HomeMy WebLinkAboutX2021-2205 - Calcsn
structures
2880 S. Coast Highway
Laguna Beach, CA 92651
ph: 949 715 0775
X2021-aW
MOO EW��
".
STRUCTURAL CALCULATIONS FOR
KUISH BLDG
REMODEL
JOB ADDRESS:
3800 EAST COAST HWY,
CORONA DEL MAR, CA
CLIENT:
BRAD KUISH
CALCULATIONS PREPARED BY:
ARASH BORUJERDPUR, EIT
NENO GRGURIC, PE
QROF ESS JpNq
iwi m
M �
�F OF CALAE S. �j'• Z
BUILDING DIVISION
W. M.K.
BUILDING DIVISION
SF.P 2 .P 7 _1
By,' M.K
FFnll
structures
Design Loads
STRUCTURES, INC
2880 SOUTH COAST HIGHWAY
LAGUNA BEACH, CA
949-715-0775
Roof Dead Load (Drywall Ceiling)
Roof Finish - Asphlat 3.30 psf
1/2" Plywood 1.50 psf
Framing (2X8 @ 16" O.C.) 1.90 psf
Drywall 2.80 psf
Miscellaneous 2.50 psf
12.00 psf
Floor Dead Load
Floor Finish - Wood/Carpet
5.00 psf
3/4" Plywood
2.30 psf
Framing (2x12 @24" O.C.)
2.00 psf
Drywall
2.80 psf
Miscellaneous
1.90 psf
14.00 psf
Roof Deck Dead Load
Deck Finish-DEX-O-TEX 2.50 psf
3/4" Plywood 2.30 psf
Framing (2X10 @ 16" O.C.) 2.80 psf
Drywall 2.80 psf
Miscellaneous 1.60 psf
Wall Dead Load
Exterior Wall (Stucco)
Interior Walls
12.00 psf
16.00 psf
8_00 psf
PROJECT: KUISH BLDG
DATE: 7/27/2021
SHEET:
BY: AB
Roof Live Load
20.00 psf
20.00 psf
Floor Live Load
Floor Live Load 40.00 psf
40.00 psf
Roof Live Load
60_00 psf
60.00 psf
Page 1
Title Block Line 1
You can change this area
using the "Settings" menu item
and then using the"Printing &
Title Block, selection.
NEW
CODE REFERENCES
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set: ASCE 7-16
Material Properties
Project Title:
Engineer:
Project ID:
Project Descr:
Page 2
Printed: 9 AUG 2021, 10:47AM
Analysis Method:
Allowable Stress Design
Fb+
1,000.0 psi
E: Modulus of Elasticity
Load Combination ASCE 7-16
Fb-
1,000.0 psi
Ebend-xx 1,700.Oksi
fv: Actual
= 45.22 psi
Fc - PHI
1,500.0 psi
Eminbend -xx 620.Oksi
Wood Species
: Douglas Fir -Larch
Fc - Perp
625.0 psi
+D+0.750Lr+0.750L+H
Wood Grade
: No.1
Fv
180.0 psi
Span # where maximum occurs =
Span # 1
Span # where maximum occurs
Ft
675.0 psi
Density 31.210pcf
Beam Bracing :
Beam is Fully Braced against lateral -torsional buckling
Max Downward Transient Deflection
0.023 in Ratio=
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Point Load : D = 0.50, Lr = 0.80 k @ 3.750 ft, (POST ABV)
Uniform Load: D = 0.0120, Lr = 0.020 ksf, Extent = 3.70 ->> 7.0 ft, Tributary Width =1.330 8, (ROOF ABV)
Uniform Load: D = 0.0160 ksf, Extent = 3.70 ->> 7.0 ft, Tributary Width = 8.0 it, (WALL ABV)
Uniform Load : D = 0.0140, L = 0.050 ksf, Tributary Width =1.330 it, (FLOOR LOAD)
Uniform Load : D = 0.0160 ksf, Tributary Width =1.50 ft, (WALL ABV)
Maximum Bending Stress Ratio =
0.436 1 Maximum Shear Stress Ratio
= 0.201 : 1
Section used for this span
4x12
Section used for this span
4x12
flo: Actual =
599.69psi
fv: Actual
= 45.22 psi
Fb: Allowable =
1,375.00psi
Fv: Allowable
= 225.00 psi
Load Combination
+D+Lr+H
Load Combination
+D+0.750Lr+0.750L+H
Location of maximum on span =
3.766ft
Location of maximum on span
= 7.066ft
Span # where maximum occurs =
Span # 1
Span # where maximum occurs
= Span # 1
Maximum Deflection
C FN
C i
Cr
Max Downward Transient Deflection
0.023 in Ratio=
4226>=480
M
Max Upward Transient Deflection
0.000 in Ratio =
0 <480
fv
Max Downward Total Deflection
0.053 in Ratio=
1803>=360
Max Upward Total Deflection
0.000 in Ratio=
0 <360
Maximum Forces & Stresses for Load Combinations
Load Combination
Max Stress Ratios
Moment Values
Shear Values
Segment Length
Span #
M V
Cd
C FN
C i
Cr
C in
C t
C L
M
Po
Fb
V
fv
Fv
+D+H
0.00
0.00
0.00
0.00
Length = 8.0 ft
1
0.327 0.167
0.90
1.100
1.00
1.00
1.00
1.00
1.00
1.99
323.86
990.00
0.71
27.01
162.00
+D+L+H
1.100
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 8.0 ft
1
0.373 0.193
1.00
1.100
1.00
1.00
1.00
1.00
1.00
2.52
410.03
1100.00
0.91
34.77
180.00
+D+Lr+H
1.100
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 8.0 it
1
0.436 0.193
1.25
1.100
1.00
1.00
1.00
1.00
1.00
3.69
599.69
1375.00
1.14
43.53
225.00
+D+S+H
1.100
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 8.0 ft
1
0.256 0.130
1.15
1.100
1.00
1.00
1.00
1.00
1.00
1.99
323.86
1265.00
0.71
27.01
207.00
+D+0.750Lr+0.750L+H
1.100
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Title Block Line 1
Yowcan change this area
using the "Settings" menu item
and then using the "Printing &
Title Block" selection.
Project Title:
Engineer:
Project ID:
Project Descr:
Page 3
Title Block Line 6 Printed: 9 AUG 2021, 10:47AM
:Ile,
:, DISH BLD .e.
WOOCi Be8111 Software copy ght ENEROALC, INC.1Aa3.2020, BuiItl;1220;81j
Lic. #: KW -06007640 STRUCTURES INC.
DESCRIPTION: NEW HDR
Load Combination Max Stress Ratios Moment Values Shear Values
Segment Length Span #
M
V
Cd
C FN
C i
Cr
C in
C t
C L
M
fb
FIT
V
fv
F'v
Length = 8.0 ft 1
0.433
0.201
1.25
1.100
1.00
1.00
1.00
1.00
1.00
3.66
595.37
1375.00
1.19
45.22
225.00
+D+0.750L+0.7505+H
+D+0.70E+0.60H
0.628
0.757
1.100
1.00
1.00
1.00
1.00
1.00
D Only
0.628
0.00
0.00
0.00
0.00
Length = 8.0 It 1
0.307
0.159
1.15
1.100
1.00
1.00
1.00
1.00
1.00
2.39
388.49
1265.00
0.86
32.83
207.00
+D+0.60W+H
1.100
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 8.0 It 1
0.184
0.094
1.60
1.100
1.00
1.00
1.00
1.00
1.00
1.99
323.86
1760.00
0.71
27.01
288.00
+D+0.750Lr+0.750L+0.450W+H
1.100
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 8.0 ft 1
0.338
0.157
1.60
1.100
1.00
1.00
1.00
1.00
1.00
3.66
595.37
1760.00
1.19
45.22
288.00
+D+0.750L+0.750S+0.450W+H
1.100
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 8.0 It 1
0.221
0.114
1.60
1.100
1.00
1.00
1.00
1.00
1.00
2.39
388.49
1760.00
0.86
32.83
288.00
+0.60D+0.60W+0.60H
1.100
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 8.0 ft 1
0.110
0.056
1.60
1.100
1.00
1.00
1.00
1.00
1.00
1.20
194.31
1760.00
0.43
16.20
288.00
+D+0,70E+0.60H
1.100
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 8.0 ft 1
0.184
0.094
1.60
1.100
1.00
1.00
1.00
1.00
1.00
1.99
323.86
1760.00
0.71
27.01
288.00
+D+0.750L+0.7505+0.5250E+H
1.100
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 8.0 It 1
0.221
0.114
1.60
1.100
1.00
1.00
1.00
1.00
1.00
2.39
388.49
1760.00
0.86
32.83
288.00
+0.60D+0.70E+H
1.100
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00
Length = 8.0 ft 1
0.110
0.056
1.60
1.100
1.00
1.00
1.00
1.00
1.00
1.20
194.31
1760.00
0.43
1620
288.00
Overall Maximum Deflections
Load Combination
Span
Max. "-'
Can Location in Span
Load Combination
Max. W Dell
LocaBon in
Span
+D+0.750Lr+0.750L+0.450W+H
1
0.0532
4.029
0.0000
0.000
Vertical Reactions
Support notation: Far left is#1
Values in KIPS
Load Combination
Support 1
Support 2
Overall MlNimum
0.266
0.266
+D+H
0.628
0.757
+D+L+H
0.894
1.023
+D+Lr+H
1.082
1.190
+D+S+H
0.628
0.757
+D+0.750Lr+0.750L+H
1.168
1.281
+D+0.750L+0.7505+H
0.827
0.956
+D+0.60W+H
0.628
0.757
+D+0.750Lr+0.750L+0.450W+H
1.168
1.281
+D+0.750L+0.7505+0.450W+H
0.827
0.956
+0.60D+0.60W+0.60H
0.377
0.454
+D+0.70E+0.60H
0.628
0.757
+D+0.750L+0.7505+0.5250E+H
0.827
0.956
+0.60D+0.70E+H
0.377
0.454
D Only
0.628
0.757
Lr Only
0.454
0.434
L Only
0.266
0.266
H Only
Page 4
SEISMIC DIAGRAM - ROOF
TOTAL AREA = 1852 SQF
E
LL
(3
U)
N
E co
ro
E Lo E
a
W
a
E
SEISMIC DIAGRAM - THIRD FLOOR
Page 5
9'-4"
7/26/2021
All
U.S. Seismic Design Maps
KUISH BLDG
3800 East Coast Hwy, Corona Del Mar, CA 92625, USA
Latitude, Longitude: 33.5938836, -117.866628
J Ro j Bakery Cafe�Unit States /
� � �Plistalal,ServlcVko
a(
l /� �o` /Froe�Crowns
Dale
Design Code Reference Document
'.. Risk Category
Site Class
Value
SDC
'Type
Value
Ss
1.349
St
0.478
�,i SMs
1.619
SMI
null -See Section 11.4.8
SDS
1.079
SDI
null -See Section 11.4.8
Type
Value
SDC
null -See Section 11.4.8
Fa
1.2
Fv
null -See Section 11.4.8
PGA
0.589
FPGA
1.2
PGAM
0.707
TL
8
SsRT
1.349
SsUH
1.483
SsD
2.636
S1RT
0.478
S1UH
0.519
SID
0.822
PGAd
1.061
CRS
0.91
Page 6
L
OSH PD
7/26/2021, 5:02:25 PM
ASCE7-16
II
D - Default (See Section 11.4.3)
Description
MCER ground motion. (for 0.2 second period)
MCER ground motion. (for 1.0s period)
Site -modified spectral acceleration value
Site -modified spectral acceleration value
Numeric seismic design value at 0.2 second SA
Numeric seismic design value at 1.0 second SA
Description
Seismic design category
Site amplification factor at 0.2 second
Site amplification factor at 1.0 second
MCEG peak ground acceleration
Site amplification factor at PGA
Site modified peak ground acceleration
Long -period transition period in seconds
Probabilistic risk -targeted ground motion. (0.2 second)
Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration
Factored deterministic acceleration value. (0.2 second)
Probabilistic risk -targeted ground motion. (1.0 second)
Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration.
Factored deterministic acceleration value. (1.0 second)
Factored deterministic acceleration value. (Peak Ground Acceleration)
Mapped value of the risk coefficient at short periods
IV
data ®2021
https://seismiemaps.org 1/3
7/26/2021
Type Value
CRI ` 0.922
U.S. Seismic Design Maps
Description
Mapped value of the risk coefficient at a period of 1 s
Page 7
https:/Iseismicmaps.org 2/3
7/26/2021 U.S. Seismic Design Maps Page 8
IY76343111TANN
While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or
liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination
and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this
information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the
standard of care required of such professionals in Interpreting and applying the results of the seismic data provided by this website. Users of the information from
this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible
for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.
https://s6ismiemaps.org 3/3
Sin EQUATION
SITE CLASS D
Sit`
0478;
Site Class
D3�
Fv
1.9
Sari
0.9
SD1
0.61
AcrF 7-1 F - TARI F 11.4-2
(PER US SEISMIC DESIGN MAP)
PER ASCE 7-16 - TABLE 11.4-2
ASCE 7-16 EQ(11.4-2)
ASCE 7-16 EQ(11.4-4)
NOTE: USE STRAIGHT-LINE INTERPOLATION FOR INTERMEDIATE VALUES OF S i
a ALSO, SEE REQUIRMENTS FOR SITE-SPECIFIC GROUND MOTIONS IN SECTION 11.4.8
Page 9
structures
Seismic Analysis Based on
INPUT DATA
Typical floor height
Typical floor weight
Number of floors
Importance factor (ASCE 11.5.1)
Design spectral response
IMapped spectral response
The coefficient (ASCE Tab 12.8-2)
The coefficient(ASCE Tab. 12.2. 1)
No. Name Height
ft
2 Roof
8.00
1 2nd
9.00
Ground
i
PROJECT'.KLISH
CLIENT:
MIR NIO .'D1 AR
PAGE:
DESIGN BY: AB
7/28/2021 RF1/IFW RV
Page 10
VERTICAL
Bight Weight
hx Wx
OF
Wxhxk Cv Fx
k
468 0.545 6.4
9.0 ;:143;-:;.'. 390 - 0.455 5.3
0.0
DESIGN SUMMARY
h='.
'.9.8 ':
ft, (2.7 m)
Total base shear
(l kips =4.448 kN)
wx="
` 35
;. kips, (155.7kN)
V =
0.17
W, (SD) = 12 k, (SD)
n=
'. 2
=
0.12
W, (ASD) = 8 k, (ASD)
le =
-` 1
Seismic design category
= D
SDs -
1.079
- g
ha =
17.0
ft, (5.2 m)
SDI = r
0.61
g
W =
71
kips, (314.9 kN)
SI =h
0.478
<, g
k =
1.00
, (ASCE 12.8.3, page 91)
CI=F
'0.02
Ewx hk =
857
R=;
6.5
X =
0.75
, (ASCE Tab 12.8-2)
..
-__ _.,.....
Ta = CI (hn)x =
0.17
SeC, (ASCE 12.8.2.1)
VERTICAL
Bight Weight
hx Wx
OF
Wxhxk Cv Fx
k
468 0.545 6.4
9.0 ;:143;-:;.'. 390 - 0.455 5.3
Vx O. M.
k k -ft
6.4
51
11.8
157
EF, EW;
k k
6.4 28
11.8 71
Fpx
9
0.0
...............
I
Vx O. M.
k k -ft
6.4
51
11.8
157
EF, EW;
k k
6.4 28
11.8 71
Fpx
9
PROJECT: KUISH PAGE:
1' 11 CLIENT: DESIGN BY: AS
rP,$ JOB NO.: 21-46 DATE: 08/04/21 REVIEW BY:
Wind Analysis fnr l nw_risw Rnildinn R ... d ..9619. IRC/ARCF:7-19 .
INPUT DATA
Exposure category (B, C or D, ASCE 7-16 26.7.3)
Importance factor (ASCE 7-16 Table 1.5.2)
Basic wind speed (ASCE 7-1626.5.1 or 2018 IBC)
Topographic factor (ASCE 7-16 26.8 & Table 26.8-1)
Building height to save
Building height to ridge
Building length
Building width, including overhangs
Overhang sloped width
Effective area of components (or Solar Panel area)
DESIGN SUMMARY
Page 11
'I I'
Max horizontal force normal to building length, L, face = 21.25 kips, (95 kN), SO level (LRFD level), Tye.
C
1 Roof angle 0 = 0.00
Iw =
1.00
for all Category
V =..
95
mph, (152.89 kph)
Ka ='r
'1
Flat
he=
16
ft, (4.88 m)
hr=16
3.72 9.80
ft, (4.88 m)
L =::
83
ft, (25.30 m)
8 =
49
ft, (14.94 m) �8
Oh =r
3
ft, (0.91 m)
A =
12:
ft2, <_= Overhang? (Yes or No) No
(
1.12
m2)
Page 11
'I I'
Max horizontal force normal to building length, L, face = 21.25 kips, (95 kN), SO level (LRFD level), Tye.
Max horizontal force normal to building length, B, face = 12.54 kips, (56 kN)
1 Roof angle 0 = 0.00
Max total horizontal torsional load = 168.825 ft -kips, (229 kN-m)
Net Pressure with
Max total upward force - 70.96 kips (316 kN)
(+GCpi) (-GC,i)
Net Pressure with
0.40
ANALYSIS
GOpf
Velocity Pressure
(+OOpi)
qh = 0.00256 K, Kit Ka K, V2 = 16.69 psf
1
where: qh = velocity pressure at mean roof height, h. (Eq. 26.10-1 page 268)
3.72 9.80
Ki =velocity pressure exposure coefficient evaluated at height, h, (Tab. 26.10-1, pg 268) =
0.86
Ka = wind directionality factor. (Tab. 26.6-1, for building, page 266) _
0.85
IT = mean roof height =
16.00 It
K, = ground elevation factor. (1.0 per Sec. 26.9, page 268)
< 60 ft, [Satisfactory]
(ASCE 7-16 26.2.1)
3
< Min (L, B), [Satisfactory]
(ASCE 7-16 26.2.2)
Desian Pressures for MWFRS
-9.29
-3.21
p = qh [(G Cpf )-(G Cal )]
where: p = pressure in appropriate zone. (Eq. 28.3-1, page 311). pn,in = 16 fast (ASCE 7-16 28.3.4)
G Car = product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.3-1, page 312 & 313)
G Ca I = product of gust effect factor and internal pressure coefficient. (Tab. 26.13-1, Enclosed Building, page 271)
= 0.18 or -0.18
a = width of edge strips, Fig 28.3-1, page 312, MAX[ MIN(0.1 B, 0.1 L, 0.4h), MIN(0.04B, 0.04L), 3] = 4.90 ft
Net Pressures psf , Basic Load Cases Net Pressures (psf), Torsional Load Cases
2
2E
0
1
REFERENCE CORNER �E
a
wwo oiREcnax
Load Case A (Transverse)
3
*011EI
6E�i4E
REFEREwiNo slfl[cnory
Load Case B (Longitudinal)
Roof an le 0 = 0.00
1 Roof angle 0 = 0.00
Surface
Net Pressure with
Net Pwith
ssure
(+GCpi) (-GC,i)
Net Pressure with
0.40
Cp
GOpf
(+GCp I)re(
-C'Ca�)
(+OOpi)
(-C'Cal)
1
0.40
3.72 9.80
-0.45
-10.64
-4.56
2
-0.69
-14.69 -8.61
-0.69
-14.69
-8.61
3
-0.37
-9.29 -3.21
-0.37
-9.29
-3.21
4
-0.29
-7.94 -1.86
-0.45
-10.64
-4.56
5
0.40
3.72
9.80
6
-0.29
-7.94
-1.86
1 E
0.61
7.26 13.34
-0.48
-11.15
-5.07
2E
-1.07
-21.11 -15.03
-1.07
-21.11
-15.03
3E
-0.53
-11.99 -5.91
-0.53
-11.99
-5.91
4E
-0.43
-10.30 -4.22
-0.48
-11.15
-5.07
5E
0.61
7.26
13.34
6E
1
-0.43
1 -10.30
1 -4.22
2
2E
0
1
REFERENCE CORNER �E
a
wwo oiREcnax
Load Case A (Transverse)
3
*011EI
6E�i4E
REFEREwiNo slfl[cnory
Load Case B (Longitudinal)
E ] 3T 2T
44
2E 2 6
4E
IT
REFERENCE CORNER
IE �
wwo plflrcnoN
22E 3
3E
C T
6ET1REFERENCE flNER
2° b wwo CIFIK oN
Load Case A (Transverse) Load Case B (Longitudinal)
Roof an
Ile 0 = 0.00
G Cpr
Net Pressure with
Surface
(+GCpi) (-GC,i)
1T
0.40
0.93 2.45
2T
-0.69
-3.67 -2.15
3T
-0.37
-2.32 -0.80
4T
-0.29
-1.98 -0.46
Roof angle
0 = 0.00
of
Net Pressure with
SurfaceGC'
(+GCpi) (-GCp I)
5T
0.40
0.93 2.45
6T
-0.29
-1.98 -0.46
E ] 3T 2T
44
2E 2 6
4E
IT
REFERENCE CORNER
IE �
wwo plflrcnoN
22E 3
3E
C T
6ET1REFERENCE flNER
2° b wwo CIFIK oN
Load Case A (Transverse) Load Case B (Longitudinal)
Basic Load Case A (Transverse Direction)
Torsional Load Case A !Transverse Direction)
Pwarmnq o -11.82 psf
(ASCE 7-16 28.3.3)
Area
pressure k with
Surface
Ifd)
(*GCp1)
(-GCpi)
1
1171
4.35
11.47
2
1793
-26.35
-15.45
3
1793
-16.66
-5.75
4
1171
-9.30
-2.18
1E
157
1.14
2.09
2E
240
-5.07
-3.61
3E
240
-2.88
-1.42
4E
157
1 -1.62
-0.66
42
Horiz.
16.40
16.40
E
Vert.
-50.96
-26.23
Min. wind
Horiz.
21.25
21.25
28.4.a
Vert.
-65.07
-65.07
Torsional Load Case A !Transverse Direction)
Pwarmnq o -11.82 psf
(ASCE 7-16 28.3.3)
Basic Load Case B Longitudinal Direction)
Area
Pressure k with
I Taman
t -k
Surface
(8')
(*GCp1)
(-GCp1)
(*GCp1)
(-GCpi)
1
507
1.88
4.97
34
91
2
777
-11.41
-6.69
0
0
3
777
-7.21
-2.49
0
0
4
507
-4.03
-0.94
74
17
1 E
157
1.14
2.09
42
77
2E
240
-5.07
-3.61
0
0
3E
240
-2.88
-1.42
0
0
4E
157
-1.62
-0.66
59
24
1T
664
0.62
1.63
-13
-34
2T
1017
-3.73
-2.19
0
0
3T
1017
-2.36
-0.82
0
0
4T
664
1 -1.32-0.31
-27
-6
Total Horiz, Torsional Load,
MT
169
168
Basic Load Case B Longitudinal Direction)
Torsional Load Case B (Longitudinal Direction
Area
Pressure
k with
Surface
(as)
(+GCp1)
(-GCp1)
2
1793
-26.35
-15.45
3
1793
-16.66
-5.75
5
627
2.33
6.14
6
627
-4.98
-1.17
2E
240
5.07
-3.61
3E
240
-2.88
-1.42
5E
157
1.14
2.09
6E
157
-1.62
-0.66
0
Horiz.
10.06
10.06
E
Vert.
-43.49
-19.77
Min. wind
Hortz.
12.54
12.54
28.4.4
Vert.
-65.07
-65.07
Torsional Load Case B (Longitudinal Direction
Desion Pressures for components and cladding EO�2h
P = 9h[ (G CP) - (G CPi)] 5 1 21r where: p = pressure on component. (Eq. 30.3-1, pg 334) c'°4 15 toga ° Pmin = 16.00 psf (ASCE 7-16 30.2.2)GCp= external pressure coefficient. sn see table below. (ASCE 7-16 30.3.2) Walls sh
6= 0.0o a Roof e.,• Roof 0>71
ea....e.. v..... I I 7,.... V zona 2 Zen. 2e 1 Zone 2n I Zone 2
Comp.
Comp. d Cladding
Pressure
( Pet )
(The Max Pressure
#N/A psf)
Page 12
Area
Pressure
k with
I Torsion
ft -k
Surface
( az)
(+GC P)
1
(-GC PI)
(+GC PI)
(-GC,I)
2
1793
-26.35
-15.45
0
0
3
1793
-16.66
-5.75
0
0
5
235
0.87
2.30
9
23
6
235
-1.87
-0.44
18
4
2E
240
-5.07
-3.61
0
0
3E
240
-2.88
-1.42
0
0
5E
157
1.14
2.09
25
46
6E
157
-1.62
-0.66
36
15
5T
392
0.36
0.96
-4
-12
6T
392
-0.78
-0.18
-10
-2
Total
Horiz. Torsional Load,
MT
73.6
73.6
Desion Pressures for components and cladding EO�2h
P = 9h[ (G CP) - (G CPi)] 5 1 21r where: p = pressure on component. (Eq. 30.3-1, pg 334) c'°4 15 toga ° Pmin = 16.00 psf (ASCE 7-16 30.2.2)GCp= external pressure coefficient. sn see table below. (ASCE 7-16 30.3.2) Walls sh
6= 0.0o a Roof e.,• Roof 0>71
ea....e.. v..... I I 7,.... V zona 2 Zen. 2e 1 Zone 2n I Zone 2
Comp.
Comp. d Cladding
Pressure
( Pet )
(The Max Pressure
#N/A psf)
Page 12
STRUCTURES, INC PROJECT: WISH BLDG
2880 SOUTH COAST HIGHWAY DATE: 8/3/2021
I I LAGUNA BEACH, CA
Fr'I r 949-715-0775 BY: AB
SCruCtureS SHEET:
1. Weights Per Floor: Area 2
i otai vveignt or tnure bunaing= 1u0a4
2. Seismic: Lateral Distribution Per Level
Level Fx = Force at Each Level Fx =Force at Each Level Fx
(Strength Design) lbs (ASD) lbs 1.3
Roof 6400.0 4480.0 1 1.31 5
2nd Floor 5300.0 3710.0 1 1.31 48 3
3. Wind: Lateral Distribution Per Level
Level
Height of
Trib.
Unit Load
Length x (Width or Height)
Total
Weight (W)
Level
Description
sf
ft
lbs
Per Level lbs
Length
Roof
N/A
12
1852 =
1
22224
439.661
Roof
5
Exterior
16
66
4
4224
27408
49
Lower Walls
Interior
8
30
4
960
- 83'
11
2nd Floor
Exterior
_ 16"
66 =
4
4224
49
11
Upper Walls
Interior •^ 8 30 4 960
Floor
N/A
J4
1071
1
14994
Upper
Roof
N/A
:".12
253
1
3036
43286
Level
Balcony
N/A ` i 1211 510 "' 1 6120
Exterior
16
118 `
4
7552
Lower Walls
Interior
8
200
4 =
6400
i otai vveignt or tnure bunaing= 1u0a4
2. Seismic: Lateral Distribution Per Level
Level Fx = Force at Each Level Fx =Force at Each Level Fx
(Strength Design) lbs (ASD) lbs 1.3
Roof 6400.0 4480.0 1 1.31 5
2nd Floor 5300.0 3710.0 1 1.31 48 3
3. Wind: Lateral Distribution Per Level
Level
Height of
Trib.
Direction
Max Horiz. I
Fx = Force at
Dir
Unit Shear (plf)
Structure (ft)
Hei ht ft
Force lbs
Lvl ASD
Length
Transverse
212501
439.661
83
5
Roof
116.00
4
Longitudinal
12540
259.45
49
5
Transverse
21250
912.28
- 83'
11
2nd Floor
$.3
Longitudinal
125401
538.361
49
11
Page 13
Fnn
STRUCTURES, INC PROJECT:
2880 SOUTH COAST HIGHWAY DATE:
LAGUNA BEACH, CA BY: AB
s t r u c t u res 949-715-0775 SHEET:
LATERAL ANALYSIS
.Line-. ROOF LINE
V(seWm10= 5824 x 527 / 1852 =
V(Wind) = 5 x 25 =
.Line FLOOR LINE
L = 19.00 +
0.00 +
0.00+
V(seIsmio)= 4823 x
477 /
1834 =
V(wlnd) 0 11 x
25
=
V (unit shear) 2912 /
19 =
153 plf
Form) as 153 x
8 =
1226 lbs.
Ee(12.4.2.2)=0.2*Sm* D
=
0D
Fc (2.4.1.5) = D+0.7E=
2973 lbs.
Fc (2.4.1.6) as D+0.75(0.7E)+0.75L+0.75Lr-
FT (2.4.1.8) = 0.6D+0.7E=
542
lbs.
Total DL= 1519
Total LL= 758
16571bs. + 0 = 1657 lbs.
1321bs. + 0 = 132 lbs.
Notes: EXISTING SHEAR WALL
CALCULATIONS JUST FOR LOAD
COLLECTION PURPOSES
0.00 + 0.0 = 19.00 ft.
1254 lbs. + 1657 = 2912 lbs.
2751bs. + 132 = 407 lbs.
Sheorwall Type = A
Uplift= 542 lbs.
Holdown Type I HD U2
2766 lbs.
Notes: ADDITIONAL LOADS FROM ROOF
Page 14
Page 15
nPROJECT KUISH PAGE
CLIENT DESIGN BY AB
structures JOB NO 20.41 DATE: REVIEW BY
'UT DATA
'ERN- FORCE ON DIAPHRAGM:
Vale, welo=
150
plf,far And, ASD
(SERVICE LOADS) Vete. SEISMIC'.
150
plf,for seismic, ASD
TENSIONS: Lr = 2.5
X, Lr =
8
X, h = 8.5
PI
X
H, = 3.5
X, Hr =
3.25
X, H, ='. 1.25
fl
0 STUD SECTION 2
pos,b =
2.-;1n,
h = - :.6
in
SPECIES (1 = DFL, 2=SP)
1
DOUGLAS FIR -LARCH
GRACE (1, 2, 3, 4, 5, or 6)
3
No.1
iE STUD SECTION 1
pea, b=
4
in, h= fi
in
SPECIES (1 = DFL, 2 = SP)
1
DOUGLAS FIR -LARCH
GRADE (1, 2, 3, 4, 5, or 6)
3 'No.1
TEL GRADE (0 or 1) = .U.,,.
c=Strudurall
IMUM NOMINAL PANEL THICKNESS
=
: '15132
In
V die
ON NAIL SIZE (0=6d, 1=13d, 2=10d) 2- 10d THE SHEAR WALL DESIGN IS ADEQUATE.
FIC GRAVITY OF FRAMING MEMBERS 05.,
r OPTION(1=ground level, 2=upper level) : 1' ground level shear wall E=1.25/0.7=1.785 K(LRFD)
-
OIL =16 PSF x IS's 9'/2=1.1 K
GN SUMMARY DSDL - E., = 0.9.1.1 -1.785 = -800'
UPLIFT =800'
BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS
@ 4 in O.C. BOUNDARY & ALL EDGES 112 in O.C. FIELD,
5/81n DIA. x 101n LONG ANCHOR BOLTS @38 in O.C. (or 1/2 in DIA, x 101n LON/CHOR LTS@ 38 In O.C.)
HOLD-DOWN FORCES: TL= 1.25 k, Te= 1.25 k (USE HDU2-1/4x2.5 SIMPSON HOLD-DOWN)
MAX STRAP FORCE: F= 1.38 k (USE SIMPSON C816 OVER WALL SHEATHING WITH FLAT BLOCKING)
KING STUD: 2-2"x6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT.
EDGE STUD: 1 -4" x6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT.
SHEAR WALL DEFLECTION: A = 0.18 In
L1 + 0.5 L2
1.1 12/2 L2/2 L3
F_F2 Ff F3
1 F4 1. 2 F4 3 F44
S 6 F7 FS
F9 F10 F11 F12
5
FS FB
F13 F14
F5 FS
F5 FB
F15 F16 F17 F18
F5 1 F19 I1 F20 F8
z 9 F21 J 1 0 F21 1 1 F21 12
F22 F23 1 F23 1 F24
TL FREE-9ODVINDIVIDUAL PANELS OF WALL TR
Page 16
HECK MAX SHEAR WALL DIMENSION RATIO h I w = 1.3 < 3.50 [Satisfactory]
ETERMINE FORCES & SHEAR STRESS OF FREE -BODY INDIVIDUAL PANELS OF WALL
INDIVIDUAL PANEL
Win
H(TO
MAX SHEAR STRESS (Pin
NO. FORCE nd)
NO. FORCE (11,I)
1
2.50
1.25
162
F1 405
F13
431
2
4.00
1.25
345
F2 1380
F14
431
3
4.00
1.25
345
F3 495
F15
1065
4
8.50
1.25
58
F4 431
Fib
634
5
2.50
1.63
390
F5 975
F17
358
6
8.50
1.63
221
F6 1380
F18
790
7
2.50
1.63
390
F7 1380
F19
842
8
8.50
1.63
221
F8 1875
F20
754
9
2.50
3.50
53
F9 -203
F21
820
10
4.00
3.50
234
F10 634
F22
133
11
4.00
3.50
234
Fit 358
F23
842
12
8.50
3.50
132
F12 73
F24
1121
iETERMINE REQUIRED CAPACITY
ve= 390 pit, (
1 Side Panel Required, The Max.
Nail Spacing=
wo_1
IN. 114 wxh A.111 nxnn fisc., Im
..: me malca[e.. hear u.noss s nave reuucea oy speanc 9nr .a4LuF Pei
4E MAX SPACING OF SAE DIA (or 1/2' DIA) ANCHOR BOLT (NOS 2015, Tab.11 E)
518 in DIA. x 101n LONG ANCHOR BOLTS ® 381n O.C. (or 1121n DIA. IT 10 in LONG ANCHOR BOLTS @ 381n O.C.)
4 in)
...__..............._...__. _.
Panel Grade
___.__._____._,
Min.
Common Penetration
Nail hal
Min.
Thickness
in)
Blocketl Nall Spacing
Boundary & All Edges
Reslstin9
Momenta a-Iba
6 4 J
2
IMPSONSEISMIC
SWcturell
10tl 15/8
15/32
340 510 665
870
0
..: me malca[e.. hear u.noss s nave reuucea oy speanc 9nr .a4LuF Pei
4E MAX SPACING OF SAE DIA (or 1/2' DIA) ANCHOR BOLT (NOS 2015, Tab.11 E)
518 in DIA. x 101n LONG ANCHOR BOLTS ® 381n O.C. (or 1121n DIA. IT 10 in LONG ANCHOR BOLTS @ 381n O.C.)
4 in)
STUD CAPACITY
P_= 0.63 kips
F,=
vrs
pl
I Wall Seismic
al mid -stun lbs
Oveduming
Momanis ft46a
1.60
Reslstin9
Momenta a-Iba
Safety
Factors
Net Upfft
lbs
IMPSONSEISMIC
ksl
=8veh +vbhh
=4ee,dAa+dsran.+ANN 40
+0.75he„+hd° =
0.184 In,ASD <
te8
0
0.9
TL= 1251
bAll
It
150
243
23773
1t
G= 9.0E+04 pal
Ca= 4 1= 1
I= 0.298 In en= 0.005
In, SO
da= 0.15 In, SO
,(ASCE 7.10 Tab 12.2-1&Tab 11.5-1)
°=1+0.95he.
value should
Po hr
0
0.9
TR= 1251
I\"
,(ASCE 7-10 Tab 12.12-1)
CF=
0.52 A= 19.25 in'
E=
te8
0
2/3
TL= 1200ISH.1ne.
F,=
WINO
150
22800
Iti hl
0
2/3
Ta= 1200`
STUD CAPACITY
P_= 0.63 kips
F,=
1500
(TL & TR values should include upper level UYLIe I TOMOS IT apPIIW019)
CK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.31 SDPW 5-15 4.3.2)
1.60
Ce=
3
E=
1700
ksl
=8veh +vbhh
=4ee,dAa+dsran.+ANN 40
+0.75he„+hd° =
0.184 In,ASD <
rip+Acro,4 .dee
E/1Lw
Gt
La
Sre,ellowable, aso= 0.343 In
Where: = 390 Nf,ASD I„= 19
It
E= 1.7E+06 ps1
[Satisfactory) (ASCE 7-1012.8.6)
A= 16.50 in' h= 8
1t
G= 9.0E+04 pal
Ca= 4 1= 1
I= 0.298 In en= 0.005
In, SO
da= 0.15 In, SO
,(ASCE 7.10 Tab 12.2-1&Tab 11.5-1)
°=1+0.95he.
value should
Cu= 1.0
A,= 0.02 h„
IOOOG. Gr
psi
(NDS 4.1.4)
,(ASCE 7-10 Tab 12.12-1)
STUD CAPACITY
P_= 0.63 kips
F,=
1500
psi
Co=
1.60
Ce=
0.52 A= 16.50 In'
E=
1700
ksl
CF=
1.10
F,=
1374 psi > f,= 38 psi
[Satisfactory]
STUD CAPACITY
Pmex=
1.25
dips, (this
value should
induce upper level DOWNWARD bounce R applicable)
F,=
1600
psi
Co=
1.60
CF=
0.52 A= 19.25 in'
E=
1700
kei
CF=
1.10
F,=
1374 pel > f,= 65 Tel
[Satisfactory]
Page 17
'T ' I Anchor Designer TM
r Software
VIT 111 Version 2.9.7376.2
e
1.Proiect information
Customer company:
Customer contact name:
Customer e-mail:
Comment:
2 Input Data & Anchor Parameters
General
Design method:ACI 318-14
Units: Imperial units
Anchor Information:
Anchor type: Bonded anchor
Material: F1554 Grade 36
Diameter (inch): 0.625
Effective Embedment depth, hof (inch): 10.000
Code report: ICC -ES ESR -2508
Anchor category: -
Anchor ductility: Yes
hmm (inch): 13.13
cap (inch): 16.40
Cmm (inch): 1.75
Smm (inch): 3.00
Recommended Anchor
Anchor Name: SET -XP® - SET -XP w/ 5/8"0 F1554 Gr. 36
Code Report: ICC -ES ESR -2508
Company: Date: 8/3/2021
Engineer: Page: 1/5
Project:
Address:
Phone:
E-mail:
Project description:
Location:
Fastening description:
Base Material
Concrete: Normal -weight
Concrete thickness, In (inch): 20.00
State: Cracked
Compressive strength, f� (psi): 3000
4),v: 1.0
Reinforcement condition: B tension, B shear
Supplemental reinforcement: Not applicable
Reinforcement provided at corners: No
Ignore concrete breakout in tension: Yes
Ignore concrete breakout in shear: No
Hole condition: Dry concrete
Inspection: Continuous
Temperature range, Short/Long: 150/110°F
Ignore Edo requirement: Not applicable
Build-up grout pad: No
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strangtie.com
Page 18
.' Anchor DesignerTM
Software
Vi r Version 2.9.7376.2
Load and Geometry
Load factor source: ACI 318 Section 5.3
Load combination: not set
Seismic design: Yes
Anchors subjected to sustained tension: No
Ductility section for tension: 17.2.3.4.2 not applicable
Ductility section for shear: 17.2.3.5.2 not applicable
Do factor: not set
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No
Strength level loads:
Nua [Ib]: 1100
Vuax [lb]: 0
Way [lb]: 0
<Figure 1>
X
Company: Date:
8/3/2021
Engineer: Page:
2/5
Project:
Address:
Phone:
E-mail:
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strang -Tie Company Inc. 5956 W. Las Posters Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com
Page 19
SIMPSON
StrongTie
<Figure 2>
Anchor DesignerTM
Software
Version 2.9.7376.2
Company:
Date: 8/3/2021
Engineer:
Page: 3/5
Project:
Address:
Phone:
E-mail:
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.stronglie.com
Page 20
Anchor DesignerTIA
Software
r Version 2.9.7376.2
Company:
Date:
8/3/2021
Engineer:
Page:
4/5
Project:
Address:
Phone:
E-mail:
3. Resulting Anchor Forces
Anchor Tension load, Shear load x, Shear load y, Shear load combined,
Nu. (lb) Va.. (lb) V„ay (lb) 4(V ... )'+(Vnay)' (lb)
1 1100.0 0.0 0.0 0.0
Sum 1100.0 0.0 0.0 0.0
Maximum concrete compression strain (%e): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (Ib): 0
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e'N. (Inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00
4 Steel Strength of Anchor in Tension (Sec. 17.4.1)
Naa (lb) d ON. (lb)
13110 0.75 9833
6 Adhesive Strength of Anchor in Tension (Sec. 17.4.5)
A,cr = Tkcrfshodieo Ksatamsole
ax, (psi) fmdiarm Kaal am.f. rx,ar (psi) -
435 1.00 1.00 1.00 435
Nb. = lar > dahar(Eq. 17.4.5.2)
Aa r (psi) d. (in) her (in) Nb. (lb)
1.00 435 0.63 10.000 8541
0.750Na = 0.750 (Am.IANao)'led,N. TP ..NeNea (Sec. 17.3.1 & Eq. 17.4.5.1a)
AN. (Ina) ANaa (Ina) CN. (In) Cemin (In) 'Yod.N. Tp, Na Nao (lb) d 0.750Na (lb)
73.62 150.57 6.14 2.00 0.798 1.000 8541 0.65 1624
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com
Page 21
��Ifl Anchor DesignerTM
r Software
Version 2.9.7376.2
Company:
Date:
8/3/2021
Engineer:
Page:
5/5
Project:
Address:
Phone:
E-mail:
11. Results
11. Interaction of Tensile and Shear Forces (Sec. D.71_?
Tension Factored Load, N.. (Ib) Design Strength, eNn (lb) Ratio Status
Steel 1100 9833 0.11 Pass
Adhesive 1100
1624
0.68
SET -XP wl 518"9 F1554 Gr. 36 with hef = 10.000 inch meets the selected design criteria.
Pass (Governs)
12. warnings
- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension
and concrete pryout strength in shear for SET -XP adhesive anchor is limited to 2,500 psi per ICC -ES ESR -2508 Section 5.3.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section
17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Per designer input, the tensile component of the strength -level earthquake force applied to anchors does not exceed 20 percent of the total
factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.4.2 for tension
need not be satisfied — designer to verify.
- Per designer input, the shear component of the strength -level earthquake force applied to anchors does not exceed 20 percent of the total
factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear
need not be satisfied — designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 v .strongtie.com
' Page 22
Originally Issued: 01/18/2013 Revised: 04/14/2021
Valid Through: 01/31/2022
TABLE 4 - EDGE AND END DISTANCE REQUIREMENTS AND ALLOWABLE LOAD REDUCTION FACTORS
FOR THREADED ROD AND REBAR WITH SET-XP®EPDXY ADHESIVE IN THE TOP OF FULLY GROUTED
CMU WALL CONSTRUCTIONIas
For Sh 1 inch = 25.4 mm
1. Edge and end distances (c„or ch,) are the distances measured from anchor centerline to edge or end of CMU masonry wall. Figures 3A and
313 of this report show critical and minimum edge and end distances.
2. Critical edge and end distances, c,„ are the least edge distances at which tabulated allowable load of an anchor is achieved where a load
reduction factor equals 1.0 (no load reduction).
3. Minimum edge and end distances, c, , are the least edge distances where an anchor has an allowable load capacity, which shall be
determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, c r, in Table 6 of Ihis report by the
load reduction factors shown above.
4. Reduction factors are cumulative. Multiple induction factors for more than one spacing (Table5 of this report) or edge or end distance shall be calculated
separately and multiplied.
5. Load reduction factor for anchors loaded in tension or shear with edge and end distances between critical and minimum shall be obtained
by linear interpolation.
6. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (illustrated in Figure 5 of this woor0.
Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical and minimum edge and end
distance.
FOR REFERENCE ONLY
Page 9 of 18
i {
� 1 Y�
11
t
r y si
4J,.,a
a%
7y
3_�
;
i "'9v'>
yyg
amsw�„ve,�:ryx
DWI
d �.�
�11
} J�
Lot!
' r
4�1�
i.
"�'''"
4 S+',..i#F
}'.�S£i �))[p��
(ry' r{ti 4d
wQ'
j {%F
—^�'
rF wy
}.
,�.
i
FAYS`
'err
l gn3i
1
IRn
Arch.
•-^- n
¢t IL
$�"l trf�SF�"�.L�u{
f r
^}
yrs.. r '1`at'�
1
-r-�e^�
� Wa
,\�
f
"..�
y
r", 7,
I.4�-i`vn py ?'' 74 r",
1 ! p 1 fiv iiU"
;
r"i Ed k
�t S� %
4R'' vu[Ci�aI
F'{^ 1* 1��[�1�I,�
DDV�1.F
�W�C
s.' fi } tx` x't {
£
x y?
.Y
�6
l
y� _IA
For Sh 1 inch = 25.4 mm
1. Edge and end distances (c„or ch,) are the distances measured from anchor centerline to edge or end of CMU masonry wall. Figures 3A and
313 of this report show critical and minimum edge and end distances.
2. Critical edge and end distances, c,„ are the least edge distances at which tabulated allowable load of an anchor is achieved where a load
reduction factor equals 1.0 (no load reduction).
3. Minimum edge and end distances, c, , are the least edge distances where an anchor has an allowable load capacity, which shall be
determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, c r, in Table 6 of Ihis report by the
load reduction factors shown above.
4. Reduction factors are cumulative. Multiple induction factors for more than one spacing (Table5 of this report) or edge or end distance shall be calculated
separately and multiplied.
5. Load reduction factor for anchors loaded in tension or shear with edge and end distances between critical and minimum shall be obtained
by linear interpolation.
6. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (illustrated in Figure 5 of this woor0.
Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical and minimum edge and end
distance.
FOR REFERENCE ONLY
Page 9 of 18
Originally Issued:
2022
Page 23
TABLE 6 - ALLOWABLE TENSION AND SHEAR VALUES FOR THREADED ROD AND REBAR WITH SET -XP®
EPDXY ADHESIVE IN THE TOP OF FULLY GROUTED CMU WALL CONSTRUCTIONIaA,5,6.7,9,10,11,12
f
b�Ypet�r�
h�
'il ��fi f l
x r � �
tl N
� *� j ABosvabi� 1iad based pn $,fid re gtJl1B(pognf7s�
+w
tC""'
tti
114
i ✓ 'Y+,... r
J kmr +, «,x
Sh r
L
'RUM
G
�J
4-1/2 1,485
590
1,050y��
1/2
5/8
12 2,440
665
1,625
S' Q
rT^.+ Y6, 1yi
f p P
aYz$.v5.e7 py S,. t(r^
V
E'1'%✓. +i'r
4`Y&.d �.�'�.�.r"ary,4�/yg.
�� }" *5...
h�Gt v '.�� -.-a - AY
v} hry
EF.t'O N Y
7-7/8 1,610
735
1,370
7/8
1
21 4,760
670
1,375
X5/8 y4-1/2
1,265
550
865
No.4
12 2,715
465
1,280
MM r
��
X�'I'hh+u*N#-+
For SI: I inch = 25.4 mm, I psi = 6.89 kPa, I Ibf = 4.48 N.
1. The allowable load shall be the lesser of bond values given in Table 6 of this report and steel values given in Tables 9 or 10 of this report as
applicable.
2. Allowable loads are for installations in the grouted CMU core opening.
3. Embedment depth is measured from the horizontal surface of the grouted CMU core opening on top of the masonry wall.
4. Critical and minimum edge distance and spacing shall comply with Tables 4 and 5. Figures 3A of this report and 3B of this report shows critical and
minimum edge and end distances.
5. The minimum allowable nominal width of CMII wall shall be 8 inches (203 mm).
6. Anchors are permitted to be installed in the CMU core opening shown in Figures 3A and 3B of this report. Anchors are limited to one installation per
CMU core opening.
7. Tabulated load values are for anchors installed in fully grouted masonry walls constructed From materials complying with Section 3.2.6 of this report.
8. Tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and the IRC.
9. Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 of this report, asapplicable.
10. Threaded rod and rebar installed in fully grouted masonry walls with SET -XP adhesive are permitted to resist dead, live, seismic and wind
loads. Section 4.1 of this report provides additional design requirement details.
11. Threaded rods shall meet or exceed the tensile strength of ASTM Fl 554, Grade 36 steel, which is 58,000 psi
12. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62 (BC or
IRC), allowable tension loads shall be multiplied by 0.80 and stainless steel or zinc coated anchors complying with Section 5.9 of this
report shall be used.
TALLOW = 1700" x 0.82 = 1394" (ASD)
T = 1250 (CONSERVATIVE)
TALLM > T OK
FOR REFERENCE ONLY
Page 11 of 18