, Description : 6' Diameter Column Design for (2)12 ft x 12 ft Sail General Information Steel Section Name : Analysis Method : Steel Stress Grade Fy : Steel Yield E : Elastic Bending Modulus Load Combination : Pipe6STD 2006 IBC & ASCE 7-05 A-36, Carbon Steel, Fy = 36 ksi 36.0 ksi 29,000.0 ksi Allowable Stress Applied Loads Column self weight included : 190.0 lbs * Dead Load Factor AXIAL LOADS... Axial Load at 10.0 ft, Xecc = 4.000in, W = 1.0 k BENDING LOADS .. Lat. Point Load at 10.0 ft creating Mx-x, W = 1.260 k It DESIGN SUMMARY , - Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = Load Combination Location of max.above base At maximum location values are ... Pu : Axial Pn / Omega : Allowable Mu-x : Applied Mn-x / Omega : Allowable Mu-y : Applied Mn-y / Omega :Allowable PASS Maximum Shear Stress Ratio = Load Combination Location of max.above base At maximum location values are ... Vu : Applied Vn / Omega : Allowable Load Combination Res` ults Load Combination Fd lstNCMesf data12200 2299W59 Hoag12259 boated, ENERCALC, INC. f9E3200B,xten 6Ai21, N:16994 LicenseOwner'- STRUCTURES WEST Code Ref : 20061BC, AISC Manual 13th Edition Overall Column Height 10.0 ft Top & Bottom Fixity Top Free, Bottom Fixed Brace condition for deflection (buckling) along columns : X-X (width) axis : Unbraced Length for X-X Axis buckling = 10ft, K = 2.1 Y-Y (depth) axis :Unbraced Length for Y-Y Axis buckling = 10 ft, K = 2.1 Service loads entered. Load Factors will be applied for calculations. 0.6894 :1 +D+W+H 0.0 ft 1.190 k 58.245 k 12.60 k-ft 19.042 k-ft 0.3333 k-ft 19.042 k-ft 0.03732 :1 +D+W+H 0.0 ft 1.260 k 33.758 k Maximum Axial + Bending Stress Ratios Stress Ratio Status Location Maximum SERVICE Load Reactions .. Top along X-X 0.0 k Bottom along X-X 0.0 k Top along Y-Y 0.0 k Bottom along Y-Y 1.260 k Maximum SERVICE Load Deflections... Along Y-Y -0.9396 in at for load combination :W Only Along X-X -0.03722 in at for load combination :W Only Maximum Shear Ratios Stress Ratio Status Location 10.0ft above base 10.0ft above base +D+L+H +D+Lr+H +D+W+H +D+0.750Lr+0.750L+0.750 W+H +D+0.750L+0.7505+0.750W+H +0.60D+W+H y;,Maximum.Reactions - Unfactored Load Combination 0,003 PASS 0.00 ft 0.003 PASS 0-00 ft 0.689 PASS 0.00 ft 0.517 PASS 0.00 ft 0,517 PASS 0.00 ft 0.689 PASS 0.00 ft X-X Axis Reaction @ Base @ Top W Only Maximum Deflections for Load Combinations.`- Unfactored Loads 0.000 PASS 0.00 ft 0.000 PASS 0.00 ft 0.037 PASS 0.00 ft 0.028 PASS 0.00 ft 0.028 PASS 0.00 ft 0.037 PASS 0.00 ft Note: Only non -zero reactions are listed. Y-Y Axis Reaction @ Base @ Top 1.260 Load Combination Max. X-X Deflection Distance Max. Y-Y Deflection W Only -0.0367 in Steel Section Properties : . Pipe6STD 9.933 ft -0.930 in Distance 9.933 ft Job# ,ScottJ. Sanders, SE n�. Title : Dsgnr: Project Desc,: Project Notes : Printed'. 5 JAN 2010,11'12AM eel'Column Description : 6' Diameter Column Design for (2) 12 ft x 12 ft Sail Steel Section Properties Pipe6STD Depth = 6.625 in Izx Web Thick 0.000 in S xx Flange Width = 6.625 in R xx Flange Thick = 0.280 in Area = 5.220 inA2 I yy = 26.500 inAil Weight = 19.000 plf Syy = 7.990 inA3 R yy = 2.250 in Ycg 0.000 in 26.50 inA4 7.99 inA3 2.250 in J c:ktructwesdatat22047199r2259,Hoag@2,59 haagec6 ENERCA C;INC;1983-2009;yer.40221, N: 16994, License Owner: STRUCTURES WEST 52.900 inA4 Loads are total entered value. Arrows do not retied adsome direction. Job # Scott/. Sanders, SE Title Dsgnr: Project Desc.: Project Notes : C$Z Printed: 5 JAN 2010,11:42NA Ltc.:#: KW-06000560 '! Description 1/4" thick x14" sq base plate for 12x12+ 12x12 ft Genera! Information HE c]struciwestdatat2200-229912259 Hoagt22591mag ecfi ENERCALC, INC. 1983=2006, Ver. 6.0221 N.16994 '-. License Owner STRUCTURES WEST Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWol£ & Ricker Material Properties AISC Design Method Load Resistance Factor Design Steel Plate Fy 36.0 ksi ConcreteSupportfc 3.0 ksi Assumed Bearing Area :Full Bearing Column & Plate Column Properties Steel Section : Pipe6STD Depth Width Flange Thickness Web Thickness Plate Dimensions N : Length B : Width Thickness Column assumed 6.625 in 6.625 in 0.261 in Gin 14.0 in 14.0 in 1.250 in welded to base plate. Applied Loads Area Ixx lyy c : LRFD Resistance Factor Allowable Bearing Fp per J8 5 22 inA2 26.5 inA4 26.5 inA4 Support Dimensions Support width along 'X" Length along "Z' 30.0 in 30.0 in P-Y D : Dead Load ....... 1.190 k L :Live 0.0 k Lr: Roof Live 0.0 k S: Snow 0.0 k W: Wind 0.0k E : Earthquake 0.0 k 0.0 k H : Lateral Earth ..... " P " = Gravity load, "+" sign is downward V-Z M-X 0.0 k-ft 12.60 k-f! 0.0 k-ft 0.0 k-ft 0.0 k-ft 0.0 k-ft 0.0 k-ft "+" Moments create higher soil pressure at+2 edge. "+' Shears push plate towards +Z edge. Anchor Bolts Anchor Bolt or Rod Description Max of Tension or Pullout Capacity Shear Capadty Edge distance : bolt to plate Number of Bolts in each Row Number of Bolt Rows 11/2' 1.260 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k 1.250 in 2.0 1.0 0.60 5.10 ksi , Scott J. Sanders, SE Tide : Dsgnr: Project Desc.: Job # esti Project Notes : Printed: 5 JAN 2010,11:42M1 Steel Base Plate, Designit's Description : 1-1/4" thick x14' sq base plate for 12x12 + 12x12 ft le 9.1"structwn§t data12200-229912259 Hoag12259 haag ec6”.11 ,,ENER(ALG, INC. 1983-2008,'Ver e 0221, N169942 GOVERNING DESIGN LOAD CASE SUMMARY Plate Design Summary Design Method Governing Load Combination Goveming Load Case Type Design Plate Size Pu : Axial Mu : Moment Load Resistance Factor Design +1.20 D+0.50 L r+1.60 L+1.60 H Axial + Moment, L/2 < Eccentricity, Tension on B( 1'-2"x1'-2"x1-114" 1.428 k 20.160 k-ft fv : Actual Fv : Allowable = 0.60 ` Fy * 090 (per G2) Stress Ratio Load Comb. : +1.40D Loading Pu :Axial Design Plate Height Design Plate Width Will be different from entry if pastel bearing used. Al : Plate Area A2: Support Area J A2/A1 2.000 Distance for Moment Calculation "m" n" X Lambda .. n' n'* Lambda L = max(m, n, n") 4.350 in Load Comb.: +1.20D+0.50Lr+1.60L+1.60H Loading Pu : Axial 1.428 k Mu: Moment 20.160 k-ft Eccentricity ... 169.412 in Al : Plate Area 196.000 in"2 A2: Support Area 900.000 inA2 A2/A1 2.000 Calculate plate moment from bearing ... 0.290 ksi 19.440ksi 0.015 Shear Stress OK 'A' : Bearing Length Mpl : Plate Moment Shear Stress 1.666 k 14.000 in 14.000 in 196.000 in42 900.000 in"2 4.350 in 4.350 in 0.000 in"2 0.000 0.120 in 0.000 in 4,350 in 0.939 in 0.483 k-in fv : Actual 0.290 ksi Fv: Allowable 19.440 ksi Stress Ratio 0.015 Mu : Max. Moment fb : Max. Bending Stress Fb : Allowable : Fy"Phi Stress Ratio fu : Max. Plate Bearing Stress .... Fp : Allowable : 5.799 k-in 22.270 ksi 32.400 ksi 0.687 Bending Stress 0K 3.060 ksi 3.060 ksi min( 0.85*fc'sgrt(A2/A1), 1.7* fc)*Phi Stress Ratio Tension in each Bolt Allowable Bolt Tension Stress Ratio Bearing Stresses Fp : Allowable fu : Max. Bearing Pressu Stress Ratio Plate Bending Stresses Mmax = Fu *L"2 / 2 fb : Actual Fb : Allowable Stress Ratio Shear Stress fv : Actual Fv : Allowable Stress Ratio 1.000 Bearing Stress OK 9.342 0.000 0.000 Tension Stress OK Axial Load Only, No Moment 3.060 ksi 0.009 ksi 0.003 0.080 k-in 0.206 ksi 32.400 ksi 0.006 0.000 ksi 0.000 ksi 0.000 Axial Load + Moment, Ecc, > L/2 Calculate plate moment from bolt tension .. . Tension per Bolt 9.342 k Tension : Allowable 0.000 k Stress Ratio 0.000 Dist from Bolt to Cal. Edge Effective Bolt Width for Bending Plate Moment from Bolt Tension 3.100 in 12.400 in 4.671 k-in Bearing Stresses Fp: Allowable 3.060 ksi fu : Max. Bearing Pressu (set equal to Fp ) Stress Ratio 1.000 Plate Bending Stresses Mmax fb : Actual Fb : Allowable Stress Ratio 5.799 k-in 22.270 ksi 32.400 ksi 0.687 Scotty Sanders, SE Tide : Dsgnr: Project Desc.: Job # Cv! Project Notes : Printed: 5 JAN 2010. 1t:42AM Steel Base Plate Design Description : 1-1/4" thick x14" sq base plate for 12x12 +12x12 ft Load Comb. +1.20D+1.60Lr+0.50L -PIe. c1sfucwestdata1220-2299l2259 tr042259,toa.er&'.._. ENDSCALc INC. 19632200L.4ec 5 U.221, N;16994 License Owner : STRUCTURES WEST Axial Load + Moment, Ecc. > L/2 Loading Calculate plate moment from bolt tension .. . Pu : Axial 1.428 k Tension per Bolt .......................... Mu: Moment 6.300 k-ft Tension :Allowable Eccentricity 52.941 in Al : Plate Area 196.000 inA2 A2: Support Area 900.000 inA2 Dist. from Bolt to Cot. Edge 3.100 in J A2A1 2.000 Effective Bolt Width for Bending ..... 12.400 in Plate Moment from Bolt Tension 1.300 k-in Stress Ratio 2.600 k 0.000 k 0.000 Calculate plate moment from bearing .. . "m" 4.350in Bearing Stresses "A" : Beadng Length 0.309 in Fp : Allowable 3.060 Icsi Mpl : Plate Moment 0.168 k-in fu : Max. Bearing Pressu ( set equal to Fp) Shear Stress Stress Ratio 1.000 fv: Actual 0.290 ksi Plate Bending Stresses Fv: Allowable 19.440 ksi Mmax 2.010 k-in Stress Ratio 0.015 t : Actual 7.720 ksi Fb : Allowable 32.400 ksi Stress Ratio 0.238 Page 1 of 9 Anchor Calculations Anchor Designer for ACI 318 (Version 4.2.0.2) Job Name : Hoag (2) 12x12 Awning 1) Input Calculation Method : ACI 318 Appendix D For Uncracked Concrete Calculation Type : Analysis a) Layout Anchor : 3/4" Heavy Hex Bolt Number of Anchors : 4 Steel Grade: F1554 GR. 36 Embedment Depth : 24 in Built-up Grout Pads : No 'Nu. I 4ANCHORS FOR TENSION AND NEGATIVE FOR. COMPRESSION:. R OF FOUR EARNER ANCHORS Anchor Layout Dimensions : cxt : 11 in cx2 : 11 in cy�:11in cy2 : 11 in bx1 : 1.5 in bx2 : 1.5 in byi : 1.5 in bye : 1.5 in sx1 : 12 in syl : 12 in Date/Time : 1/5/2010 12:00:35 PM about:blank 1 /5/2010 Page 2 of 9 b) Base Material Concrete : Normal weight Cracked Concrete : No Condition : B tension and shear Thickness, h : 36 in Supplementary edge reinforcement : No c) Factored Loads Load factor source : AC1 318 Section 9.2 Nua : 11260 lb Vuay : 0 lb Muy : 0 Ib*ft ex : 0 in ey:0in Moderate/high seismic risk or intermediate/high design category : No Apply entire shear load at front row for breakout : No d) Anchor Parameters Anchor Model = HB75 do = 0.75 in Category = N/A hef = 23.25 in hmin = 24.75 in cac = 34.875 in omin = 4.5 in smin = 4.5 in Ductile = Yes 2) Tension Force on Each Individual Anchor Anchor #1 Nuai = 2893.85 lb Anchor #2 Nua2 = 2893.85 lb Anchor #3 Nuas = 6225.51 lb Anchor #4 Nua4 = 6225.51 lb Sum of Anchor Tension ENua = 18238.71 lb ax = 0.00 in ay=1.22in e'Nx = 0.00 in e'Ny = 2.19 in 3) Shear Force on Each Individual Anchor fc : 2500.0 psi Pe V : 1.40 +Fp : 1381.3 psi Vuax : 734 lb Mux : 7340 lb*ft about:blank 1/5/2010 Page 3 of 9 Resultant shear forces in each anchor: Anchor #1 Vuai = 183.50 lb (Vualx = 183.50 lb , Vuaiy = 0.00 lb ) Anchor #2 Vua2 = 183.50 lb (Vua2x = 183.50 lb , Vua2y = 0.00 lb ) Anchor #3 Vua3 = 183.50 lb (Vua3x = 183.50 lb , Vua3y = 0.00 lb ) Anchor #4 Vua4 = 183.50 lb (Vua4x = 183.50 lb , Vua4y = 0.00 lb ) Sum of Anchor Shear EVuax = 734.00 lb, EVuay = 0.00 lb e'vx=0.00in e'vy = 0.00 in 4) Steel Strength of Anchor in Tension [Sec. D.5.1] Nsa = nAsefuta [Eq. D-3] Number of anchors acting in tension, n = 4 Nsa = 19370 lb (for each individual anchor) = 0.75 [D.4.4] 4Nsa = 14527.50 lb (for each individual anchor) 5) Concrete Breakout Strength of Anchor Group in Tension [Sec. D.5.2] Ncbg = ANc/ANcokPec,Nted,NWc,NWcp,NNb [Eq. D-5] Number of influencing edges = 4 hef (adjusted for edges per D.5.2.3) = 7.333 in ANco = 484.00 in2 [Eq. D-6] ANc = 1156.00 in2 Pec,Nx= 1.0000 [Eq. D-9] `YeC Ny = 0.8338 [Eq. D-9] `Pec,N = 0.8338 (Combination of x-axis & y-axis eccentricity factors.) 1ed,N = 1.0000 [Eq. D-10 or D-11] 't'c,N = 1.2500 [Sec. D.5.2.6] 'Pcp,N = 1.0000 [Eq. D-12 or D-13] Nb = kcnii f' c hef1.5 = 23830.51 lb [Eq. D-7] kc = 24 [Sec. D.5.2.6] Ncbg = 59324.87 lb [Eq. D-5] = 0.70 [D.4.4] 4Ncbg = 41527.41 lb (for the anchor group) 6) Pullout Strength of Anchor in Tension [Sec. D.5.3] about:blank 1/5/2010 Page 4 of 9 Csg c [Eq. D-15] Np = 8Abrgf' 0.9110in2 Abrg = Npn = Pc pNp [Eq. D-14] tc p = 1.4 [D.5.3.6] Npn = 25508.00 lb 4) = 0.70 [D.4.4] ( Npn = 17855.60 lb (for each individual anchor) 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge, Cat < 0.4het. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] Vsa = n0.6Asefuta [Eq. D-20] Vsa = 11625.00 lb (for each individual anchor) = 0.65 [D.4.4] Vsa = 7556.25 lb (for each individual anchor) 9) Concrete Breakout Strength of Anchor Group in Shear [Sec D.6.2] Case 1: Anchor(s) closest to edge checked against sum of anchor shear loads at the edge In x-direction... Vcbgx = Avcx/AvcoxiPec,V`PedV`Pc,VVbx [Eq. D-22] cal = 11.00 in Avcx = 561.00 in2 Avcax = 544.50 in2 [Eq. D-23] I ec,V = 1.0000 [Eq. D-26] 'Ped,V = 0.9000 [Eq. D-27 or D-28] tc,V = 1.4000 [Sec. D.6.2.7] Vbx = 70e/do)0.2 yj dont f c(ca1)1.5 [Eq. D-24] le = 6.00 in Vbx = 16761.22 lb Vcbgx = 21759.11 lb [Eq. D-22] 4) = 0.70 Vcbgx = 15231.38 lb (for the anchor group) about:blank 1/5/2010 Page 5 of 9 eM In y-direction... Vcbgy = Avcy/AvcoyiPec,VTed,VIPc,VVby [Eq. D-22] cal = 11.00 in Avcy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] Teo/ = 1.0000 [Eq. D-26] 'Ped,V = 0.9000 [Eq. D-27 or D-28] Wc,v = 1.4000 [Sec. D.6.2.7] Vby = 7(1e/do)o.2 ,I do 1t f c(ca1)1.5 [Eq. D-24] le = 6.00 in Vby = 16761.22 lb Vcbgy = 21759.11 lb [Eq. D-22] (I) = 0.70 = 15231.38 lb (for the anchor group) $Vcbgy Case 2: Anchor(s) furthest from edge checked against total shear load In x-direction... Vcbgx = Avcx/Avcojec,V`Ped,V`Pc,VVbx [Eq. D-22] cal = 23.00 in Avcx = 1173.00 in2 Avcox = 2380.50 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] `Ped,V = 0.7957 [Eq. D-27 or D-28] 'c,v = 1.4000 [Sec. D.6.2.7] Vbx = 70e/do)0 2 dolt f c(ca1)1.5 [Eq. D-24] 1e=6.00in Vbx = 50676.71 lb 27815.67 lb [Eq. D-22] Vcbgx = = 0.70 $Vcbgx = 19470.97 lb (for the entire anchor group) In y-direction... Vcbgy = Avcy/Avcoy''ec,VTed,Vq/c,VVby [Eq. D-22] = 23.00 in cal about:blank 1/5/2010 Page 6 of 9 Avcy = 1173.00 in2 Avcoy = 2380.50 in2 [Eq. D-23] Tec,V = 1.0000 (Eq. D-26] `Ped,V = 0.7957 [Eq. D-27 or D-28] Tc,V = 1.4000 [Sec. D.6.2.7] Vby = 70e/do)0.21i dolf fc(ca1)1.5 [Eq. D-24] le = 6.00 in Vby = 50676.71 lb Vcbgy = 27815.67 lb [Eq. D-22] = 0.70 Vcbgy = 19470.97 lb (for the entire anchor group) Case 3: Anchor(s) closest to edge checked for parallel to edge condition Check anchors at cxl edge = Avcx/AvcoxPec,VWed,VWc,VVbx [Eq. D-22] Vcbgx cal=11.00 in Avcx = 561.00 in2 Avcox = 544.50 in2 [Eq. D-23] Tec,V = 1.0000 [Eq. D-26] ed,V = 1.0000 [Sea D.6.2.1(c)] `Pc,v = 1.4000 [Sec. D.6.2.7] Vbx = 70e/do)0.2 do fc(oa1)1.5 [Eq. D-24] le = 6.00 in Vbx = 16761.22 lb Vcbgx = 24176.79 lb [Eq. D-22] Vcbgy = 2 * Vcbgx [Sec. D.6.2.1(c)] Vcbgy = 48353.59 lb = 0.70 4Vcbgy = 33847.51 lb (for the anchor group) Check anchors at cy1 edge Vcbgy = Avcy/AvcoyPec,V`I'ed,VTc,VVby [Eq. D-22] cal = 11.00 in about:blank 1 /5/2010 Page 7 of 9 Avcy = 561.00 in2 Away = 544.50 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] Wed,V = 1.0000 [Sec. D.6.2.1(c)] 'c,V = 1.4000 [Sec. D.6.2.7] Vby = 70e/do)0.2„7 doh pc(cat)1.5 [Eq. D 24] le = 6.00 in �t Vby = 16761.22 lb Vcbgy = 24176.79 lb [Eq. D-22] 2* Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 48353.59 lb Vcbgx = (I) = 0.70 Vcbgx = 33847.51 lb (for the anchor group) Check anchors at cx2 edge Vcbgx = Avcx/Avcox ec,VTed,V'Pc,VVbx [Eq. D-22] cal = 11.00 in Avcx = 561.00 in2 Amp( = 544.50 in2 [Eq. D-23] `1'ec,V = 1.0000 [Eq. D-26] t'ed,V = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1(c)] Y c,V = 1.4000 [Sec. D.6.2.7] Vbx = 7(le/do)0.24 do. fc(ca1)1.5 [Eq. D-24] le = 6.00 in Vbx = 16761.22 lb Vcbgx = 24176.79 lb [Eq. D-22] = 2 * Vcbgx [Sec. D.6.2.1(c)] Vcbgy = 48353.59 lb Vcbgy 4 = 0.70 Vcbgy = 33847.51 lb (for the anchor group) Check anchors at cy2 edge Vcbgy = Avcy/Avcoy`Pec,VWed,V 1 c,VVby [Eq. D-22] about:blank 1/5/2010 Page 8 of 9 01� cal = 11.00 in Avcy = 561.00 in2 Avcoy = 544.50 in2 [Eq. D-23] `Pec,V = 1.0000 [Eq. D-26] Ped,V = 1.0000 [Sec. D.6.2.1(c)] Tc,v = 1.4000 [Sec. D.6.2.7] Vby = 70e/do}0.2 Y do fc(ca1)1.5 [Eq. D-24] 1e=6.00in Vby = 16761.22 lb Vcbgy = 24176.79 lb [Eq. D-22] Vcbgy [Sec. D.6.2.1(c)] Vcbgx = 2 Vcbgx = 48353.59 lb = 0.70 $Vcbgx = 33847.51 lb (for the anchor group) 10) Concrete Pryout Strength of Anchor Group in Shear [Sec. D.6.3] Vcpg = kcpNcbg [Eq. D-30] kelp = 2 [Sec. 0.6.3.1] eNx = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) eNy = 0.00 in (Applied shear load eccentricity relative to anchor group c.g.) kli ec,Nx = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) ec,Ny = 1.0000 [Eq. D-9] (Calulated using applied shear load eccentricity) ec,N' = 1.0000 (Combination of x-axis & y-axis eccentricity factors) Ncbg = (ANca/ANc)CPec,N'/Pec,N)Ncbg Ncbg = 59324.87 lb (from Section (5) of calculations) ANc = 1156.00 in2 (from Section (5) of calculations) ANca = 1156.00 in2 (considering all anchors) Tec,N = 0.8338 (from Section(5) of calculations) Ncbg = 71146.88 lb (considering all anchors) Vcpg = 142293.76 lb = 0.70 [D.4.4] Wcpg = 99605.63 lb (for the anchor group) 11) Check Demand/Capacity Ratios [Sec. D.7] about:blank 1/5/2010 Page 9 of 9 Tension - Steel : 0.4285 - Breakout : 0.4392 - Pullout : 0.3487 - Sideface Blowout : N/A Shear - Steel : 0.0243 - Breakout (case 1) : 0.0241 - Breakout (case 2) : 0.0377 - Breakout (case 3) : 0.0108 - Pryout : 0.0074 V.Max(0.04) <= 0.2 and T.Max(0.44) <= 1.0 [Sec D.7.1] Interaction check: PASS Use 3/4" diameter F1554 GR. 36 Heavy Hex Bolt anchor(s) with 24 in. embedment Cat hnnt•hlanlr 1/5/2010 *ScottJ. Sanders, SE Title : Dsgnr: Project Desc.: Job # Project Notes : Printed: 5 JAN 2010, 11:45AM Concrete Column Lic. #: KW-06000560' Description : Typical Concrete Footing Design General Information f c : Concrete 28 day strength E_ Density p Fy - Main Rebar E - Main Rebar Allow. Reinforcing Limits Min. Reinf. Max. Reinf. 3.0 ksi = 3,122.0ksi 145.0 pcf 0.850 60.0 ksi = 29,000.0 ksi ASTM A615 Bars Used 1.0 % 8.0 % Load Combination :2006 IBC & ASCE 7-05 Column Cross Section Column Dimensions :36.0in Diameter, Column Edge to Rebar Edge Cover = 3.0in Column Reinforcing :18.0 - #7 bars Applied Loads Column self weight included : 6,149.67 lbs *Dead Load Factor AXIAL LOADS .. Axial Load at 6.0 ft above base, D = 1.390 k BENDING LOADS . . Moment acting about X-X axis, W = 6.540 k-ft DESIGNSUMMARY Maximum Stress Ratio Load Combination Location of max.above base FNe:elsin-I estdatar220022912239 Hoagg2259 haag.ece NERCALC, INC. 4983-2008, Vet 64221, It16994 License Owner : STRUCTURES WEST Code Ref : 2006 IBC, ACI 318-05 Overall Column Height = 6.0 ft End Fixity Top & Bottom Pinned ACI Code Year ACI 318-05 Brace condition for deflection (buckling) along columns : X-X (width) axis : Fully braced against buckling along X-X Axis Y-Y (depth) axis :Fully braced against buckling along Y-Y Axis Type of Stirrups used : Spirals Fy - Stirrups = 40.0 ksi E - Stirrups = 29,000.0 ksi Entered loads are factored per load combinations specified by user. 0.01597: 1 +0.90D+1.60W+1.60H 6.0 ft At Pn = Pu, Load Contour location values are . . Pu = 6.786 k 9 " Pn = Mux-Muy Angle = Mu at Angle = Phi*Mn at Angle = Mu-x= 10.394k-ft cp "Mn-x= Mu-y = 0.0 k-ft rp t Mn-y = Column Capacities ... Pnmax : Nominal Max. Compressive Axial Capacity Pnmin : Nominal Min. Tension Axial Capacity cp Pn, max : Usable Compressive Axial Capacity 9 Pn, min : Usable Tension Axial Capacity Governing Load Combination Results Governing Factored Load Combination +1.40D +1.20D+1.60Lr+0.50L+0.80 W +1.20D+0.50L+1.60S+0.80W 6.786 k 0.0 deg 10.394 k-ft 650.74 k-ft 650.74 k-ft 0.0 k-ft 3,216.04 k -648.0 k 1,913.55 k -453.60 k Maximum SERVICE Load Reactions .. Top along Y-Y k Bottom along Y-Y Top along X-X k Bottom along X-X Maximum SERVICE Load Deflections... Along Y-Y in at for load combination : W Only AlongX-X 0.0in at for load combination : ft above base 0.0ft above base General Section Information . rp = 0.70 p =0.850 p : % Reinforcing 1.061 °Au Rebar % Ok Reinforcing Area 10.80 inA2 Concrete Area 1,017.88 inA2 ial Load Analysis Dist from ase ft Pie. A 'a Pn; `, pury pn; l base, ft 5 x 6.00 10.56 1,913.55 0.006 6.00 6.00 9.05 9.05 1.000 6.00 6.00 9.05 9.05 1.000 6.00 Bending Analysis k-ft w Mnx,' "Sy * Muy 5.20 653.14 5.20 653.14 k k g = 0.850 MOO Mit.: N mnyat Mx -My Angle") 0.008 0.008 .5"cottl. Sanders, SE Title : Dsgnr: Project Desc.: Project Notes : Job # Printed: 5 JAN 2010,11:45AM Concrete Column Lic;S: KW-06000560 Description : Typical Concrete Footing Design Re: aistrocavestdatak2200-229912259 Floag12259 hoag ec6 ENERCALC. INC 1902008, Vert 6.12.221; lia16994 License Owner : STRUCTURES WEST Governing Load Combination Results base ft Pu 0 Pn _ 06 10.39 633. MuY 91 Yat Mx -My Ang e ._. +1.20D+0.50Lr+0. -f . _ _ 9.05 9.05 1.000 6 0.016 +1.20D+0.50L+0 503+1.60'N 6.00 9.05 9 05 1.000 6.00 10.39 653.14 0.016 +0.900+1 60V1/41.60H 6.00 6.79 6.79 1.000 6.00 10.39 650 74 0.016 Maximum Reactions - Unfactored Reaction along X-X Axis Load Combination @ Base @ Top Reaction along Y-Y Axis @ Base @Top Note: Only non -zero reactions are listed. D Only W Only 1.090 1.090 Maximum Deflections for Load Combinations, - Unfactored Loads Load Combination Max. X-X Deflection Distance Max. Y-Y Deflection Distance D Only W Only Sketches 0.0000 in 0.000 ft 0.0000 in 0.000 ft 0.000 in 0.000 ft 0.000 in 3.503 ft x um." Alms Scott/. Sanders, SE Title : Dsgnr: Project Desc.: Job # Project Notes : Printed: 5JAN 2010, 1145AM Concrete Column File: clstruchvest data12200-229912259 Hoag12259 hoag.ec6-- ENERCAHG, INCr1988-2008,Ver. 6,0221; N.16994 _- License Owner STRUCTURES WEST Description : Typical Concrete Footing Design Interaction Diagram 1,913.5 1,722.2 1,530.8 1,339.5 1,148.1 956.8 765.4 574.1 382.7 191.4 -153.0 -306.1 -459.1 -612.2 -765.2 00 95.5 191.0 286.4 Concrete Column P-M Interaction Diagram Allowable Moment (k-ft) 381.9 477.4 572.9 668.4 763.8 859, 3 a co 954.8 ScottJ. Sanders, SE Consulting structural engineers Arizona, California, Hawaii, Nevada, Washington 789 Marlboro Court, Claremont, California 917L1 Phone: (909) 625-1906 Fax: (909) 634-7860 Email: sjs@ci mantSE.cam f yLst(Ln *1 ill k 1_ ;.._ . -1.. I I Co. [PROJECT 2214 (PAGE- IOF .._ [9 s..s DATE .3-21 10 Free Multi -Width Graph Papsrirce• _ American Wire Group 1920 E. Hallandale Beach Blvd., Suite PH8 Hallandale, Florida 33009 Toll Free: 1-800-342-7215 Telephone: 1-954 455 3050 Fax: 1-954 455 9886 E-Mail: thhnman@aol.com Website:www.buyawg.com Item # GW12-3/8-120, Galvanized Guy Wire Galvanized Guy Wire All products meet or exceed REA specifications for the electrical and telecommunications industries as well as other industry standards: ASTM A2111, ASTM A363, ASTM A474, ASTM A475, ASTM A586, ASTM B500. Products can also be manufactured to meet your special requirements or specifications. We keep these standard lengths in stock: 250 ft. and 500 ft. coils * 1,000 ft., 2,500 ft. and 5,000 ft. reels Custom lengths to meet your job requirements SPECIFICATIONS Strand Diameter Inches 3/8 Coated Diameter Inches 0.120 Number of Wres Per Strand 7 Approx. Strand Weight 1000 Ft. Lbs. 273 Minimum Breaking Strength - Utilities/Specification Grade - Minimum Breaking Strength - Common Grade 4250 Minimum Breaking Strength - Siemens -Martin Grade 6950 Minimum Breaking Strength - High Strength Grade 10800 Minimum Breaking Strength - Extra High Strength Grade 15400 Minimum Weight of Coating Oz./Sq.Ft. - Class A 0.85 Minimum Weight of Coating Oz./Sq.Ft. - Class B 1.70 Minimum Weight of Coating Oz./Sq.Ft. - Class C 2.55 1/18/2010 I Page 1 of 1 American Wire Group 1920 E. Hallandale Beach Blvd., Suite PH8 Hallandale, Florida 33009 Toll Free: 1-800-342-7215 • Telephone: 1-954-455 3050 • Fax: 1 954-455-9886 E-Mail: thhnman@aol.com • Website:www.buyawg.com Item # GW8-1/4-080, Galvanized Guy Wire W� Galvanized Guy Wire All products meet or exceed REA specifications for the electrical and telecommunications industries as well as other industry standards: ASTM A2111, ASTM A363, ASTM A474, ASTM A475, ASTM A586, ASTM B500. Products can also be manufactured to meet your special requirements or specifications. We keep these standard lengths in stock: * 250 ft. and 500 ft. coils ' 1,000 ft., 2,500 ft. and 5,000 ft. reels ' Custom lengths to meet your job requirements SPECIFICATIONS Strand Diameter Inches 1/4 Coated Diameter Inches 0.080 Number of Wires Per Strand 7 Approx. Strand Weight 1000 Ft. Lbs. 121 Minimum Breaking Strength - Utilities/Specification Grade 6000 Minimum Breaking Strength - Common Grade 1900 Minimum Breaking Strength - Siemens -Martin Grade 3150 Minimum Breaking Strength - High Strength Grade 4750 Minimum Breaking Strength - Extra High Strength Grade 6650 Minimum Weight of Coating Oz /Sq Ft. - Class A 0.60 Minimum Weight of Coating Oz /Sq Ft - Class B 1.20 Minimum Weight of Coating Oz /Sq Ft - Class C 1.80 10/29/2008 C Page 1 of 1 i CONSTRUCTION 1 x 7 Strand Core Attributes —Provides excellent abrasion resistance with low flexi- bility and low stretch. - Applications —Used as guying wire,.. tensioning members;: and for appli- cations with straight pulling and pushing requirements. 1 x 19 Strand Core • Attributes —Provides excellent abrasion and compression resist- ance with limited flexibility.., Applications Used as guying wire. tensioning members With pulling and pushing requirements. 7 x 7.Strand Core Attributes —Provides excellent abrasion resistance with good flexi- bility. Best for strehgtli and flexibility_ Applications Can be used over -small diameterpulleys, also used as ".' control cable for equipment. 7 x 19'Strand Core Attnbutes-Excellentflexibility,- �•. " 'strength,'.and greatest amount of v'• stretch. Resistant to crushing Applic%tions Can be used over .: ••• small diameter pulleys, also used as'" control cable for equipment. Cable Selection Guide "6x 19 Class IWRC Attributes —Provides abrasion and crush resistance with excellent flexi- Applications —Logging rope, cable track lines. 6 x 37Class IWRC Attributes —High strength, extremely flexible, excellent fatigue resistance with super flexibility. Lower abrasion resistance. Applications —Winch lines, cranes, and towing 6 x 42 Fiber Core Attributes —Balanced combination of abrasion and fatigue resistance for machinery operation. " ' Applications -Winch lines, cranes, and towing: ' 19 x 7 Strand Core " Attributes —Provides rotation yin resistance with superior flexibility. _Susceptible-tocrushing and kinking. Biqa care must be exercised when Using cable "Applications —Lifting and polling applications. MATERIAL TYPES • Galvaniz • Galvanized reel. Galvanized Vinyl Jacketed " General-purpose PVC provides high flexibility and . superior appearance: Typically. used as barriers - and lanyards. - - Nylon -Coated Galvanized ' Provides'high flexibility and abrasion resistance. Typically used for drivecables and physical ' fitness equipment. "' Polypropylene -Impregnated and Coated Galvanized Steel . -Provides protections for internal strands to protect against corrosion and fatigue:.., 302/304 Stainless Steel Clear Vinyl Jacketed PVC coating adds additional corrosion protection. IWRC ; Independent wire. rope core provides additional • . support to prevent crushing ed steel provides some corrosion resist- ance and is an economical alternative to stainless 304 Stainless Good corrosion resistance and more economical than 316 stainless. A fiber core provides support while remaining flexible, more susceptible to crushing idinedin Meets or exceeds Arengr, endrnents properties A5T 475133 Grade Commm G'rade' Meets oriexceeds.s[renue andmechanical cha icallnedpn est Aned is earr lspedn Meets or exdeedsstrandingandmechanicalprnp_etties Outlined inMdera/;S-4716cabon RR-W 410 Meets or exceeds" strandin4 and mechanicalyroperties outlined in MtL.0TL183420 Meets or exceeds strength equiementsicarined in ire eraTsp ciin Mtio Fi 8W41 -' �6 Meets w exceeds strength requirements omiine0 in Fetlxal SpaiScatian RR W 410 formaterial,type and diameter,. ' ' r -Construction • Cable - Coated pew - Cdater?ioo /Material _Type =.?, Size(In) -Sae -compliant - Material;' Galteanized. -i k 7 Strand — d �3164 1/16 V 304 Stainless' Strand Core Cable ::Coated Spas Type'^ Sizefln) "Size;" Compliance 304 Stainless . . 7 x 7 Strand Core Galv6ols 304 Seainles. 304 Stainless -]x7 strand Core . 15-- �v1- 1 x 19 Strard Core e x 19-ciassiWRC 304 Stainless "fii37 Gass IWRC. 3/16 5/16' " 5/16 3/8.- S/16 '_ 13/32 ] x 19 Strand tom . ' 5/16 l7/32 . 3/8 .15/32 304Stainless "" 7 x19Strand Core .304,stainle Milan -Coated GI e 19 x7 Strantl Cue 7/32,. a vane ' 3/16 - " '. Cors[rutbon 7.x 19-Strand Core. 1M . Win; .. 6 Material' ,'Galvanizedclea Vinyl Jacketed 302/304 Stainless Steel Clear Vinyl l.. 7 x 19 Strand Care Jacketed. Polypropylene Impregnated & ' 7 x 7 strand Core Coated Galvanized - 3/16 6 5/15�: 13/32 ' 'S QftCtEo,, STATE FIRE MAR HAL CALIFORNIA DEPARTMENT OF FORESTRY and FIRE PROTECTION OFFICE OF THE STATE FIRE MARSHAL REGISTERED FLAME RESISTANT PRODUCT Product: POLYTEX (R) Product marketed By: POLYFAB USA, LLC 1601 N. SEPULVEDA BLVD., #392 MANHATTAN BEACH, CA 90266 Registration No. F-76601 This product meets the minimum requirements of flame resistance established by the California State Fire Marshal for products identified in Section 13115, California Health and Safety Code. The scope of the approved use of this product is provided in the current edition of the CALIFORNIA APPROVED LIST OF FLAME RETARDANT CHEMICALS AND FABRICS, GENERAL AND LIMITED APPLICATIONS CONCERNS published by the California State Fire Marshal. 0.41,44,44,b eouty State Fire Marshal Expire: 6/30/2011 FR-H EXTRA HEAVY DUTY KNITTED 5HADECLOTH caer, m Shade Comforts irme Stlar.e inCJal Act Te Life Technical Specifications Y Fire Standard Compliance: Polytex® & Comtex® meet the following: NFPA 701— 2004, ASTM E — 84 Class (A) and California State Fire Marshal, Section 13115 Breaking Force Breaking Extension Tear Resistance Bursting Force Colors Cappuccino NEW Cafe Noir NEW Red NEW Aquamarine Black Bronze Claret Midnight Green Navy Blue Porcelain Rust Sage Sandstone Silver Slate Gray Yellow 66% 9a5%' 1 913%'• cif 96.9"% 96.9%" . �� t33 . `-.'97% `95 % 9' 95.8%.: , y 90.4%4009 •l80/ lr95.'8% `95.3%'.C: 89:6% 91T% ,'_i# ii `.`doh 9Rb% 950%.55ll' 94 9% 94 8% -' 19 '. 85% 954% •95.5% =r '33 : 95-.74959% ri,i zS �.,<87/ .,{i� 9635l° 9fiz%? ,.. 94.9% 95 7� . j 23 '.73% u95.n%a 95-4r 89ib% 837/ f 6 :.;67% ..' 86.9% 86:0° 9z 4% 9z 4% `q,_ 13 . `72% 92.8% 961%4 953% 95.z°% z uvA add U B are measures of Ultraviolet Fadiafiontthat have been shown tto be harmful and exposure c n lead to the development of skin canter - d The above information represents the results obtained from independent testing authorities and was accurate at the time of printing. Polyfab USA LLC reserve the right to alter product specifications without notification. Polyfab USA LLC assumes no obligation or debility for the suitability and use of its products other than those applications intended by the manufacturer. For more information cont ct Polyfab USA. Distributed by: polyfab°t Killer Shade www.PolyfabUSA.com