HomeMy WebLinkAboutPV2021-119 - CalcsI�'631 rvi rnep Av?
Project: Douglas Stevens
fl►2D21-tl�
Project Number:
By: PE
Date : 02-11-2021
02 November 2021
UNIRAC
1411 Broadway Blvd, NE
Albuquerque, NM 87102
RE: Solar Array Installation at 1753 Irvine Ave, Newport Beach, CA 92660 USA
To Whom it May Concern,
BUILDING IDIVISION
NOV 2 $ 2021
MON
Per your request, we have reviewed the existing structure at the above referenced site. The purpose of our
review was to determine the adequacy of the existing structure to support the proposed installation of solar
panels on the roof per layout plan
CODE REFERENCES:
BUILDING CODE: 2019 CALIFORNIA BUILDING CODE
2018 INTERNATIONAL BUILDING CODE
ASCE 7-16
SCOPE OF WORK:
Roof structural framing plan has been reviewed for additional loading due to installation of the roof
mounted solar PV addition. The structural reviewthat follows, including plans and calculations, only apply
to the section of the roof that is directly supporting the solar PV system and its supporting elements.
DESIGN PARAMETERS
RISK CATEGORY:
II
DESIGN WIND SPEED:
95 mph
WIND EXPOSURE:
B
GROUND SNOW LOAD:
0 psf
SEISMIC DESIGN CATEGORY:
*null
EXISTING ROOF STRUCTURE
ROOF: 2x4 Rafters c@i 24" O.C.
ROOF MATERIAL: Comp Shingles
CONNECTION TO ROOF STRUCTURE
MOUNTING CONNECTION : (I) 5/16" SS LAG BOLT w/ hnN. 2.S' ENBEDNIENT INTO (E) 2. �FRANUNG
MIU BER @ MAX. 48" o.c. ALONG RAILS -
(2) RAILS PER ROW OF PANELS, EVENLY SPACED, PANEL LENGTH
PERPENDICULAR TO RAIL NOT TO EXCEED 68.5'
OBSERVED CONDITIONS:
The observed roof framing is described below. If field conditions differ, the contractor shall notify the
engineer prior to starting construction. The roof framing is supported by 2x4 Rafters @ 24" O.0 are
spanning between load bearing walls. The maximum allowed span of rafter is 9.5ft, to be verified in field by
the contractor.
CONCLUSIONS:
Based upon our review, we conclude that the existing structure is adequate to support the proposed solar
panel installation. In the area of the solar array, other live loads will not be present or will be greatly reduced
(2019 CBC, Section 1607.13.5). The glass surface of the solar panels allows for a lower slope factor per
ASCE 7, resulting in reduced design snow load on the panels. The gravity loads and; thus, the stresses of
the structural elements, in the area of the solar array are either decreased or increased by no more than 5%.
Therefore, the requirements of Section 503.3 of the 2019 CEBC are met and the structure is permitted to
remain unaltered.
The solar array will be flush -mounted (no more than 6" above the roof surface) and parallel to the roof
surface. Thus, we conclude that any additional wind loading on the structure related to the addition of the
proposed solar array is negligible. The attached calculations verify the capacity of the connections of the
solar array to the existing roof against wind (uplift), the governing load case. Regarding seismic loads, we
conclude that any additional forces will be small. Conservatively neglecting the weight of existing wall
materials, the installation of the solar panels represents an increase in the total weight (and resulting seismic
load) of 4.9%. Because the increase in lateral forces is less than 10%, this addition meets the requirements
of the exception in Section 503.4 of the 2019 CEBC. Thus the existing lateral force resisting system is
permitted to remain unaltered.
LIMITATIONS:
Installation of the solar panels must be performed in accordance with manufacturer recommendations. All
work performed must be in accordance with accepted industrywidemethods and applicable safety
standards. The contractor must notify Erusu Consultants US Inc. should any damage, deterioration or
discrepancies between the as -built condition of the structure and the condition described in this letter
be found. Connections to existing roof framing must be staggered, except at array ends, so as not to
overload any existing structural member. The use of solar panel support span tables provided by others are
allowed only where the building type, site conditions, site-specific design parameters, and solar panel
configuration match the description of the span tables. The design of the solar panel racking (mounts, rads,
etc.) and electrical engineering is the responsibility of others. Waterproofing around the roof penetrations is
the responsibility of others. Emsu Consultants US Inc. assumes no responsibility for improper installation
of the solar array.
vV
Praneet R Erusu, P.E.
Principal Engineer
Erusu Consultants US Inc.
02 - NOV - 2021
EXP .30 -SEPT -2023
Project: Douglas Stevens
Project Number:
By: PE
Date : 02-11-2021
Address: 1753 Irvine Ave, Newport Beach, CA 92660 USA
Site Plan:
Aar 3 p — PROJECT SITE
CDSTA MESA
Upper
' �N=w'pon Bd
� )I 1 M1 r'ilie.
S � �
01'! �1153WI..A,e
Neepml YeoeM1 CM1
J? 4
�b d
� iI1p I51Pbi 1
®Mil]I'cr �Pl2c
ASF
I
f F ®PacidlneMs �
A�
Project: Douglas Stevens
Project Number:
By: PE
Date : 02-11-2021
Roof Dead Load
Roof Slope = 4.3 12
Angle = 20
Material
Material Weight
(psf)
Increase due to
Roof Slope
Plan Projected Materal
Weight (psf)
Comp Shingles
4
1.06
4.25
1/2" Plywood
1.1
1.06
1.17
Framing
3
1.06
3.19
Insulation
0.5
1.06
0.53
1/2" Gypsum Ceiling
2.2
1.06
2.34
MEP & Misc.
1.5
1.50
DL=
12.97
PV Array
3
1.06
3.19
Roof Dead Load
Roof Live Load = 20 psf (Refer ASCE 7-16, Table 4.3-1)
Roof Live Load with PV Array = 0 psf 2019 CBC, Section 1607.13.5
(Ceiling load and NMI? is assumed to be not supported by rafter)
Summary of Gravity Loads
Dead Load, D =
Roof Live Load, Lr =
Project: Douglas Stevens
Project Number:
By: PE
Date : 02-11-2021
Existing
With PV Array
12.97
16.16
WOO
0.00
psf
psf
Gravity Load Comparision
Existing With PV Array
(D + Lr)/Cd =J 30.41 1 17.95 psf
(Cd = 0.9 for D, 1.15 for S, 1.25 for Lr)
Max Loading
to Current Loading Ratio
1 30.41 1 17.95 1
59%
105% O.K.
Gravity Loading with PV Array is not stressing the current framing system by more that 5% of the
sinal configuration. Per Section 503.3 of 2019 California Existing Budding Code the sturcure is allowed
to remain unaltered for
Title Block Line 1
You can change this area
using the "Settings" menu item
and then using the "Printing &
Title Block' selection.
Wood Beam
DESCRIPTION: 2x4 Rafter @ 24" o.c. (Wind Condition) (Strength Check)
CODE REFERENCES
Project Title:
Engineer:
Project ID:
Project Descr:
Printed: 2 NOV 2021. 12:34PN
INC.
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set: ASCE 7-16
Material Properties
D 0.0 D 0-034 W 0.183
Maximum Shear Stress Ratio =
0.299 : 1
Analysis Method : Allowable Stress Design
Fb +
900.0 psi
E: Modulus of Elasticity
Load Combination ASCE 7-16
Fb -
900.0 psi
Ebend- xx 1,600.01ksi
fv: Actual =
Fc - Prll
1,350.0 psi
Eminbend - xx 580.Oksi
Wood Species : Douglas Fir - Larch
Fc - Perp
625.0 psi
Load Combination
Wood Grade : No.2
Fv
180.0 psi
+D+0.60W+H
Location of maximum on span =
Ft
575.0 psi
Density 31.210pcf
Beam Bracing : Beam is Fully Braced against lateral -torsional buckling
Span # where maximum occurs =
Span #2
Repetitive Member Stress Increase
D(0.0162) Lr 0.04 W 0.03 .034 W 0-183
D 0.0 D 0-034 W 0.183
Maximum Shear Stress Ratio =
0.299 : 1
Section used for this span
2x4
2x4
Span = 2.0 It
2x4
Span = 9.50 it
2x4
fb: Actual =
Applied Loads Service loads entered. Load Factors will be applied for calculations
Load for Span Number 1
Uniform Load : D = 0.00810, Lr = 0.020, W = 0.0160 ksf, Tributary Width = 2.0 ft, (Existing Roof Load)
Load for Span Number 2
Uniform Load : D = 0.00810 ksf, Tributary Width = 2A ft, (Existing Roof Dead Load)
Point Load : D = 0.0340, W = 0.1830 k 9 0.750 ft, (Solar Panel Load)
Paint Load: D = 0.0340, W = 0.1830 k C& 4.50 9, (Solar Panel Load)
Point Load : D = 0.0340, W = 0.1830 k @ 8.60 it, (Solar Panel Load)
Maximum Bending Stress Ratio =
0.951: 1
Maximum Shear Stress Ratio =
0.299 : 1
Section used for this span
2x4
Section used for this span
2x4
fb: Actual =
2,362.87psi
fv: Actual =
86.25 psi
Fb: Allowable =
2,484.00psi
Fv: Allowable =
288.00 psi
Load Combination
+D+0.60W+H
Load Combination
+D+0.60W+H
Location of maximum on span =
4.511 it
M
Location of maximum on span =
2,000ft
Span # where maximum occurs =
Span #2
Cr
Span # where maximum occurs =
Span # 1
Maximum Deflection
M
fb
Pb
V
Max Downward Transient Deflection
0.931 in
Ratio=
122 >=80
Max Upward Transient Deflection
-0.587 in
Ratio =
80>=80
Max Downward Total Deflection
1.057 in
Ratio=
107>=71
Max Upward Total Deflection
-0.664 in
Ratio =
72>=71
Length = 2.0 IF
Maximum Forces & Stresses for Load Combinations
Load Combination
Max Stress Ratios
Moment Values
Shear Values
Segment Length
Span #
M
V
Cd
C FN
C i
Cr
C m
C t
C L
M
fb
Pb
V
fv
FV
+D+H
0.00
0.00
0.00
0.00
Length = 2.0 IF
1
0.091
0.227
0.90
1.500
1.00
1.15
1.00
1.00
1.00
0.03
126.96
139725
0.13
36.71
162.00
Length = 9.50 It
2
0.767
0.227
0.90
1.500
1.00
1.15
1.00
1,00
1.00
0.27
1,071.86
1397.25
0.13
36.71
162.00
+D+L+H
1.500
1.00
1.15
1.00
1,00
1.00
0.00
0.00
0.00
0.00
Length = 2.0 It
1
0.082
0.204
1.00
1.500
1.00
1.15
1.00
1.00
1.00
0.03
126.96
1552.50
0.13
36.71
180.00
Length = 9.50 It
2
0.690
0.204
1.00
1.500
1.00
1.15
1.00
1.00
1.00
0.27
1,071.86
1552.50
0.13
36.71
180.00
+D+Lr+H
1.500
1.00
1.15
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Title Block Line 1
Project Title:
You can change this area
Engineer:
using the "Settings" menu item
Project ID:
and then using the "Printing &
Project Descr.
Title Block" selection.
+D+H
Title Block Line 6
Printed: 2 NOV 2021, 12:34PN
Wood Beam
2x4 Joist 024 O.C.ec6
Shear Values
Software
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.2,
DESCRIPTION: 2x4 Rafter 9 24" o.c. (Wind Condition) (Strength Check)
Load Combination
Support 1 Support 2
Max Stress
Ratios
0.390
0.279
Overall MINimum
0.353
0.260
+D+H
0.165
Moment Values
+D+L+H
0.165
Shear Values
Segment Length
Span N
M
V
Cd
C FN
C i
Cr
C m
C I
C L
M
lb
P'b
V
fv
FV
Length = 2.0 it
1
0.227
0.174
1.25
1.500
1.00
1.15
1.00
1.00
1.00
0.11
440.42
1940.63
0.14
39.12
225.00
Length = 9.50 it
2
0.468
0.174
1.25
1.500
1.00
1.15
1.00
1.00
1.00
0.23
907.25
1940.63
0.14
39.12
225.00
+D+S+H
1.500
1.00
1.15
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 2.0 it
1
0.071
0.177
1.15
1.500
1.00
1.15
1.00
1.00
1.00
0.03
126.96
1785.38
0.13
36.71
207.00
Length =9.50 ft
2
0.600
0.177
1.15
1.500
1.00
1.15
1.00
1.00
1.00
0.27
1,071.86
1785.38
0.13
36.71
207.00
+D+0750Lr+0.750L+H
1.500
1.00
1.15
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 2.0 8
1
0.187
0.171
1.25
1.500
1.00
1.15
1.00
1.00
1.00
0.09
362.06
1940.63
0.13
38.52
225.00
Length = 9.50 it
2
0.489
0.171
1.25
1.500
1.00
1.15
1.00
1.00
1.00
0.24
948.40
1940.63
0.13
38.52
225.00
+D+0.750L+0.7505+H
1.500
1.00
1.15
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 2.0 it
1
0.071
0.177
1.15
1.500
1.00
1.15
1.00
1.00
1.00
0.03
126.96
1785.38
0.13
36.71
207.00
Length = 9.50 it
2
0.600
0.177
1.15
1.500
1.00
1.15
1.00
1.00
1.00
0.27
1,071.86
1785.38
0.13
36.71
207.00
+D+0.60W+H
1.500
1.00
1.15
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 2.0 it
1
0.112
0.299
1.60
1.500
1.00
1.15
1.00
1.00
1.00
0.07
277.42
2484.00
0.30
86.25
288.00
Length = 9.50 it
2
0.951
0.299
1.60
1.500
1.00
1.15
1.00
1.00
1.00
0.60
2,362.87
2484,00
0.30
86.25
288.00
+D+0.750Lr+0.750L+0.450W+H
1.500
1.00
1.15
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 2.0 it
1
0.191
0.263
1.60
1.500
1.00
1.15
1.00
1.00
1.00
0.12
474.91
2484.00
0.26
75.67
288.00
Length =9.50 it
2
0.772
0.263
1.60
1.500
1.00
1.15
1.00
1.00
1.00
0.49
1,916.66
2484.00
0.26
75.67
288.00
+D+0.750L+0.7505+0.450W+H
1.500
1.00
1.15
1.00
1.00
1,00
0.00
0.00
0.00
0.00
Length =2.0 it
1
0.097
0.256
1.60
1.500
1.00
1.15
1.00
1,00
1,00
0.06
239.80
2484.00
0.26
73.86
288.00
Length = 9.50 it
2
0.821
0.256
1.60
1.500
1.00
1.15
1.00
1.00
1.00
0.52
2,040.12
2484.00
0.26
73.86
288.00
+0.60D+0.60W+0.60H
1.500
1.00
1.15
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 2.0 it
1
0.091
0.248
1.60
1.500
1.00
1.15
1.00
1.00
1.00
0.06
226.64
2484.00
0.25
71.56
288.00
Length =9.50 ft
2
0.779
0.248
1.60
1.500
1.00
1.15
1.00
100
1.00
0.49.
1,934.13
2484.00
0.25
71.56
288.00
+D+0.70E+0.60H
1.500
1.00
1.15
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length =2.0 It
1
0.051
0.127
1.60
1.500
1.00
1.15
1.00
100
1.00
0.03
126.96
2484.00
0.13
36.71
288.00
Length = 9.50 it
2
0.432
0.127
1.60
1.500
1.00
1.15
1.00
1.00
1.00
0.27
1,071.86
2484,00
0.13
36.71
288.00
+D+0.750L+0.7505+0.5250E+H
1.500
1.00
1.15
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 2.0 ft
1
0.051
0.127
1.60
1.500
1.00
1.15
1.00
1.00
1.00
0.03
126.96
2484.00
0.13
36.71
288.00
Length =9.50 it
2
0.432
0.127
1.60
1.500
1.00
1.15
1.00
1.00
1.00
0.27
1,071.86
2484.00
0.13
36.71
288.00
+0.60D+0.70E+H
1.500
1.00
1.15
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 2.0 it
1
0.031
0.076
1.60
1.500
1.00
1.15
1.00
1.00
1.00
0.02
76.17
2484.00
0.08
22.03
288.00
Length = 9.50 it
2
0.259
0.076
1.60
1.500
1.00
1.15
1.00
1.00
1.00
0.16
643.12
2484.00
0.08
22.03
288.00
Overall Maximum Deflections
Load Combination Span Max. "" Dell Location in Span Load Combination Max. "+" Dell Location in Span
1 0.0000 0.000 +D+0.60W+H -0.6640 0.000
+D+0.60W+H 2 1.0573 4.777 0.0000 0.000
Vertical Reactions Support notation: Far left is N1 Values in KIPS
Load Combination
Support 1 Support 2
Support 3
Overall MAXimum
0.390
0.279
Overall MINimum
0.353
0.260
+D+H
0.165
0.123
+D+L+H
0.165
0.123
+D+Lr+H
0.254
0.115
+D+S+H
0.165
0.123
+D+0.750Lr+0.750L+H
0.232
0.117
+D+0.750L+0.7505+H
0.165
0.123
+D+0.60W+H
0.377
0.279
+D+0.750Lr+0.750L+0.450W+H
0.390
0.234
+D+0.750L+0.7505+0.450W+H
0.324
0.240
+0.60+0.60W+0.60111
0.311
0.230
+D+O.70E+0.60H
0.165
0.123
+D+0.750L+0.7505+0.5250E+H
0.165
0.123
+0.60D+070E+H
0.099
0.074
D Only
0.165
0.123
Lr Only
0.088
-0.008
W Only
0.353
0.260
H Only
Project: Douglas Stevens
Project Number:
By: PE
Date : 02-11-2021
Wind Load Calculation
Wind Loads - ASCE 7-16 Chapter 26 & 29
Width of the Building, B = 64.28 it (Approximate)
V= 95 mph - risk category II
Exposure = B
Average height of building, z = 25 ft - avg (Approximate)
Gust factor ,G =
0.85
zrin=
30 ft
u=
7
Kh & K: = 2.01(2/Zg)^(2/a) =
0.7006
Int =
1
Kd =
0.85
Ke =
0.9
qh ='.00256 ICK KdI< VW =
12.38
Building Classification = Enclosed
(Refer ASCE 7-16, Table 26.10-1)
Zg = 1200 ft (Refer ASCE 7-16, Table 26.11-1)
(Refer ASCE 7-16, Equation 26.8-1)
(Refer ASCE 7-16, Table 26.6.1)
(Refer ASCE 7-16, Table 26.9-1)
psf (Refer ASCE 7-16, Section 26.10-1)
Solar Panel
Components and Cladding p C&C = gh(GCP)(YQ)(Ya) ASCE 7-16 Chaper 29.4.4
Module Length =
685
in
Module Width =
41
in
Area of Module =
195
ft2
Roof Pitch = 4.3 12
Slope = 20 degrees
Gable Roof = 70 < 0 < 200
Ye 1.5
Ya 0.8 (Refer ASCE 7-16, Figure 29.4-8)
Project: Douglas Stevens -
Project Number:
By: PE
Date: 02-11-2021
Zone 1 Uplift
External Wind pressure coefficient GCp = -2
External Wind pressure, gGCP = -25.261 psf
Zone 2 Uplift
External Wind pressure coefficient GCp = -2.6
External Wind pressure, gGCP = -32.839 psf
All Zone Downward
External Wind pressure coefficient GCp = 0.5
External Wind pressure, gGCP = 6.3 psf
Maximum Uplift Wind Pressure, p = -32.839 psf
Minimum Downward Wind Pressure ,p = 16.0 psf
Lag Bolt Connection Check (ASD)
Tributary Width = 48 in Nfax Spacing of fastners along Rails)
Tributary Length = 34.25 in (Half Panel Length)
Tributary Area = 11.4 fit
Lag Bolt Size =
5/16
Tributary Area (it 2)
Cd =
1.6
(Refer NDS Table 2.3.2)
Embedment =
2.5 in
Neasured from top of the framing member to tapered tip of lag screw,
173.0
760
embeddmem in sheathing and tapered rip of screw is not included )
Grade of Wood =
DF #2
(or better)
G =
0.5
0.30
Capacity =
266 lb/in
(Refer NDS Table 12.22A)
Number of Bolts in Tension =
1
Prying Coefficient =
1.4
Capacity of Fasteners =
760 16
Demand
Zone
Pressure ASD (0.6W)(psf)
Tributary Area (it 2)
Uplift (lb)
Capacity (lb)
DCR
Zone 1
-15.2
11.4
173.0
760
0.23
Zone 2
-19.7
11.4
224.9
760
0.30
Project: Douglas Stevens
Project Number:
By: PE
Date : 02-t 1-2021
Seismic Ground Motion Values
702021
IQTC Hazards by Location
Search Information
Address:
1753 Irvine Ave, Newport Beach, CA 92660
Name
USA
Coordinates:
33.63957,-117.6979636
Elevation:
96 R
Tfinestamp:
2021-07.09T11:14:01.914Z
Hazard Type:
Seismic
Reference
ASCE7-16
Document:
• null
Risk Category:
IT
She Class:
D -default
ATC Namru s by baton
Malibu
Riverside
Santa Monica o
� 1
! 96 ftft
Orae
Temeecula
Catalina Island
Essentid
Fish Habitat.- Cls
Goo it Mmin
g Map dota02021Gomile,INEGI
Basic Parameters
Value
Name
Value
Description
SS
1.346
MCER ground motion (perlod=0.2s)
SI
0.46
MCER ground motion(pedod=l.0s)
S,y1g
1.615
Site -modified spectral acceleration value
SM1
• null
Site -modified spectral acceleration Value
SDS
1.077
Numeric seismic design value at 0.2s SA
SDI
•null
Numeric seismic design value at 1,09 SA
See Section 11.4.8
PGAI,1
-Additional Information
Name
Value
Description
SDC
'null
Seismic design category
Fa
1.2
Site amplification factor at 02s
Fv
-null
Site amplification faclorat l,Os
CRS
0.914
Coefficient ofdsk(0.2s)
CR1
0.923
Coefficient ofrisk (1.0s)
PGA
0.584
MCEG peak ground acceleration
FPGA
1.2
Site amplification faclorat PGA
PGAI,1
0.7
Site modified peak ground acceleration
hllps:rlM1azaMsmcountllggHlraeiamlc91e1=33.6395)6Ing=11].a9]99366atltlraes=l)531rvine Ave%2C Newport Beach%2C CA9266D USA V2
Project: Douglas Stevens
Project Number:
By: PE
Date: 02-11-2021
Seismic Design Force
Seismic Loads - ASCE 7-16 Chapter 13
Seismic Force
Seismic Coefficients for Mechanical
12 Other mechanical
or electrical components.
and Electrical components =
Component Amplification Factor, a,—
1.00
(Refer ASCE 7-16, Table 13.6 -1)
Component Response Modification
1.50
(Refer ASCE 7-16, Table 13.6 -l;
Factor, RP
Overstrength Factor, Q. =
1.50
(Refer ASCE 7-16, Table 13.6 -1)
Component Importance Factor, IP
1.00
SDs =
1.08
Height in structure at point of 25 ft
attachement, z =
Average roof height of structure,h = 25 ft
z/h = 1 z/h should not exceed 1
Frame Weight W, = 3.19 psf
Seismic Design Force on Solar framing structure
Fp = ((0.4 x ap.sns x W,)/ (Rp / 1P)) x 2.75 psf
((1+2(z/h)) _
Max Fp=1.6xSDsxI,XW,= 5.49 psf
Min Fp =0.3 x SDs x Ip X WF = 1.03 psf
Seismic Design Load Fp = 2.75 psf
Vertical Seismic Design Load Fp = 0.22 psf
Project: Douglas Stevens
Project Number:
By: PE
Date: 02-11-2021
Check for Increase in overall seismic loads
Array Area =
19.5 It
Number of Arrays =
36
Array Area =
702.13 It
Array Load =
3.00 psf
Number of Existing Arrays =
0
Exisimg Area
0.00 ftz
Total Array Wt. =
2106.4 lb
Total Roof Area= 3306.1 ft'
DL of Roof = 12.97 psf
Total Wt of Roof = 42888 lb
Increase in Seismic Wt = 4.9% < 10%
Conservativelsy the Wt. of the Walls tributary to the roof is not included. Seismic weight increase is
less tbaan 10% and no seismic retrofit or evaluation of existing lateral system is required per Section
503.4 of 2019 CEBC.