Loading...
HomeMy WebLinkAboutX2021-2205 - Calcsn structures 2880 S. Coast Highway Laguna Beach, CA 92651 ph: 949 715 0775 X2021-aW MOO EW�� ". STRUCTURAL CALCULATIONS FOR KUISH BLDG REMODEL JOB ADDRESS: 3800 EAST COAST HWY, CORONA DEL MAR, CA CLIENT: BRAD KUISH CALCULATIONS PREPARED BY: ARASH BORUJERDPUR, EIT NENO GRGURIC, PE QROF ESS JpNq iwi m M � �F OF CALAE S. �j'• Z BUILDING DIVISION W. M.K. BUILDING DIVISION SF.P 2 .P 7 _1 By,' M.K FFnll structures Design Loads STRUCTURES, INC 2880 SOUTH COAST HIGHWAY LAGUNA BEACH, CA 949-715-0775 Roof Dead Load (Drywall Ceiling) Roof Finish - Asphlat 3.30 psf 1/2" Plywood 1.50 psf Framing (2X8 @ 16" O.C.) 1.90 psf Drywall 2.80 psf Miscellaneous 2.50 psf 12.00 psf Floor Dead Load Floor Finish - Wood/Carpet 5.00 psf 3/4" Plywood 2.30 psf Framing (2x12 @24" O.C.) 2.00 psf Drywall 2.80 psf Miscellaneous 1.90 psf 14.00 psf Roof Deck Dead Load Deck Finish-DEX-O-TEX 2.50 psf 3/4" Plywood 2.30 psf Framing (2X10 @ 16" O.C.) 2.80 psf Drywall 2.80 psf Miscellaneous 1.60 psf Wall Dead Load Exterior Wall (Stucco) Interior Walls 12.00 psf 16.00 psf 8_00 psf PROJECT: KUISH BLDG DATE: 7/27/2021 SHEET: BY: AB Roof Live Load 20.00 psf 20.00 psf Floor Live Load Floor Live Load 40.00 psf 40.00 psf Roof Live Load 60_00 psf 60.00 psf Page 1 Title Block Line 1 You can change this area using the "Settings" menu item and then using the"Printing & Title Block, selection. NEW CODE REFERENCES Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set: ASCE 7-16 Material Properties Project Title: Engineer: Project ID: Project Descr: Page 2 Printed: 9 AUG 2021, 10:47AM Analysis Method: Allowable Stress Design Fb+ 1,000.0 psi E: Modulus of Elasticity Load Combination ASCE 7-16 Fb- 1,000.0 psi Ebend-xx 1,700.Oksi fv: Actual = 45.22 psi Fc - PHI 1,500.0 psi Eminbend -xx 620.Oksi Wood Species : Douglas Fir -Larch Fc - Perp 625.0 psi +D+0.750Lr+0.750L+H Wood Grade : No.1 Fv 180.0 psi Span # where maximum occurs = Span # 1 Span # where maximum occurs Ft 675.0 psi Density 31.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsional buckling Max Downward Transient Deflection 0.023 in Ratio= Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Point Load : D = 0.50, Lr = 0.80 k @ 3.750 ft, (POST ABV) Uniform Load: D = 0.0120, Lr = 0.020 ksf, Extent = 3.70 ->> 7.0 ft, Tributary Width =1.330 8, (ROOF ABV) Uniform Load: D = 0.0160 ksf, Extent = 3.70 ->> 7.0 ft, Tributary Width = 8.0 it, (WALL ABV) Uniform Load : D = 0.0140, L = 0.050 ksf, Tributary Width =1.330 it, (FLOOR LOAD) Uniform Load : D = 0.0160 ksf, Tributary Width =1.50 ft, (WALL ABV) Maximum Bending Stress Ratio = 0.436 1 Maximum Shear Stress Ratio = 0.201 : 1 Section used for this span 4x12 Section used for this span 4x12 flo: Actual = 599.69psi fv: Actual = 45.22 psi Fb: Allowable = 1,375.00psi Fv: Allowable = 225.00 psi Load Combination +D+Lr+H Load Combination +D+0.750Lr+0.750L+H Location of maximum on span = 3.766ft Location of maximum on span = 7.066ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection C FN C i Cr Max Downward Transient Deflection 0.023 in Ratio= 4226>=480 M Max Upward Transient Deflection 0.000 in Ratio = 0 <480 fv Max Downward Total Deflection 0.053 in Ratio= 1803>=360 Max Upward Total Deflection 0.000 in Ratio= 0 <360 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V Cd C FN C i Cr C in C t C L M Po Fb V fv Fv +D+H 0.00 0.00 0.00 0.00 Length = 8.0 ft 1 0.327 0.167 0.90 1.100 1.00 1.00 1.00 1.00 1.00 1.99 323.86 990.00 0.71 27.01 162.00 +D+L+H 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0 ft 1 0.373 0.193 1.00 1.100 1.00 1.00 1.00 1.00 1.00 2.52 410.03 1100.00 0.91 34.77 180.00 +D+Lr+H 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0 it 1 0.436 0.193 1.25 1.100 1.00 1.00 1.00 1.00 1.00 3.69 599.69 1375.00 1.14 43.53 225.00 +D+S+H 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0 ft 1 0.256 0.130 1.15 1.100 1.00 1.00 1.00 1.00 1.00 1.99 323.86 1265.00 0.71 27.01 207.00 +D+0.750Lr+0.750L+H 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Title Block Line 1 Yowcan change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Project Title: Engineer: Project ID: Project Descr: Page 3 Title Block Line 6 Printed: 9 AUG 2021, 10:47AM :Ile, :, DISH BLD .e. WOOCi Be8111 Software copy ght ENEROALC, INC.1Aa3.2020, BuiItl;1220;81j Lic. #: KW -06007640 STRUCTURES INC. DESCRIPTION: NEW HDR Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V Cd C FN C i Cr C in C t C L M fb FIT V fv F'v Length = 8.0 ft 1 0.433 0.201 1.25 1.100 1.00 1.00 1.00 1.00 1.00 3.66 595.37 1375.00 1.19 45.22 225.00 +D+0.750L+0.7505+H +D+0.70E+0.60H 0.628 0.757 1.100 1.00 1.00 1.00 1.00 1.00 D Only 0.628 0.00 0.00 0.00 0.00 Length = 8.0 It 1 0.307 0.159 1.15 1.100 1.00 1.00 1.00 1.00 1.00 2.39 388.49 1265.00 0.86 32.83 207.00 +D+0.60W+H 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0 It 1 0.184 0.094 1.60 1.100 1.00 1.00 1.00 1.00 1.00 1.99 323.86 1760.00 0.71 27.01 288.00 +D+0.750Lr+0.750L+0.450W+H 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0 ft 1 0.338 0.157 1.60 1.100 1.00 1.00 1.00 1.00 1.00 3.66 595.37 1760.00 1.19 45.22 288.00 +D+0.750L+0.750S+0.450W+H 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0 It 1 0.221 0.114 1.60 1.100 1.00 1.00 1.00 1.00 1.00 2.39 388.49 1760.00 0.86 32.83 288.00 +0.60D+0.60W+0.60H 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0 ft 1 0.110 0.056 1.60 1.100 1.00 1.00 1.00 1.00 1.00 1.20 194.31 1760.00 0.43 16.20 288.00 +D+0,70E+0.60H 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0 ft 1 0.184 0.094 1.60 1.100 1.00 1.00 1.00 1.00 1.00 1.99 323.86 1760.00 0.71 27.01 288.00 +D+0.750L+0.7505+0.5250E+H 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0 It 1 0.221 0.114 1.60 1.100 1.00 1.00 1.00 1.00 1.00 2.39 388.49 1760.00 0.86 32.83 288.00 +0.60D+0.70E+H 1.100 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 8.0 ft 1 0.110 0.056 1.60 1.100 1.00 1.00 1.00 1.00 1.00 1.20 194.31 1760.00 0.43 1620 288.00 Overall Maximum Deflections Load Combination Span Max. "-' Can Location in Span Load Combination Max. W Dell LocaBon in Span +D+0.750Lr+0.750L+0.450W+H 1 0.0532 4.029 0.0000 0.000 Vertical Reactions Support notation: Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MlNimum 0.266 0.266 +D+H 0.628 0.757 +D+L+H 0.894 1.023 +D+Lr+H 1.082 1.190 +D+S+H 0.628 0.757 +D+0.750Lr+0.750L+H 1.168 1.281 +D+0.750L+0.7505+H 0.827 0.956 +D+0.60W+H 0.628 0.757 +D+0.750Lr+0.750L+0.450W+H 1.168 1.281 +D+0.750L+0.7505+0.450W+H 0.827 0.956 +0.60D+0.60W+0.60H 0.377 0.454 +D+0.70E+0.60H 0.628 0.757 +D+0.750L+0.7505+0.5250E+H 0.827 0.956 +0.60D+0.70E+H 0.377 0.454 D Only 0.628 0.757 Lr Only 0.454 0.434 L Only 0.266 0.266 H Only Page 4 SEISMIC DIAGRAM - ROOF TOTAL AREA = 1852 SQF E LL (3 U) N E co ro E Lo E a W a E SEISMIC DIAGRAM - THIRD FLOOR Page 5 9'-4" 7/26/2021 All U.S. Seismic Design Maps KUISH BLDG 3800 East Coast Hwy, Corona Del Mar, CA 92625, USA Latitude, Longitude: 33.5938836, -117.866628 J Ro j Bakery Cafe�Unit States / � � �Plistalal,ServlcVko a( l /� �o` /Froe�Crowns Dale Design Code Reference Document '.. Risk Category Site Class Value SDC 'Type Value Ss 1.349 St 0.478 �,i SMs 1.619 SMI null -See Section 11.4.8 SDS 1.079 SDI null -See Section 11.4.8 Type Value SDC null -See Section 11.4.8 Fa 1.2 Fv null -See Section 11.4.8 PGA 0.589 FPGA 1.2 PGAM 0.707 TL 8 SsRT 1.349 SsUH 1.483 SsD 2.636 S1RT 0.478 S1UH 0.519 SID 0.822 PGAd 1.061 CRS 0.91 Page 6 L OSH PD 7/26/2021, 5:02:25 PM ASCE7-16 II D - Default (See Section 11.4.3) Description MCER ground motion. (for 0.2 second period) MCER ground motion. (for 1.0s period) Site -modified spectral acceleration value Site -modified spectral acceleration value Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA Description Seismic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second MCEG peak ground acceleration Site amplification factor at PGA Site modified peak ground acceleration Long -period transition period in seconds Probabilistic risk -targeted ground motion. (0.2 second) Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration Factored deterministic acceleration value. (0.2 second) Probabilistic risk -targeted ground motion. (1.0 second) Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration. Factored deterministic acceleration value. (1.0 second) Factored deterministic acceleration value. (Peak Ground Acceleration) Mapped value of the risk coefficient at short periods IV data ®2021 https://seismiemaps.org 1/3 7/26/2021 Type Value CRI ` 0.922 U.S. Seismic Design Maps Description Mapped value of the risk coefficient at a period of 1 s Page 7 https:/Iseismicmaps.org 2/3 7/26/2021 U.S. Seismic Design Maps Page 8 IY76343111TANN While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in Interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website. https://s6ismiemaps.org 3/3 Sin EQUATION SITE CLASS D Sit` 0478; Site Class D3� Fv 1.9 Sari 0.9 SD1 0.61 AcrF 7-1 F - TARI F 11.4-2 (PER US SEISMIC DESIGN MAP) PER ASCE 7-16 - TABLE 11.4-2 ASCE 7-16 EQ(11.4-2) ASCE 7-16 EQ(11.4-4) NOTE: USE STRAIGHT-LINE INTERPOLATION FOR INTERMEDIATE VALUES OF S i a ALSO, SEE REQUIRMENTS FOR SITE-SPECIFIC GROUND MOTIONS IN SECTION 11.4.8 Page 9 structures Seismic Analysis Based on INPUT DATA Typical floor height Typical floor weight Number of floors Importance factor (ASCE 11.5.1) Design spectral response IMapped spectral response The coefficient (ASCE Tab 12.8-2) The coefficient(ASCE Tab. 12.2. 1) No. Name Height ft 2 Roof 8.00 1 2nd 9.00 Ground i PROJECT'.KLISH CLIENT: MIR NIO .'D1 AR PAGE: DESIGN BY: AB 7/28/2021 RF1/IFW RV Page 10 VERTICAL Bight Weight hx Wx OF Wxhxk Cv Fx k 468 0.545 6.4 9.0 ;:143;-:;.'. 390 - 0.455 5.3 0.0 DESIGN SUMMARY h='. '.9.8 ': ft, (2.7 m) Total base shear (l kips =4.448 kN) wx=" ` 35 ;. kips, (155.7kN) V = 0.17 W, (SD) = 12 k, (SD) n= '. 2 = 0.12 W, (ASD) = 8 k, (ASD) le = -` 1 Seismic design category = D SDs - 1.079 - g ha = 17.0 ft, (5.2 m) SDI = r 0.61 g W = 71 kips, (314.9 kN) SI =h 0.478 <, g k = 1.00 , (ASCE 12.8.3, page 91) CI=F '0.02 Ewx hk = 857 R=; 6.5 X = 0.75 , (ASCE Tab 12.8-2) .. -__ _.,..... Ta = CI (hn)x = 0.17 SeC, (ASCE 12.8.2.1) VERTICAL Bight Weight hx Wx OF Wxhxk Cv Fx k 468 0.545 6.4 9.0 ;:143;-:;.'. 390 - 0.455 5.3 Vx O. M. k k -ft 6.4 51 11.8 157 EF, EW; k k 6.4 28 11.8 71 Fpx 9 0.0 ............... I Vx O. M. k k -ft 6.4 51 11.8 157 EF, EW; k k 6.4 28 11.8 71 Fpx 9 PROJECT: KUISH PAGE: 1' 11 CLIENT: DESIGN BY: AS rP,$ JOB NO.: 21-46 DATE: 08/04/21 REVIEW BY: Wind Analysis fnr l nw_risw Rnildinn R ... d ..9619. IRC/ARCF:7-19 . INPUT DATA Exposure category (B, C or D, ASCE 7-16 26.7.3) Importance factor (ASCE 7-16 Table 1.5.2) Basic wind speed (ASCE 7-1626.5.1 or 2018 IBC) Topographic factor (ASCE 7-16 26.8 & Table 26.8-1) Building height to save Building height to ridge Building length Building width, including overhangs Overhang sloped width Effective area of components (or Solar Panel area) DESIGN SUMMARY Page 11 'I I' Max horizontal force normal to building length, L, face = 21.25 kips, (95 kN), SO level (LRFD level), Tye. C 1 Roof angle 0 = 0.00 Iw = 1.00 for all Category V =.. 95 mph, (152.89 kph) Ka ='r '1 Flat he= 16 ft, (4.88 m) hr=16 3.72 9.80 ft, (4.88 m) L =:: 83 ft, (25.30 m) 8 = 49 ft, (14.94 m) �8 Oh =r 3 ft, (0.91 m) A = 12: ft2, <_= Overhang? (Yes or No) No ( 1.12 m2) Page 11 'I I' Max horizontal force normal to building length, L, face = 21.25 kips, (95 kN), SO level (LRFD level), Tye. Max horizontal force normal to building length, B, face = 12.54 kips, (56 kN) 1 Roof angle 0 = 0.00 Max total horizontal torsional load = 168.825 ft -kips, (229 kN-m) Net Pressure with Max total upward force - 70.96 kips (316 kN) (+GCpi) (-GC,i) Net Pressure with 0.40 ANALYSIS GOpf Velocity Pressure (+OOpi) qh = 0.00256 K, Kit Ka K, V2 = 16.69 psf 1 where: qh = velocity pressure at mean roof height, h. (Eq. 26.10-1 page 268) 3.72 9.80 Ki =velocity pressure exposure coefficient evaluated at height, h, (Tab. 26.10-1, pg 268) = 0.86 Ka = wind directionality factor. (Tab. 26.6-1, for building, page 266) _ 0.85 IT = mean roof height = 16.00 It K, = ground elevation factor. (1.0 per Sec. 26.9, page 268) < 60 ft, [Satisfactory] (ASCE 7-16 26.2.1) 3 < Min (L, B), [Satisfactory] (ASCE 7-16 26.2.2) Desian Pressures for MWFRS -9.29 -3.21 p = qh [(G Cpf )-(G Cal )] where: p = pressure in appropriate zone. (Eq. 28.3-1, page 311). pn,in = 16 fast (ASCE 7-16 28.3.4) G Car = product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.3-1, page 312 & 313) G Ca I = product of gust effect factor and internal pressure coefficient. (Tab. 26.13-1, Enclosed Building, page 271) = 0.18 or -0.18 a = width of edge strips, Fig 28.3-1, page 312, MAX[ MIN(0.1 B, 0.1 L, 0.4h), MIN(0.04B, 0.04L), 3] = 4.90 ft Net Pressures psf , Basic Load Cases Net Pressures (psf), Torsional Load Cases 2 2E 0 1 REFERENCE CORNER �E a wwo oiREcnax Load Case A (Transverse) 3 *011EI 6E�i4E REFEREwiNo slfl[cnory Load Case B (Longitudinal) Roof an le 0 = 0.00 1 Roof angle 0 = 0.00 Surface Net Pressure with Net Pwith ssure (+GCpi) (-GC,i) Net Pressure with 0.40 Cp GOpf (+GCp I)re( -C'Ca�) (+OOpi) (-C'Cal) 1 0.40 3.72 9.80 -0.45 -10.64 -4.56 2 -0.69 -14.69 -8.61 -0.69 -14.69 -8.61 3 -0.37 -9.29 -3.21 -0.37 -9.29 -3.21 4 -0.29 -7.94 -1.86 -0.45 -10.64 -4.56 5 0.40 3.72 9.80 6 -0.29 -7.94 -1.86 1 E 0.61 7.26 13.34 -0.48 -11.15 -5.07 2E -1.07 -21.11 -15.03 -1.07 -21.11 -15.03 3E -0.53 -11.99 -5.91 -0.53 -11.99 -5.91 4E -0.43 -10.30 -4.22 -0.48 -11.15 -5.07 5E 0.61 7.26 13.34 6E 1 -0.43 1 -10.30 1 -4.22 2 2E 0 1 REFERENCE CORNER �E a wwo oiREcnax Load Case A (Transverse) 3 *011EI 6E�i4E REFEREwiNo slfl[cnory Load Case B (Longitudinal) E ] 3T 2T 44 2E 2 6 4E IT REFERENCE CORNER IE � wwo plflrcnoN 22E 3 3E C T 6ET1REFERENCE flNER 2° b wwo CIFIK oN Load Case A (Transverse) Load Case B (Longitudinal) Roof an Ile 0 = 0.00 G Cpr Net Pressure with Surface (+GCpi) (-GC,i) 1T 0.40 0.93 2.45 2T -0.69 -3.67 -2.15 3T -0.37 -2.32 -0.80 4T -0.29 -1.98 -0.46 Roof angle 0 = 0.00 of Net Pressure with SurfaceGC' (+GCpi) (-GCp I) 5T 0.40 0.93 2.45 6T -0.29 -1.98 -0.46 E ] 3T 2T 44 2E 2 6 4E IT REFERENCE CORNER IE � wwo plflrcnoN 22E 3 3E C T 6ET1REFERENCE flNER 2° b wwo CIFIK oN Load Case A (Transverse) Load Case B (Longitudinal) Basic Load Case A (Transverse Direction) Torsional Load Case A !Transverse Direction) Pwarmnq o -11.82 psf (ASCE 7-16 28.3.3) Area pressure k with Surface Ifd) (*GCp1) (-GCpi) 1 1171 4.35 11.47 2 1793 -26.35 -15.45 3 1793 -16.66 -5.75 4 1171 -9.30 -2.18 1E 157 1.14 2.09 2E 240 -5.07 -3.61 3E 240 -2.88 -1.42 4E 157 1 -1.62 -0.66 42 Horiz. 16.40 16.40 E Vert. -50.96 -26.23 Min. wind Horiz. 21.25 21.25 28.4.a Vert. -65.07 -65.07 Torsional Load Case A !Transverse Direction) Pwarmnq o -11.82 psf (ASCE 7-16 28.3.3) Basic Load Case B Longitudinal Direction) Area Pressure k with I Taman t -k Surface (8') (*GCp1) (-GCp1) (*GCp1) (-GCpi) 1 507 1.88 4.97 34 91 2 777 -11.41 -6.69 0 0 3 777 -7.21 -2.49 0 0 4 507 -4.03 -0.94 74 17 1 E 157 1.14 2.09 42 77 2E 240 -5.07 -3.61 0 0 3E 240 -2.88 -1.42 0 0 4E 157 -1.62 -0.66 59 24 1T 664 0.62 1.63 -13 -34 2T 1017 -3.73 -2.19 0 0 3T 1017 -2.36 -0.82 0 0 4T 664 1 -1.32-0.31 -27 -6 Total Horiz, Torsional Load, MT 169 168 Basic Load Case B Longitudinal Direction) Torsional Load Case B (Longitudinal Direction Area Pressure k with Surface (as) (+GCp1) (-GCp1) 2 1793 -26.35 -15.45 3 1793 -16.66 -5.75 5 627 2.33 6.14 6 627 -4.98 -1.17 2E 240 5.07 -3.61 3E 240 -2.88 -1.42 5E 157 1.14 2.09 6E 157 -1.62 -0.66 0 Horiz. 10.06 10.06 E Vert. -43.49 -19.77 Min. wind Hortz. 12.54 12.54 28.4.4 Vert. -65.07 -65.07 Torsional Load Case B (Longitudinal Direction Desion Pressures for components and cladding EO�2h P = 9h[ (G CP) - (G CPi)] 5 1 21r where: p = pressure on component. (Eq. 30.3-1, pg 334) c'°4 15 toga ° Pmin = 16.00 psf (ASCE 7-16 30.2.2)GCp= external pressure coefficient. sn see table below. (ASCE 7-16 30.3.2) Walls sh 6= 0.0o a Roof e.,• Roof 0>71 ea....e.. v..... I I 7,.... V zona 2 Zen. 2e 1 Zone 2n I Zone 2 Comp. Comp. d Cladding Pressure ( Pet ) (The Max Pressure #N/A psf) Page 12 Area Pressure k with I Torsion ft -k Surface ( az) (+GC P) 1 (-GC PI) (+GC PI) (-GC,I) 2 1793 -26.35 -15.45 0 0 3 1793 -16.66 -5.75 0 0 5 235 0.87 2.30 9 23 6 235 -1.87 -0.44 18 4 2E 240 -5.07 -3.61 0 0 3E 240 -2.88 -1.42 0 0 5E 157 1.14 2.09 25 46 6E 157 -1.62 -0.66 36 15 5T 392 0.36 0.96 -4 -12 6T 392 -0.78 -0.18 -10 -2 Total Horiz. Torsional Load, MT 73.6 73.6 Desion Pressures for components and cladding EO�2h P = 9h[ (G CP) - (G CPi)] 5 1 21r where: p = pressure on component. (Eq. 30.3-1, pg 334) c'°4 15 toga ° Pmin = 16.00 psf (ASCE 7-16 30.2.2)GCp= external pressure coefficient. sn see table below. (ASCE 7-16 30.3.2) Walls sh 6= 0.0o a Roof e.,• Roof 0>71 ea....e.. v..... I I 7,.... V zona 2 Zen. 2e 1 Zone 2n I Zone 2 Comp. Comp. d Cladding Pressure ( Pet ) (The Max Pressure #N/A psf) Page 12 STRUCTURES, INC PROJECT: WISH BLDG 2880 SOUTH COAST HIGHWAY DATE: 8/3/2021 I I LAGUNA BEACH, CA Fr'I r 949-715-0775 BY: AB SCruCtureS SHEET: 1. Weights Per Floor: Area 2 i otai vveignt or tnure bunaing= 1u0a4 2. Seismic: Lateral Distribution Per Level Level Fx = Force at Each Level Fx =Force at Each Level Fx (Strength Design) lbs (ASD) lbs 1.3 Roof 6400.0 4480.0 1 1.31 5 2nd Floor 5300.0 3710.0 1 1.31 48 3 3. Wind: Lateral Distribution Per Level Level Height of Trib. Unit Load Length x (Width or Height) Total Weight (W) Level Description sf ft lbs Per Level lbs Length Roof N/A 12 1852 = 1 22224 439.661 Roof 5 Exterior 16 66 4 4224 27408 49 Lower Walls Interior 8 30 4 960 - 83' 11 2nd Floor Exterior _ 16" 66 = 4 4224 49 11 Upper Walls Interior •^ 8 30 4 960 Floor N/A J4 1071 1 14994 Upper Roof N/A :".12 253 1 3036 43286 Level Balcony N/A ` i 1211 510 "' 1 6120 Exterior 16 118 ` 4 7552 Lower Walls Interior 8 200 4 = 6400 i otai vveignt or tnure bunaing= 1u0a4 2. Seismic: Lateral Distribution Per Level Level Fx = Force at Each Level Fx =Force at Each Level Fx (Strength Design) lbs (ASD) lbs 1.3 Roof 6400.0 4480.0 1 1.31 5 2nd Floor 5300.0 3710.0 1 1.31 48 3 3. Wind: Lateral Distribution Per Level Level Height of Trib. Direction Max Horiz. I Fx = Force at Dir Unit Shear (plf) Structure (ft) Hei ht ft Force lbs Lvl ASD Length Transverse 212501 439.661 83 5 Roof 116.00 4 Longitudinal 12540 259.45 49 5 Transverse 21250 912.28 - 83' 11 2nd Floor $.3 Longitudinal 125401 538.361 49 11 Page 13 Fnn STRUCTURES, INC PROJECT: 2880 SOUTH COAST HIGHWAY DATE: LAGUNA BEACH, CA BY: AB s t r u c t u res 949-715-0775 SHEET: LATERAL ANALYSIS .Line-. ROOF LINE V(seWm10= 5824 x 527 / 1852 = V(Wind) = 5 x 25 = .Line FLOOR LINE L = 19.00 + 0.00 + 0.00+ V(seIsmio)= 4823 x 477 / 1834 = V(wlnd) 0 11 x 25 = V (unit shear) 2912 / 19 = 153 plf Form) as 153 x 8 = 1226 lbs. Ee(12.4.2.2)=0.2*Sm* D = 0D Fc (2.4.1.5) = D+0.7E= 2973 lbs. Fc (2.4.1.6) as D+0.75(0.7E)+0.75L+0.75Lr- FT (2.4.1.8) = 0.6D+0.7E= 542 lbs. Total DL= 1519 Total LL= 758 16571bs. + 0 = 1657 lbs. 1321bs. + 0 = 132 lbs. Notes: EXISTING SHEAR WALL CALCULATIONS JUST FOR LOAD COLLECTION PURPOSES 0.00 + 0.0 = 19.00 ft. 1254 lbs. + 1657 = 2912 lbs. 2751bs. + 132 = 407 lbs. Sheorwall Type = A Uplift= 542 lbs. Holdown Type I HD U2 2766 lbs. Notes: ADDITIONAL LOADS FROM ROOF Page 14 Page 15 nPROJECT KUISH PAGE CLIENT DESIGN BY AB structures JOB NO 20.41 DATE: REVIEW BY 'UT DATA 'ERN- FORCE ON DIAPHRAGM: Vale, welo= 150 plf,far And, ASD (SERVICE LOADS) Vete. SEISMIC'. 150 plf,for seismic, ASD TENSIONS: Lr = 2.5 X, Lr = 8 X, h = 8.5 PI X H, = 3.5 X, Hr = 3.25 X, H, ='. 1.25 fl 0 STUD SECTION 2 pos,b = 2.-;1n, h = - :.6 in SPECIES (1 = DFL, 2=SP) 1 DOUGLAS FIR -LARCH GRACE (1, 2, 3, 4, 5, or 6) 3 No.1 iE STUD SECTION 1 pea, b= 4 in, h= fi in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE (1, 2, 3, 4, 5, or 6) 3 'No.1 TEL GRADE (0 or 1) = .U.,,. c=Strudurall IMUM NOMINAL PANEL THICKNESS = : '15132 In V die ON NAIL SIZE (0=6d, 1=13d, 2=10d) 2- 10d THE SHEAR WALL DESIGN IS ADEQUATE. FIC GRAVITY OF FRAMING MEMBERS 05., r OPTION(1=ground level, 2=upper level) : 1' ground level shear wall E=1.25/0.7=1.785 K(LRFD) - OIL =16 PSF x IS's 9'/2=1.1 K GN SUMMARY DSDL - E., = 0.9.1.1 -1.785 = -800' UPLIFT =800' BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 4 in O.C. BOUNDARY & ALL EDGES 112 in O.C. FIELD, 5/81n DIA. x 101n LONG ANCHOR BOLTS @38 in O.C. (or 1/2 in DIA, x 101n LON/CHOR LTS@ 38 In O.C.) HOLD-DOWN FORCES: TL= 1.25 k, Te= 1.25 k (USE HDU2-1/4x2.5 SIMPSON HOLD-DOWN) MAX STRAP FORCE: F= 1.38 k (USE SIMPSON C816 OVER WALL SHEATHING WITH FLAT BLOCKING) KING STUD: 2-2"x6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. EDGE STUD: 1 -4" x6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.18 In L1 + 0.5 L2 1.1 12/2 L2/2 L3 F_F2 Ff F3 1 F4 1. 2 F4 3 F44 S 6 F7 FS F9 F10 F11 F12 5 FS FB F13 F14 F5 FS F5 FB F15 F16 F17 F18 F5 1 F19 I1 F20 F8 z 9 F21 J 1 0 F21 1 1 F21 12 F22 F23 1 F23 1 F24 TL FREE-9ODVINDIVIDUAL PANELS OF WALL TR Page 16 HECK MAX SHEAR WALL DIMENSION RATIO h I w = 1.3 < 3.50 [Satisfactory] ETERMINE FORCES & SHEAR STRESS OF FREE -BODY INDIVIDUAL PANELS OF WALL INDIVIDUAL PANEL Win H(TO MAX SHEAR STRESS (Pin NO. FORCE nd) NO. FORCE (11,I) 1 2.50 1.25 162 F1 405 F13 431 2 4.00 1.25 345 F2 1380 F14 431 3 4.00 1.25 345 F3 495 F15 1065 4 8.50 1.25 58 F4 431 Fib 634 5 2.50 1.63 390 F5 975 F17 358 6 8.50 1.63 221 F6 1380 F18 790 7 2.50 1.63 390 F7 1380 F19 842 8 8.50 1.63 221 F8 1875 F20 754 9 2.50 3.50 53 F9 -203 F21 820 10 4.00 3.50 234 F10 634 F22 133 11 4.00 3.50 234 Fit 358 F23 842 12 8.50 3.50 132 F12 73 F24 1121 iETERMINE REQUIRED CAPACITY ve= 390 pit, ( 1 Side Panel Required, The Max. Nail Spacing= wo_1 IN. 114 wxh A.111 nxnn fisc., Im ..: me malca[e.. hear u.noss s nave reuucea oy speanc 9­nr .a4LuF Pei 4E MAX SPACING OF SAE DIA (or 1/2' DIA) ANCHOR BOLT (NOS 2015, Tab.11 E) 518 in DIA. x 101n LONG ANCHOR BOLTS ® 381n O.C. (or 1121n DIA. IT 10 in LONG ANCHOR BOLTS @ 381n O.C.) 4 in) ...__..............._...__. _. Panel Grade ___.__._____._, Min. Common Penetration Nail hal Min. Thickness in) Blocketl Nall Spacing Boundary & All Edges Reslstin9 Momenta a-Iba 6 4 J 2 IMPSONSEISMIC SWcturell 10tl 15/8 15/32 340 510 665 870 0 ..: me malca[e.. hear u.noss s nave reuucea oy speanc 9­nr .a4LuF Pei 4E MAX SPACING OF SAE DIA (or 1/2' DIA) ANCHOR BOLT (NOS 2015, Tab.11 E) 518 in DIA. x 101n LONG ANCHOR BOLTS ® 381n O.C. (or 1121n DIA. IT 10 in LONG ANCHOR BOLTS @ 381n O.C.) 4 in) STUD CAPACITY P_= 0.63 kips F,= vrs pl I Wall Seismic al mid -stun lbs Oveduming Momanis ft46a 1.60 Reslstin9 Momenta a-Iba Safety Factors Net Upfft lbs IMPSONSEISMIC ksl =8veh +vbhh =4ee,dAa+dsran.+ANN 40 +0.75he„+hd° = 0.184 In,ASD < te8 0 0.9 TL= 1251 bAll It 150 243 23773 1t G= 9.0E+04 pal Ca= 4 1= 1 I= 0.298 In en= 0.005 In, SO da= 0.15 In, SO ,(ASCE 7.10 Tab 12.2-1&Tab 11.5-1) °=1+0.95he. value should Po hr 0 0.9 TR= 1251 I\" ,(ASCE 7-10 Tab 12.12-1) CF= 0.52 A= 19.25 in' E= te8 0 2/3 TL= 1200ISH.1ne. F,= WINO 150 22800 Iti hl 0 2/3 Ta= 1200` STUD CAPACITY P_= 0.63 kips F,= 1500 (TL & TR values should include upper level UYLIe I TOMOS IT apPIIW019) CK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.31 SDPW 5-15 4.3.2) 1.60 Ce= 3 E= 1700 ksl =8veh +vbhh =4ee,dAa+dsran.+ANN 40 +0.75he„+hd° = 0.184 In,ASD < rip+Acro,4 .dee E/1Lw Gt La Sre,ellowable, aso= 0.343 In Where: = 390 Nf,ASD I„= 19 It E= 1.7E+06 ps1 [Satisfactory) (ASCE 7-1012.8.6) A= 16.50 in' h= 8 1t G= 9.0E+04 pal Ca= 4 1= 1 I= 0.298 In en= 0.005 In, SO da= 0.15 In, SO ,(ASCE 7.10 Tab 12.2-1&Tab 11.5-1) °=1+0.95he. value should Cu= 1.0 A,= 0.02 h„ IOOOG. Gr psi (NDS 4.1.4) ,(ASCE 7-10 Tab 12.12-1) STUD CAPACITY P_= 0.63 kips F,= 1500 psi Co= 1.60 Ce= 0.52 A= 16.50 In' E= 1700 ksl CF= 1.10 F,= 1374 psi > f,= 38 psi [Satisfactory] STUD CAPACITY Pmex= 1.25 dips, (this value should induce upper level DOWNWARD bounce R applicable) F,= 1600 psi Co= 1.60 CF= 0.52 A= 19.25 in' E= 1700 kei CF= 1.10 F,= 1374 pel > f,= 65 Tel [Satisfactory] Page 17 'T ' I Anchor Designer TM r Software VIT 111 Version 2.9.7376.2 e 1.Proiect information Customer company: Customer contact name: Customer e-mail: Comment: 2 Input Data & Anchor Parameters General Design method:ACI 318-14 Units: Imperial units Anchor Information: Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.625 Effective Embedment depth, hof (inch): 10.000 Code report: ICC -ES ESR -2508 Anchor category: - Anchor ductility: Yes hmm (inch): 13.13 cap (inch): 16.40 Cmm (inch): 1.75 Smm (inch): 3.00 Recommended Anchor Anchor Name: SET -XP® - SET -XP w/ 5/8"0 F1554 Gr. 36 Code Report: ICC -ES ESR -2508 Company: Date: 8/3/2021 Engineer: Page: 1/5 Project: Address: Phone: E-mail: Project description: Location: Fastening description: Base Material Concrete: Normal -weight Concrete thickness, In (inch): 20.00 State: Cracked Compressive strength, f� (psi): 3000 4),v: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Hole condition: Dry concrete Inspection: Continuous Temperature range, Short/Long: 150/110°F Ignore Edo requirement: Not applicable Build-up grout pad: No Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strangtie.com Page 18 .' Anchor DesignerTM Software Vi r Version 2.9.7376.2 Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Ductility section for tension: 17.2.3.4.2 not applicable Ductility section for shear: 17.2.3.5.2 not applicable Do factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No Strength level loads: Nua [Ib]: 1100 Vuax [lb]: 0 Way [lb]: 0 <Figure 1> X Company: Date: 8/3/2021 Engineer: Page: 2/5 Project: Address: Phone: E-mail: Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strang -Tie Company Inc. 5956 W. Las Posters Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 19 SIMPSON StrongTie <Figure 2> Anchor DesignerTM Software Version 2.9.7376.2 Company: Date: 8/3/2021 Engineer: Page: 3/5 Project: Address: Phone: E-mail: Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.stronglie.com Page 20 Anchor DesignerTIA Software r Version 2.9.7376.2 Company: Date: 8/3/2021 Engineer: Page: 4/5 Project: Address: Phone: E-mail: 3. Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nu. (lb) Va.. (lb) V„ay (lb) 4(V ... )'+(Vnay)' (lb) 1 1100.0 0.0 0.0 0.0 Sum 1100.0 0.0 0.0 0.0 Maximum concrete compression strain (%e): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (Ib): 0 Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'N. (Inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 4 Steel Strength of Anchor in Tension (Sec. 17.4.1) Naa (lb) d ON. (lb) 13110 0.75 9833 6 Adhesive Strength of Anchor in Tension (Sec. 17.4.5) A,cr = Tkcrfshodieo Ksatamsole ax, (psi) fmdiarm Kaal am.f. rx,ar (psi) - 435 1.00 1.00 1.00 435 Nb. = lar > dahar(Eq. 17.4.5.2) Aa r (psi) d. (in) her (in) Nb. (lb) 1.00 435 0.63 10.000 8541 0.750Na = 0.750 (Am.IANao)'led,N. TP ..NeNea (Sec. 17.3.1 & Eq. 17.4.5.1a) AN. (Ina) ANaa (Ina) CN. (In) Cemin (In) 'Yod.N. Tp, Na Nao (lb) d 0.750Na (lb) 73.62 150.57 6.14 2.00 0.798 1.000 8541 0.65 1624 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 21 ��Ifl Anchor DesignerTM r Software Version 2.9.7376.2 Company: Date: 8/3/2021 Engineer: Page: 5/5 Project: Address: Phone: E-mail: 11. Results 11. Interaction of Tensile and Shear Forces (Sec. D.71_? Tension Factored Load, N.. (Ib) Design Strength, eNn (lb) Ratio Status Steel 1100 9833 0.11 Pass Adhesive 1100 1624 0.68 SET -XP wl 518"9 F1554 Gr. 36 with hef = 10.000 inch meets the selected design criteria. Pass (Governs) 12. warnings - When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET -XP adhesive anchor is limited to 2,500 psi per ICC -ES ESR -2508 Section 5.3. - Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required. - Per designer input, the tensile component of the strength -level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.4.2 for tension need not be satisfied — designer to verify. - Per designer input, the shear component of the strength -level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied — designer to verify. - Designer must exercise own judgement to determine if this design is suitable. - Refer to manufacturer's product literature for hole cleaning and installation instructions Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 v .strongtie.com ' Page 22 Originally Issued: 01/18/2013 Revised: 04/14/2021 Valid Through: 01/31/2022 TABLE 4 - EDGE AND END DISTANCE REQUIREMENTS AND ALLOWABLE LOAD REDUCTION FACTORS FOR THREADED ROD AND REBAR WITH SET-XP®EPDXY ADHESIVE IN THE TOP OF FULLY GROUTED CMU WALL CONSTRUCTIONIas For Sh 1 inch = 25.4 mm 1. Edge and end distances (c„or ch,) are the distances measured from anchor centerline to edge or end of CMU masonry wall. Figures 3A and 313 of this report show critical and minimum edge and end distances. 2. Critical edge and end distances, c,„ are the least edge distances at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction). 3. Minimum edge and end distances, c, , are the least edge distances where an anchor has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, c r, in Table 6 of Ihis report by the load reduction factors shown above. 4. Reduction factors are cumulative. Multiple induction factors for more than one spacing (Table5 of this report) or edge or end distance shall be calculated separately and multiplied. 5. Load reduction factor for anchors loaded in tension or shear with edge and end distances between critical and minimum shall be obtained by linear interpolation. 6. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (illustrated in Figure 5 of this woor0. Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical and minimum edge and end distance. FOR REFERENCE ONLY Page 9 of 18 i { � 1 Y� 11 t r y si 4J,.,a a% 7y 3_� ; i "'9v'> yyg amsw�„ve,�:ryx DWI d �.� �11 } J� Lot! ' r 4�1� i. "�'''" 4 S+',..i#F }'.�S£i �))[p�� (ry' r{ti 4d wQ' j {%F —^�' rF wy }. ,�. i FAYS` 'err l gn3i 1 IRn Arch. •-^- n ¢t IL $�"l trf�SF�"�.L�u{ f r ^} yrs.. r '1`at'� 1 -r-�e^� � Wa ,\� f "..� y r", 7, I.4�-i`vn py ?'' 74 r", 1 ! p 1 fiv iiU" ; r"i Ed k �t S� % 4R'' vu[Ci�aI F'{^ 1* 1��[�1�I,� DDV�1.F �W�C s.' fi } tx` x't { £ x y? .Y �6 l y� _IA For Sh 1 inch = 25.4 mm 1. Edge and end distances (c„or ch,) are the distances measured from anchor centerline to edge or end of CMU masonry wall. Figures 3A and 313 of this report show critical and minimum edge and end distances. 2. Critical edge and end distances, c,„ are the least edge distances at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction). 3. Minimum edge and end distances, c, , are the least edge distances where an anchor has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, c r, in Table 6 of Ihis report by the load reduction factors shown above. 4. Reduction factors are cumulative. Multiple induction factors for more than one spacing (Table5 of this report) or edge or end distance shall be calculated separately and multiplied. 5. Load reduction factor for anchors loaded in tension or shear with edge and end distances between critical and minimum shall be obtained by linear interpolation. 6. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (illustrated in Figure 5 of this woor0. Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical and minimum edge and end distance. FOR REFERENCE ONLY Page 9 of 18 Originally Issued: 2022 Page 23 TABLE 6 - ALLOWABLE TENSION AND SHEAR VALUES FOR THREADED ROD AND REBAR WITH SET -XP® EPDXY ADHESIVE IN THE TOP OF FULLY GROUTED CMU WALL CONSTRUCTIONIaA,5,6.7,9,10,11,12 f b�Ypet�r� h� 'il ��fi f l x r � � tl N � *� j ABosvabi� 1iad based pn $,fid re gtJl1B(pognf7s� +w tC""' tti 114 i ✓ 'Y+,... r J kmr +, «,x Sh r L 'RUM G �J 4-1/2 1,485 590 1,050y�� 1/2 5/8 12 2,440 665 1,625 S' Q rT^.+ Y6, 1yi f p P aYz$.v5.e7 py S,. t(r^ V E'1'%✓. +i'r 4`Y&.d �.�'�.�.r"ary,4�/yg. �� }" *5... h�Gt v '.�� -.-a - AY v} hry EF.t'O N Y 7-7/8 1,610 735 1,370 7/8 1 21 4,760 670 1,375 X5/8 y4-1/2 1,265 550 865 No.4 12 2,715 465 1,280 MM r �� X�'I'hh+u*N#-+ For SI: I inch = 25.4 mm, I psi = 6.89 kPa, I Ibf = 4.48 N. 1. The allowable load shall be the lesser of bond values given in Table 6 of this report and steel values given in Tables 9 or 10 of this report as applicable. 2. Allowable loads are for installations in the grouted CMU core opening. 3. Embedment depth is measured from the horizontal surface of the grouted CMU core opening on top of the masonry wall. 4. Critical and minimum edge distance and spacing shall comply with Tables 4 and 5. Figures 3A of this report and 3B of this report shows critical and minimum edge and end distances. 5. The minimum allowable nominal width of CMII wall shall be 8 inches (203 mm). 6. Anchors are permitted to be installed in the CMU core opening shown in Figures 3A and 3B of this report. Anchors are limited to one installation per CMU core opening. 7. Tabulated load values are for anchors installed in fully grouted masonry walls constructed From materials complying with Section 3.2.6 of this report. 8. Tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and the IRC. 9. Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 of this report, asapplicable. 10. Threaded rod and rebar installed in fully grouted masonry walls with SET -XP adhesive are permitted to resist dead, live, seismic and wind loads. Section 4.1 of this report provides additional design requirement details. 11. Threaded rods shall meet or exceed the tensile strength of ASTM Fl 554, Grade 36 steel, which is 58,000 psi 12. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62 (BC or IRC), allowable tension loads shall be multiplied by 0.80 and stainless steel or zinc coated anchors complying with Section 5.9 of this report shall be used. TALLOW = 1700" x 0.82 = 1394" (ASD) T = 1250 (CONSERVATIVE) TALLM > T OK FOR REFERENCE ONLY Page 11 of 18