Loading...
HomeMy WebLinkAboutX2022-0544 - CalcsN, S.Vzz 23 Harbor Ridge Dr. Newport Beach CA 92660 ,oqq7-- 20?-z K2o2ti-0� �� 21?Y��ridy2 bra Generator Hold Down Calculations No. 84617 C/* Exp.9I30123 I t " Kristofer Bartelle 19900 Acre Street Northridge CA 91324 BUILDING DIVISION A P P - 5 2022 BY S.E.C. OSHPD 23 Harbor Ridge Dr, Newport Beach, CA 92660, USA Latitude, Longitude: 33.6176301,-117.848496 Hi/1Sbotough a Q 1� a F H a o ac - m a, . Y o o roc `y w t dry? r�D � o m 7 co % NS Google a Date Design Code Reference Document 3/2512022, 5:44:13 PM Risk Category ASCE7-16 ;Site Class II - - D - Default (See Section 11.4.3) -: Type Value Description --- -- -- !. Ss 1.305 MCER ground motion. (for 0.2 second period) S, 0.464 MCER ground motion. (for i.Os period) SMS 1.566 Site -modified spectral acceleration value SMI null -See Section 11.4.8 Site -modified spectral acceleration value SDS 1.044 Numeric seismic design value at 0.2 second SA Sot null -See Section 11 4 8 Numeric seismic design value at 1.0 second SA .Type Value .._Description SDC null -See Section 11.4.8 Seismic design category Fa 1.2 Site amplification factor at 0.2 second F, null -See Section 11.4.8 Site amplification factor at 1.0 second PGA 0.564 MCEO peak ground acceleration FPOA 1.2 Site amplification factor at PGA PGAM 0.676 Site modified peak ground acceleration TL a Long -period transition period in seconds ! SsRT 1.305 Probabilistic risk -targeted ground motion. (0.2 second) SsUH 1.421 Factored uniform -hazard (2 % Probability of exceedance in 50 years) spectral acceleration SSD 2.61 Factored deterministic acceleration value. (0.2 second) S1 RT 0,464 Probabilistic risk -targeted ground motion. (1.0 second) S1 UH 0.501 i Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration. +$1D- 0.831 Factored deterministic acceleration value. (1.0 second) PGAd 1.057 Factored deterministic acceleration value. (Peak Ground Acceleration) CRS 0.919 Mapped value of the risk coefficient at short periods '_ CR7 0.926 Mapped value of the risk coefficient at a period of 1 s JOB TITLE qn)XK tom, PROJECT/JOB NO. CALCULATION NO. COMPUTED BY DATE� VERIFIED BY .DATE 13 SCALE SHEET NO OF -, - 1[, Inrl, Al vl Ink 5x5 = I in JOB TITLE 14 VV w q�4 PROJECT/JO5 NO. CALCULATION I COMPUTED BY DI VERIFIED BY DF SCALE SHEETP OF 3 5x5 = 1 in 20/22/24 kW INCLUDES: • True Power'" Electrical Technology • Two-line multilingual digital LCD Evolution'" controller (English/Spanish/French/Portuguese) • 200 amp service rated transfer switch available • Electronic governor • Standard Wi-Fig connectivity • System status & maintenance interval LED indicators • Sound attenuated enclosure • Flexible fuel line connector • Natural gas or LP gas operation • 5 Year limited warranty • Listed and labeled by the Southwest Research Institute allowing installation as close as 18 in (457 mm) to a structure.` -Must be located awayfrom doors, windows, and fresh airintakes and in accordance with local codes. hops.//assets.s Rorg/library/OirectoryOlListedProducis/ Constructionindustryl973_OOC_204_13204-01-01_Rev9.pol FEATURES O INNOVATIVE ENGINE DESIGN & RIGOROUS TESTING are at the heart of Gen- stop's success in providing the most reliable generators possible. Generac's G- Force engine lineup offers added peace of mind and reliability for when it's needed the most. The G-Force series engines are purpose built and designed to handle the rigors of extended run times in high temperatures and extreme operating conditions. O TRUE POWER'" ELECTRICAL TECHNOLOGY: Superior harmonics and sine wave form produce less than 5% Total Harmonic Distortion for utility quality power. This allows confident operation of sensitive electronic equipment and micro -chip based appliances, such as variable speed HVAC systems. O TEST CRITERIA: ✓ PROTOTYPE. TESTED ✓ NEMA MG11-22 EVALUATION ✓ SYSTEM TORSIONAL TESTED ✓ MOTOR STARTING ABILITY O MOBILE LINK® CONNECTIVITY: FREE with select Guardian Series Home standby generators, Mobile Link WI-Fi allows users to monitor generator status from any- where in the world using a smartphone, tablet, or PC. Easily access information such as the current operating status and maintenance alerts. Users can connect an account to an authorized service dealer for fast, friendly, and proactive service. With Mobile Link, users are taken care of before the next power outage. GENERAC° MENSEEM GUARDIANO SERIES Residential Standby Generators Air -Cooled Gas Engine Standby Power Rating G007038-I, G007039-1. 0007038.3, G007039-3 (AIOmIOUm - Bis(ue) - 20 kW 60 He 3007042-2, 0007043-2, G007042-3. G007043-3 (Aluminum - BIeg41e) -22 MAY 60 Hz G007209-0. G007210-0 (Aluminum- Bisque) - 24 kW 60 Hz c \1/ us or CLRt-EGOS Ui� a 0% .0 Note: CETL or CUL cerlification only applies to unbundled units and units packaged with limited circuit switches. Units packaged with the Smart Switch are ETL or UL certified in the USA only. O SOLID-STATE, FREQUENCY COMPENSATED VOLTAGE REGULATION: This state-of-the-art power maximizing regulation system is standard on all Generac mod- els. It provides optimized FAST RESPONSE to changing load conditions and MAXI- MUM MOTOR STARTING CAPABILITY by electronically torque -matching the surge loads to the engine. Digital voltage regulation at —1 %. O SINGLE SOURCE SERVICE RESPONSE from Generac's extensive dealer network provides parts and service know-how for the entire unit, from the engine to the small- est electronic component. O GENERAC TRANSFER SWITCHES: Long life and reliability are synonymous with GENERAC POWER SYSTEMS. One reason for this confidence is that the GENERAC product line is offered with its own transfer systems and controls for total system compatibility. O PWRVIEW'" TRANSFER SWITCH: The Generale PWRview Automatic Transfer Switch integrates the PWRview energy monitor to provide real-time energy con- sumption data that can help lower a home's electricity bill. Using a convenient mobile app, homeowners can access energy usage and alert information while under utility power or generator power. The PWRview energy monitor is a simple to use and low cost tool which helps save money over the life of the generator. Included with model G007210-0. w GENERAC GENERAC' PROMISEr "°. I PWRI�^ GENERACO 20/22/24 kW Specifications f:uneratnr Displacement ". Aluminum w/cast uon sleeve Cylinder blook Overhead valve Valve arrangement Solid stale w/magneto Igmlieo system _ Electronic Governor system Compression ratio 2 VD IC Two-line plain text multilingual LCD Simple user interface for ease of groaner. Mode buttons AUTO Automatic start on ladfly fnilure Weekly,.B-weeidy or Monthly selectable exerciser. MANUAL Start with starter control unit stays on. It utility tails transfer to load takes place. OFF Slops unit. Power is remov tonVoland charga{still operate Readv to Rum/Maintenance messages Standard sec on, Standard emergency the ration .,h.,.itypo .._outagrload_.... ncy power for the duration of the utility power outage. No overload capability is available for this rating. (All ratings in accordance with BS5514, IS03046 and DIN6271). Maximum k1loVo subject to and limited by such factors as fuel BTU/megajcule content, ambient temperature, altitude, engine power and condition, etc. Maximum power decreases approximately 3.5%for each 1,000 level; and also will decrease approximately i%for each 10'F (6'C) above 60'F (16'C). 20/22/24 kW GENERAC° Available Accessories Model # Product Descriplion G005819-0 26R Wet Cell Battery +Every standby generator requires a battery to start the system. Generac offers the recommended 26R wet cell battery for! ! luse with all air-cooled standby product (excluding PowerPact®). IG007101-0 !Battery Pad Warmer Pad warmer rests under the battery. Recommended for use if temperature regularly falls below 0 °F (-18 °C). (Not nec- essary for use with AGM -style batteries). " 13007102-0 'Oil Warmer Oil warmer slips directly over the oil filter. Recommended for use'rf temperature regularly falls below 0 °F (-18 °C). G007103-1 ;Breather Warmer Breather warmer is for use in extreme cold weather applications. For use with Evolution controllers only in climates where heavy icing occurs. 9005621-0- 'Auxiliary Transfer Switch The auxiliary transfer switch contact kit allows the transfer switch to lock out a single large electrical load that may not be! :Contact Kit !needed. Not compatible with 50 amp pre -wired switches. G007027-0 - Bisque ;Fascia Base Wrap Kit The fascia base wrap snaps together around the bottom of the new air-cooled generators. This offers a sleek contoured ;(Standard on 22/24 kW) !appearance as well as offering protection from rodents and insects by covering the lifting holes located in the base. GO05703-0 - Bisque Touch -Up Paint Kit If the generator enclosure is scratched or damaged, it is important to touch up the paint to protect from future corrosion. The touch-up paint kit includes the necessary paint to correctly maintain or touch up a generator enclosure. G006485-0 .Scheduled Maintenance Kit Generac's scheduled maintenance kit provides all the items necessary to perform complete routine maintenance on a :Generac automatic standby generator (ail not included). 13007005-0 'Wi-Fi LP Tank Fuel Level The Wi-Fi enabled LP tank fuel level monitor provides constant monitoring of the connected LP fuel tank. Monitoring the iMonitor d.LP tank's fuel level is an important step in verifying the generator is ready to run during an unexpected power failure. Sta- tus alerts are available through a free application to notify users when the LP tank is in need of a refill. G0070od-0 (SO amp) Smart Management Module Smart Management Modules (SMM) are used to optimize the performance of a standby generator. It manages large elec-: IG007006-0 Adcal loads upon startup and sheds them to aid in recovery when overloaded. In many cases, using SMM's can reduce:. (100 amp) the overall size and cost of the system. ,,i GO07169-0- 413 LTE Mobile Link`v Cellular The Mobile Link family of Cellular Accessories allow users to monitor generator status from anywhere in the world using Go07170-0 - WI-Fi/ (Accessories 'a smart phone, tablet, or PC. Easily access information such as the current operating status and maintenance alerts. Us-' ;Ethernet ors can connect an account with an authorized service dealer for last, friendly, and proactive service. With Mobile Link,'i '!users are taken care of before the next power outage. 'G007220-0 - Bisque Base Plug Kit Base plugs snap into the lifting holes on the base of air-cooled home standby generators. This offers a sleek contoured -. .:appearance, as well as offers protection from rodents and insects by covering the lifting holes located in the base. Kit, `contains four plugs, sufficient for use on a single air-cooled home standby generator. Model UPC G007038-1 696471074185 G007038-3 696471074185 G007039-1 696471074192 G007039-3 696471074192 G007042-2 696471074208 G007042-3 696471074208 G007043-2 696471074215 G007043-3 696471074215 0007209-0 696471071511 G007210-0 696471078220 Dimensions & PCs LEFT SIDE VIEW Dimensions shown are approximate. See' installation manual for exact dimensions. DO NOT USE THESE PURPOSES. GENE RACE Generate Power Systems, Inc. • S45 W29290 HWY. 59, Waukesha, WI 53189 • generac.com OMENUFAM m2020 Generac Power Systems, Inc. All rights reserved. All specifications are subject to change without notice. Pad No. A0000937814 Rev.B 07/30/2020 II lA 2 Gorilla Manufacturing LLC 19525 Wled Rd Suite 450 Spring, TX 77388 281-705-9701 281-705-9702 +.OL A.Ot' OI:1 24" stand shown. 12-30' models share the same design, the only difference is height. Sized to fit both Generac and Kohler air cooled units. Fully MIG welded one piece construction speeds installation and makes the stands unbelievably sturdy. A painted finish is standard, upgrades to powder coat or hot dip galvanized finishes are available (Note, finish upgrades may increase delivery time). Top support frames are 4X3X0.25" angle. All models use 3x3x0.187" square tubular legs. Leg mounting pads are 6.5x4x0.25" with a pre -drilled hole for 1 /2' hold down hardware. Mounting holes to match factory hold down locations for Generac and Kohler are pre -drilled. Welding complies with AWS D1.1 Electrodes used are E70XX Steel plates are A36, Grade 36 or higher. Angle members are ASTM A36. HSS (square) members are ASTM A500 grade B (46KSI). Stands have been load tested in excess of 3400lbs. Stands have been designed to withstand 180mph wind loads. All specifications are subject to change PROPRIETARY AND CONFIDENTIAL DRAWNG ISINOESOIE KOPERRCONTAINEDP OF 13 Gl]TILUI.IANUfACWRING ANY WI UUW X[WNIIIIpN Y[XOMI>AUNIUfOE WRILEAAMNIIfAC1URINGIi FROhIIBIIE]. DIMENSIONS ARE IN WCNES 2 11/11/2021 General Specifications for Gorilla Manufacturing Generator Stands " DT4i "A'A 41n Generator Stand A KAU I_+ IVDc I: SNEEI IofI 0 s 0 A36 Steel POST HOLE EACH LEG fc=2500 GENERATOR STAND FOUNDATION 1 wM,e,^°^° Hewlett-Packard Company Current Data: 3/25/2022 4:41 PM Units system: English File name: C:\Users\Kristopfer barlelle\Desktop\23 Harbor Ridge\frrame.retx FEM Model Generator Pad - Loads ass� Distributed user loads -Members Concentrated - Nodes Q ,E °^°° Hewlett-Packard Company Current Date: 3/25/2022 4:37 PM Units system: English File name: C:\Users\Kristopfer bartelle0esktop\23 Harbor Ridge\frrame.retx Cb22, Cb33 Cm22, Cm33 d0 DJX - DJY DJZ DKX DKY DKZ dL Ig factor K22 K33 L22 L33 LB pos LB neg RX RY RZ TO TX TY TZ Nodes Geometry data Moment gradient coefficients Coefficients applied to bending term in interaction formula Tapered member section depth at J and of member Rigid end offset distance measured from J node in axis X Rigid end offset distance measured from J node in axis Y Rigid end offset distance measured from J node in axis Z Rigid end offset distance measured from K node in axis X Rigid end offset distance measured from K node in axis Y Rigid end offset distance measured from K node in axis Z Tapered member section depth at K end of member Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members Effective length factor about axis 2 Effective length factor about axis 3 Member length for calculation of axial capacity Member length for calculation of axial capacity Lateral unbraced length of the compression flange in the positive side of local axis 2 Lateral unbraced length of the compression flange in the negative side of local axis 2 Rotation about X Rotation about Y Rotation about Z 1 = Tension only member 0 = Normal member Translation in X Translation in Y Translation in Z Node X Y Z Rigid Floor Ift] Ift] Ift] 2 2.16 0.00 2.00 0 3 2.16 4.0833 2.00 0 4 0.00 4.0833 2.00 0 5 0.00 0.00 0.00 0 6 2.16 0.00 0.00 0 7 2.16 4.0833 0.00 0 8 0.00 4.0833 0.00 0 Restraints Node TX TY TZ RX RY RZ Members o Member NJ NK Description Section Material d0 dL Ig factor — ------------------ '— '_------------------ [in] [in] 1 5 8 a — — -- L 3X3X3 16 - ——------- A36 -- 0.00 --- 0.00 --- 0.00 2 4 8 b L 3X3X3 16 A36 0.00 0.00 0.00 3 1 5 c L 3X3X3 16 A36 0.00 0.00 0.00 4 1 4 d L 3X3X3 16 A36 0.00 0.00 0.00 5 6 5 e HSS_SQR 3X3X3 16 A36 0.00 0.00 0.00 7 2 1 f HSSSQR 3X3X3 16 A36 0.00 0.00 0.00 8 7 8 g HSS__SQR 3X3X3-16 A36 0.00 0.00 0.00 9 3 4 h HSS_SQR 3X3X3_16 A36 0.00 0.00 0.00 ^M],E ° ,- Hewlett-Packard Company Current Date: 3/25/2022 4:37 PM Units system: English File name: C:\Users\Kristopfer bartelle\Desktop\23 Harbor Ridge\frrame.retz Load data GLOSSARY Comb : Indicates if load condition is a load combination Load Conditions Condition Description Comb. Category _ DL _-_ --- Dead Load ---_-_-_-_ ----- No DL _-_- EQ Earthquake No EQ d1 DL Yes id2 EQ Yes id3 DL+EQ Yes Load on nodes Condition Node FX FY FZ MX MY MZ [Kip] --------- --------- ----------- ----------- [Kip] ------- ---- [Kip] — [Kip*ft] [Kip*ft] [Kip*ft] ED 4 0.00 -0.172 ---- ------- ------- 0.00 —___-_---_-_--_-__—__—__-__-_--_-_ 0.00 0.00 0.00 8 0.00 -0.172 0.00 0.00 0.00 0.00 Distributed force on members Condition Member Dirt Vail Va12 Dist1 % Dist2 [Kip/ft] [Kip/ft] [it] [ft] DL 1 2 -0.056 -0.056 0.00 Yes 4.0833 No 4 2 -0.056 -0.056 0.00 Yes 4.0833 No Self weight multipliers for load conditions Condition Description DL Dead Load EQ Earthquake d1 DL id2 EQ id3 DL+EQ Earthquake (Dynamic analysis only) r Self weight multiplier Comb. MultX MultY MultZ No 0.00 0.00 0.00 No 0.00 0.00 0.00 Yes 0.00 0.00 0.00 Yes 0.00 0.00 0.00 Yes 0.00 0.00 0.00 Condition a/g Ang. Damp. [Deg] 1%) DL 0.00 0.00 0.00 EQ 0.00 0.00 0.00 d1 0.00 0.00 0.00 id2 0.00 0.00 0.00 id3 0.00 0.00 0.00 M Hewlett-Packard Company Current Date: 3/25/2022 4:34 PM Units system: English File name: C:\Users\Kristopfer bartelle\Desktop\23 Harbor Ridge\frrame.retx Analysis result Forces diagram printout d1=DL id2=EQ id3=DL+EQ .MEMBER 1 Length 4.083 [it] Node J Material A36 Section L 3X3X3 16 Node K Condition : d1=DL -- ---------- —____________ M33 bending moment V2 shear forces Moments [Kip*ft], Length [ft] ' Forces [Kip], Length [ft] Max: 0.0356[Kip'ft] at 2.04 at 0.00[ft 6 (((Mapppxppp:qqq0.0808[Kip] ���,,,ppp L-4, L-4 -0.0468 -0.047 -0.080 Min :-0.0471fKfD*ftl at 4.0E Min:-0.0809TKiDl at 4.081ft Axialforces Forces [Kip], Length [ft] Max: -0.0443[Kip]at 0.00[i L=4.1 -0 0443 Min:-004434(ml at 0.00(ft Condition : id2=EQ M33 bending moment V2 shear forces Moments [Kip*ft], Length [ft] Forces [Kip], Length [ft] Max: 0.0387[Kip*ft]at 4.08 Max: 0.0191[Kip] at 0.00[ft 038, WW--dg,,L = 4., L=4., 0.0391 Min:-0.0391FKID'ftl at 0.0C Min: 0O191IKiolat O.00MI Axial forces Forces [Kip], Length [it] Max: -0.0863[Kip]at 0.00p L=4., -0.0863 Min:-00863(Kiol at 0.00M Condition : id3=DL+EQ M33 bending moment V2 shear forces Moments [Kip*ft], Length [ft] Forces [Kip], Length [ft] Max : O0400[Kip*ft] at 2.5E Max : 0.0999[Kip] at 0.00[ft `I -b.ndd L = 4 -0.0859 -0.061 Min : -0 0859fKiD*ftl at 0.0E Min-0.0618fKiD1 at 4 0PM 5 8 Axial forces Forces [Kip], Length [ft] Max: -0.1305[Kip] at 0.001t L=4,, -0.1305 Min '-0.13051Kiol at 000M MEMBER 2 Length 2.000 [ft] Node J Material A36 Section L 3X3X3 16 Node K ---- ---—-------- Condition : — --- ---- ------------------------ ---- ------ M33 bending moment V2 shear forces Moments [Kip•ft], Length [ft] Forces [Kip], Length [ft] Max: 0.0025[Kip'ft] at 2.00 Max: 0.0025[Kip] at 0.00[ft 002E WW—wdldfL_2, L_2., 0.0025 Min :-00025FKV lat 001 Min:000251KiD1 at 0.00fftl Axial forces Forces [Kip], Length [ft] Max: 1.08E-05[Kip]at O.00 L=2 Min: 108E-05fKinl at 0001 Condition : id2=EQ M33 bending moment V2 shear forces Moments [Kip•ft], Length [ft] Forces [Kip], Length [ft] Max: 0.0013[Ktp'ft] at 2.00 Max : 0.0023[Kip] at 0.00[ft �01E L0y L=z -0.0032 Min:-0.0032[KiD"ftl at O.00 Min: 0.00231KID1 at 0.001ttl Axial forces Forces [Kip], Length [ft] Max: -0.0011 [Kip] at 0.00[t = 2! -0.0011 Min:-0.0011FKinl at O.00fft Condition : id3=DL+EQ 4 8 M33 bending moment V2 shear forces Moments [Kip*ft], Length [ft] Forces [Kip], Length [ft] Max: 0.0039[Kip*ft] at 2.00 Max: 0.0048(Klpj at 0.00[ft 003t ffiw�L=21 L_21 0.0057 Min:-0.0057fKio*ftl at 0.017 Min: 0.00491Kio1 at 0.00rk1 Axial forces Forces [Kip], Length [ft] Max:-0.0011[Kipjat 0.001f L=2! -0.0011 Min:-0.001 IWO at O.00fft MEMBER 3 Length 2.000 [ft] Node J Material A36 Section L 3X3X3_16 Node K ------ ----------------- Condition : d1=DL _----------- ------------ -_----------- M33 bending moment V2 shear forces Moments [Kip*ft], Length [ft] Forces [Kip], Length [ft] Max : 0.0027[Kip*ft] at O.00 Max: -0.0027[Kip] at. 0.00[I ffi7 L=2' L_2' -0.002 -0.0027 Min:-0.0027fKio*ftl at 20C Min'-0.00271Kiol at O.00tft Axial forces Forces [Kip], Length [ft] Max:-4.09E-06[Klpj at 0.0 L=21 -4.09E-06 Min:-409E-O61Kio1 at 0.0( Condition : id2=EQ M33 bending moment V2 shear forces Moments [Kip*ft], Length [ft] Forces [Kip], Length [ft] Max: 0.0102[Kp*ft] at 2.00 Max: 0.0111[Kip] at 0.00[ft 010, L=2.1 L=2' 0,0120 Min: -0.0120FKio*M at O.00 Min : 0.0111 Wal at 0.00fftl Axial forces Forces [Kip], Length [ft] Max: 4.66E-04[Kip]at O.00 = 2.- Min :4.66E-04[Klol at 0.001 1 5 Condition : id3=DL+EQ M33 bending moment Moments [Kip*ft], Length [it] Max: 0.0075[Kip*ftl at 2.00 007E Ww---Og,L_2, 0.0093 Min:-0.0093FKio*ftl at OAC Axial forces Forces [Kip], Length [ft] Max: 4.62E-04[Kip]at O.00 =y Min : 4 62E-04tKia1 at 0 001 MEMBER 4 Material A36 Condition : dt=DL M33 bending moment Moments [Kip*ft], Length [ft] Max: 0.0356[Kip*ft] at 2.04 IV 6 L=4! -0.0467 -0.047 Min:-0.04711Kio'Mat 4.0E Axial forces Forces [Kip], Length [ft] Max: -0,0501 [Kip] at 0.00[t L=41 -0,0501 Min :-0.0501 FKiol at 0.001ft Condition : id2=EQ M33 bending moment Moments [Kip*ft], Length [ft] Maxi 0.0468[Kp*ft] at 4.08 048E WW--INWL_q! 0.0472 Min :-0.0472IKio*ftl at UC Axial forces Forces [Kip], Length [ft] Max: -0.08411Kip]at 0.00[t L=4.1 -0.0841 Min:-0.0841[KiDl at 0.001ft Length 4.083 [ft] Section L 3X3X3 16 V2 shear forces Forces [Kip], Length [it] Max: 0.0084[Kip] at 0.00[ft ffiffiw�L=2.1 Min :.0008411(iol at 0OCIM Node Node K V2 shear forces Forces [Kip], Length [ft] Max: 0.0807[Kip] at 0.00[ft 7 L_q,, -0.080 Min: -0.080911(iol at 4.08tf1 V2 shear forces Forces [Kip], Length [ft] Max : 0.0230[Kip] at 0.00[ft �L=4. Min : 0.0230[KiDI at 0.00(ftl 1 4 Condition : id3=DL+EQ M33 bending moment Moments [Kip'ft], Length [ft] Max: 0.0420[Kip'ft] at 2.65 3A�E -0.0939 Min :-0.O939D(W lat DOC Axial forces Forces [Kip], Length [ft] Max: -0.13421Kip] at 0.Oop L = 4.- -0,1342 Min:-0. 1342UG.1 at 0.00(ft MEMBER 5 Material A36 Condition : d1=DL M33 bending moment Moments [Kip•ft], Length [ft] Max: 0.0704[Klp'ft] at 2.16 O--�(070, =2. -0.0317 Min:-0.0317fKin'M at 0.01 Axial forces Forces [Kip], Length [ft] Max:-0.1151[Kip] at 0.00[f L=2, -0.1151 Min :-0.115111(ml at O.00Ift Condition : id2=EQ M33 bending moment Moments [Kip'ft], Length [ft] Max: 0.0411[Kip'ft] at 2.1E 04�1 -0.1263 Min:-0.1263fKiD'ftl at 0.0( Axial forces Forces [Kip], Length [it] Max:-0.0132(Kip]at 0.00[f L=2. -00132 Mtn: -0.01 321KU at O.00Ift V2 shear forces Forces [Kip], Length [it] Max, 0.1037[Kip] at 0.00[ft L = 4, -0.057 Min : -0 0579110ol at 4 08M Length 2.160 [ft[ Node J . Section HSS SQR 3X3X3 16 Node K Ngss V2 shear forces Forces [Kip], Length [it] Max: 0.0473[Kip] at 0.00[ft i=2. Min: 0.04731KID1at 0.001ft1 V2 shear forces Farces [Kip], Length [it] Max : 0.0775[Kip] at 0.00[ft Au�L=2. Min: 0.07751Kiol at O.00tftt 6 5 Condition : id3=DL+EQ M33 bending moment Moments [Kip*ft], Length [it] Max: 0.1115(Kip*ft] at 2.16 111! ww---Oml,L = 2. 0.1580 Min :-0.1580fl(V lat O.00 Axial forces Farces [Kip], Length [ft] Max:-0.1283[Kipj at 0.00[t L=2. -0.1283 Min :-0.1283FKiol at 0 OOfft MEMBER 7 Material A36 Condition : d7=DL M33 bending moment Moments [Kip*ft], Length [ftj Max: 0.0703[Kirft] at 2.10 070E = 2, 0.0313 Min :-0.0313FKiD*ftl at O.00 Axial forces Forces [Kip], Length [ft] Max: -0.1135[Kip]at 0.0011 L=2, -0,1135 Min:-0.1135IKiD1 at O.00fft Condition : id2=EQ M33 bending moment Moments [Kip*ft], Length [ft] Max: 0.0493[Kip*ft] at 2.16 04 F -0.1513 Min:-0.1513fK1o*fti at O.00 Axial forces Forces [Kip], Length [ft] Max: -0.0311[Kpj at 0.00[f L=2. -0.0311 Min:-0.0311FKiul at 0.00fft V2 shear forces Forces [Kip], Length [ft] Max: 0.1248[Kip] at 0.001ft ffi�k=2. Min: 0. 124orKiol at O.00ffn Length 2.160 [ft] Node J 2 Section HSS SQR 3X3X3 16 Node K 1 V2 shear forces Forces [Kip], Length [ft] Max: 0.0471[Kip] at 0.00[ft �L=2. Min: 0.0471[KiDlat 0.00tft1 V2 shear forces Forces [Kip], Length [ft] Max: 0.0929[Kip] at 0.00111 �L=2. Min : 0.0929fKiD1 at O:OOfftl Condition : id3=DL+EQ M33 bending moment Moments [Kip*ft], Length [ft] Max: 0.1196[Kip*ft] at 2.16 119E L=2. 0.1826 Min :-0.1826NDi lat OOC Axial forces Forces [Kip], Length [ft] Max: -0.1446[Kip] at 0.00[t L=2, -0.1446 Min:-0. 1446FKioi at 0.00W MEMBER 8 Material A36 Condition : d1=DL M33 bending moment Moments [Kip*ft], Length [ft] Max: 0.0313[Kip*ft]at O.00 L=2. -0.070 Min:-0.0704FKio*fll at 2.1E Axial forces Forces [Kip], Length [ft] Max:-0.11361Kip]at 0.00[i L=2. -0.1136 Min: -0.1 136DDD1 at 0.00fft Condition : [d2=EQ M33 bending moment Moments [Kip*ft], Length [ft] Maxi 0.0412(Kio*ft] at 2.16 04 0.1298 Min:-0.1296fKVItl at O.00 Axial forces Forces [Kip], Length [ft] Max : 0.0168[Kip] at 0.00[ft L=2. Min: 0.01681Kiol at 0.001ftl V2 shear forces Forces [Kip], Length [ft] Max, 0.1399[Kip] at 0.00[ft ffiw�L=2. Min: 0. 1399110ai at 000fft1 Length 2.160 [ft] Node J Section HSS SQR 3X3X3 16 Node K zM V2 shear forces Forces [Kip], Length [ft] Max:Max:-0.0471[Kip]at 0.00[I ®L=2. -0.0471 Min:-0.047liKlol at O.00fft V2 shear forces Forces [Kip], Length [ft] Max : 0.0792[Kip] at 0.00[ft PUW�L=2. Min:.0.07921Kiol at 0.001ftl 7 8 Condition : id3=DL+EQ M33 bending moment Moments [Kip`ft], Length [ft] Max: -0.0293[Kip'ft] at 2.11 0.0985 �9 -0.0985 Min : -0 0985f1(i.•f l at O.00 Axial forces Forces [Kip], Length [ft] Max: -0.0968[Kip]at 0.00[i L=2. -0.0968 Min:-0.0968FKinl at 0.00M MEMBER 9 Material A36 Condition : d1=DL M33 bending moment Moments [Kip'ft], Length [ft] rpMrpaxxx: 0.0315[Kip'ftj at O.00 - 1L=2. -0.070 Min:-0.0705FKio'ftl at 2.1E Axial forces Forces [Kip], Length [ft] Max:-0.1151[Kipj at 0.00[I L=2. -0.1151 Min: -0.1151flowl at 0.00M Condition : id2=EQ M33 bending moment Moments [Kip`ft], Length [ft] Max: 0.0494[Kip"ft] at 2.16 049e -0.1547 2 Min:-0.1547[KiD'ftl at O.00 Axial forces Forces [Kip], Length [ft] Max: 0.0275[Kip] at 0.00[ft L=2. Min : 0.0275FKID1 at 0.001ftl V2 shear forces Forces [Kip], Length [ft] Max: 0.0320(KIp]at 0.00[ft ffi�L=2. Min: 003201KIn1 at 0DOW Length 2.160 [ft] Node J Section HSS_SQR 3X3X3_16 Node K V2 shear forces Forces [Kip], Length [ft] Max:-0.0472[Kipj at 0.00[I L=2. -0.0472 Min: -0.0472[KiDl at 9.00ffI V2 shear forces Forces [Kip], Length [ft] Max: 0.0945[Kip] at 0.00[ft L=2. Min: 0.0945WID1 at 0.00fft1 3 4 Condition : id3=DL+EQ M33 bending moment Moments [Kip'ft], Length [tt] Max:-0.0211[Klp'ft] at 2.11 -bA�t -0.1232 Min:-0. 1232[Kio`ftl at 0Or Axial forces Forces [Kip], Length [ft] Max: -0.0876[Kip] at 0.00[I L=2. -0:0876 Min 0.0876[Kinl at 0.00(ft V2 shear forces Forces [Kip], Length [ft] Max: 0.0473[Kip] at 0.00[ft L=2. Min: 00473[Kiol at 0Witt E Hewlett-Packard Company Current Date: 3/25/2022 4:32 PM Units system: English File name: C:\Users\Kristopfer bartelle\Desktop\23 Harbor Ridge\frrame.retx Steel Code Check Report: Comprehensive Members: Hot -rolled Design code: AISC 360-2016 LRFD Member 1 (a) Design status OK DESIGN WARNINGS Section information Section name: L 3X3X3_16 (US) Dimensions ------------ a = 3.000 [in] Flange length k = 0.563 [in] Distance k t = 0.188 [in] Thickness Properties Section properties Unit Majoraxls Minor axis Gross area of the section. (Ag) [in2] 1.090 Moment of Inertia (local axes) (p [in4] 0,948 0.948 Moment of Inertia (principal axes) (I') [in4] 1.522 0.374 Bending constant for moments (principal axis) (S) [in] 0.000 2.050 Radius of gyration (local axes) (r) [in] 0.933 0.933 Radius of gyration (principal axes) (r') [in] 1.182 0.586 Saint-Venant torsion constant. (J) [in4] 0.014 Section warping constant. (Cw) [in6] 0.009 Distance from centroid to shear center (principal axis) (xo,yo) [in] -0.726 -0.726 Top elastic section modulus of the section (local axis) (Ssup) [in3] 0.433 0.433 Bottom elastic section modulus of the section (local axis) (Sinf) [10] 1.171 1.171 Top elastic section modulus of the section (principal axis) (S'sup) [in3] 0.724 0.352 Bottom elastic section modulus of the section (principal axis) (S'inf) [in3] 0.724 0.352 Plastic section modulus (local axis) (Z) [in3] 0.774 0.774 Plastic section modulus (principal axis) (Z') [in3] 1.120 0.560 Polar radius of gyration. (ro) [in] 1.670 Area for shear (Aw) [in2] 0.560 0.560 Torsional constant. (C) [in3] 0.068 Material : A36 Properties Unit ------------- Value --- ---------- Yield stress (Fy)--------_-------------------[Kip/in2] --------- 36.00 Tensile strength (Fu): [Kip/in2] 58.00 Elasticity Modulus (E): [Kip/in2] 29000.00 Shear modulus for steel (G): [Kip/in2] 11507.94 DESIGN CRITERIA Description Length for tension slenderness ratio (L) Distance between member lateral bracing points Length (Lb) [it] —----___---____- Tap Bottom -_- ------______ -- _-_-__—__--_--_.—--- 4.08 Laterally unbraced length ----- --_-_-_---_- Length [g] —"—"-------'—'—' Major axis(L33) Minor axis(L22) Torsional axis(Lt) -_----------- 4.08— 4.08 4.08 Additional assumptions Continuous lateral torsional restraint Tension field action Continuous flexural torsional restraint Effective length factor value type Major axis frame type Minor axis frame type Single angle connected through width Planar element Consider eccentricity Shear load point of application DESIGN CHECKS Unit Value 4.08 Effective length factor Major axis(K33) Minor axis(K22) Torsional axis(Kt) -------- --------- ---- --- '--------- -------- 1.0-- 1.0 No No No None Sway Sway No No No Gravity center AXIAL TENSION DESIGN , Axial tension Ratio 0.00 Capacity 35.32 [Kip] Reference CLD2 Demand 0.00 [Kip] Ctrl Eq. id2 at 0.00 % ------ -------- Intermediate results ---------------_-— --------- ------------ Unit Value -----Reference ----- Factored axial tension caoacitv(OPn) [Kip] 35.32 CI.D2 Nominal axial tension capacity (Pn) [Kip] 39.24 Eq.D2-1 AXIAL COMPRESSION DESIGN , Compression in the major axis 33 Ratio 0.00 Capacity 27.94 [Kip] Reference CLE3 Demand 0.13 [Kip] Ctrl Eq. id3 at 0.00% Intermediate results ---- ---- ------ ------------ ------------ -_--_--__---_--___-__-_-_---_--_---_-_-__________-- -- -------- ------------- Unit ----------- Value Reference---- Section classification -------- --_--___-_-_-_---- _---__--___ Unstiffened element classification -- Slender Unsliffened element slenderness (b) -- 16.00 Unstiffened-element limiting slenderness (Xr) — ' 12.77 Table.4.1a.Case3 Stiffened element classification — Slender Stiffened element slenderness (k) -- 16.00 Stiffened element limiting slenderness (Xr) -- 12.77 Table.4.1a.Case3 Factored flexural buckling slrenoth(OPn33) [Kip] 27.94 CLE3 Unbraced length (1-33) [it] 4.08 CLE2 Effective slenderness ((KL/r)33) -- 52.54 CLE2 Elastic critical buckling stress (Fe33) [Kip/in2] 103.68 Eq.E34 Effective area of the cross section based on the effective width (Aeff33) [in2] 1.00 Critical stress for flexural buckling (Fcr33) [Kip/in2] 31.13 Eq.E3-2 Nominal flexural buckling strength (Pn33) [Kip] 31.04 Eq.E7-1 Compression In the minor axis 22 Ratio 0.00 Capacity 27.94 [Kip] Reference CLE3 Demand 0.13 [Kip] Ctrl Eq. id3 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Slender Unstiffened element slenderness 16.00 Unstiffened element limiting slenderness (ilr) -- 12.77 Table.4.1a.Case3 Stiffened element classification -- Slender Stiffened element slenderness (1v) -- 16.00 Stiffened element limiting slenderness (ivr) -- 12.77 Table.4.1a.Case3 Factored flexural buckling strength(OPn22) [Kip] 27.94 CLE3 Unbraced length (1-22) [it] 4.08 CLE2 Effective slenderness ((KL/r)22) -- 52.54 CLE2 Elastic critical buckling stress (Fe22) [Kip/in2] 103.68 Eq.E3-4 Effective area of the cross section based on the effective width (Aeff22) [in2] 1.00 Critical stress for flexural buckling (Fcr22) [Kip/in2] 31.13 Eq.E3-2 Nominal flexural buckling strength (Pn22) [Kip] 31.04 Eq.E7-1 FLEXURAL DESIGN Bending about major axis. M33 Ratio 0.08 Capacity 1.40 [Kip*ft] Reference CLF10.2 Demand -0.11 [Kip*fl] Ctrl Eq. id3 at 0.00% Intermediate results Unit Value Reference _----____-_--_-_-_-__--_--___-__-_--_--_--- Section classification ------- ----- ------- ______ Unstiffened element classification - Noncompact Unstiffened element slenderness (7r) - 16.00 Limiting slenderness for noncompact unstiffened element (%<r) - 25.83 Limiting slenderness for compact unstiffened element ()Lp) - 15.33 Stiffened element classification - Noncompact Stiffened element slenderness j7v) - 16.00 Limiting slenderness for noncompact stiffened element (Xr) -- 25.83 Limiting slenderness for compact stiffened element (Xp) -- 15.33 Factored yielding strenoth(�Mn) [Kip*ft] 2.93 CI.F10.1 Yielding (Mn) [Kip*ft] 3.26 Eq.F10-1 Factored lateral -torsional buckling strength(�Mn) [Kip*ft] 2.82 CI.1`10.2 Lateral -torsional buckling modification factor (Cb) -- 1.96 Eq.F1-1 Elastic lateral -torsional buckling moment (Mcr) [Kip*ft] 13.01 Eq.F10-4 Nominal lateral -torsional buckling moment strength (Mn) [Kip*ft] 3.13 Eq.1`10-2 Factored compression flange local buckling strenglh(OMn) [Kip*ft] 2.85 CI.F10.3 Flange local buckling (Mn) [Kip*ft] 3.17 Eq.F10-6 Factored web local buckling strength(OMn) [Kip*ft] 2.85 CI.F10.3 Local web buckling (Mn) [Kip/in2] 0.02 Eq.1`10-6 Factored yielding strength about a geometric axis(OMn) [Kip*ft] 1.75 CI.F10.1 Yielding (Mn) [Kip*ft] 1.95 Eq.110-1 Factored lateral -torsional buckling strength about a geometric axis(OMn) [Kip*ft] 1.40 GLF10.2 Lateral -torsional buckling modification factor (Cb) - 2.37 Eq.Ft-1 Elastic lateral -torsional buckling moment (Mcr) [Kip*ft] 50.16 Eq.F10-5b Nominal lateral -torsional buckling moment strength (Mn) [Kip*ft] 1.56 Eq.F10-2 Factored compression flange local buckling strength about a geometric ... [Kip*ft] 1.37 0I.1`10.3 Flange local buckling (Mn) [Kip*ft] 1.52 Eq.1`10-6 Factored web local buckling strength about a aeometric axis(OMn) [Kip*ft] 1.37 CLF10.3 Local web buckling (Mn) [Kip/in2] 0.01 Eq.F10-6 Bending about minor axis. M22 Ratio 0.05 Capacity 1.39 [Kip*ft] Reference CLF10.3 Demand 0.07 [Kip*ft] Ctrl Eq. id3 at 0.00 % ------------- ---- _------------------- ---------------- -------------------- Intermediate results Unit _--- --_____--_- Value Reference -_- -------- ---___-__-_-_-__ Section classification Unstiffened element classification -- Noncompact Unstiffened element slenderness 16.00 Limiting slenderness for noncompact unstiffened element (%.r) -- 25.83 Limiting slenderness for compact unstiffened element (?Lp) -- 15.33 Stiffened element classification -- Noncompact Stiffened element slenderness (1,.) -- 16.00 Limiting slenderness for noncompact stiffened element (1vr) -- 25.83 Limiting slenderness for compact stiffened element (Xp) -- 15.33 Factored yielding strength(OMn) [Kip*ft] 1.43 CI510.1 Yielding (Mn) [Kip*ft] 1.58 Eq.F10-1 Factored compression flange local buckling strength(OMn) [Kip*ft] 1.39 CLF10.3 Flange local buckling (Mn) [Kip*ft] 1.54 Eq.F10-6 Factored web local buckling strenoth(OMn) [Kip*ft] 1.39 CI.F10.3 Local web buckling (Mn) [Kip/in2] 0.01 Eq.1`10-6 Factored yielding strenoth(OMn) [Kip*ft] 1.75 CLF10.1 Yielding (Mn) [Kip*ft] 1.95 Eq.F10-1 Factored lateral -torsional buckling strength(OMn) [Kip*ft] 1.39 CI.F10.2 Nominal lateral -torsional buckling moment strength (Mn) [Kip*ft] 1.54 Eq.1`10-2 Factored compression flange local buckling strength(OMn) [Kip*ft] 1.37 CLF10.3 Flange local buckling (Mn) [Kip*ft] 1.52 Eq.F10-6 Factored web local buckling strenoth(oMn) [Kip*ft] 1.37 CLF10.3 Local web buckling (Mn) [Kip/in2] 0.01 Eq:1`10-6 DESIGN FOR SHEAR Shear in major axis 33 Ratio 0.00 Capacity 10.94 [Kip] Reference CI.G1 Demand 0.01 [Kip] Ctrl Eq. id2 at 0.00 % Intermediate results _--_-_--______-_- Unit Value Reference Factored shear capacity in a geometric axis(�Vn) [Kip] 10.94 CI.G1 Web buckling coefficient (kv) -- 1.20 CLG3 Web buckling coefficient (Cv) -- 1.00 Eq.G2-9 Nominal shear strength (Vn) [Kip] 12.15 Eq.G6-1 Shear in minor axis 22 Ratio 0.01 Capacity 10.94 [Kip] Reference CI.G1 Demand 0.13 [Kip] Ctrl Eq. id3 at 0.00% Intermediate results Unit Value Reference Factored shear capacity in a aeometric axis(ifiVn) [Kip] 10.94 CI.G1 Web buckling coefficient (kv) - 1.20 CI.G3 Web buckling coefficient (Cv) - 1.00 Eq.G2-9 Nominal shear strength (Vn) [Kip] 12.15 Eq.G3-1 COMBINED ACTIONS DESIGN , Combined flexure and axial .............................................................................................................................................................................. Ratio 0.09 Ctrl Eq.. id3 at 0.00% .............................................................................................................................................................................. Reference Eq.1-12-1 Intermediate results Unit Value Reference Interaction of flexure and axial force - 0.09 Eq.1-12-1 Required axial stress (fa) [Kip/in2] -0.12 Available axial stress (Fa) [Kip/in2] 21.92 Eq.1-12-1 Required flexural stress about major principal axis (fb33) [Kip/in2] 4.89 - Available flexural stress about major principal axis (Fb33) [Kip/in2] 94.50 Eq.1-12-1 Available flexural slressaboul minor principal axis (fb22) [Kip/in2] -0.65 Required flexural stress about minor principal axis (Fb22) [Kip/in2] 21.36 Eq.1-12-1 Member 2 (b) Design status OK DESIGN WARNINGS Section information Section name: L 3X3X3_16 (US) Dimensions a = 3.000 [in] Flange length k = 0.563 [in] Distance k t = 0.188 [in] Thickness Properties Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 1.090 Moment of Inertia (local axes) (1) [in4] 0.948 0.948 Moment of Inertia (principal axes) (1) [in4] 1.522 0.374 Bending constant for moments (principal axis) (J') [in] 0.000 2.050 Radius of gyration (local axes) (r) [in] 0.933 0.933 Radius of gyration (principal axes) (r') [in] 1.182 0.586 Saint-Venant torsion constant. (J) [in4] 0.014 Section warping constant. (Cw) [in6] 0.009 Distance from centroid to shear center (principal axis) (xo,yo) [in] -0.726 -0.726 Top elastic section modulus of the section (local axis) (Ssup) [in3] 0.433 0.433 Bottom elastic section modulus of the section (local axis) (Sind) [in3] 1.171 1.171 Top elastic section modulus of the section (principal axis) (S'sup) [in3] 0.724 0.352 Bottom elastic section modulus of the section (principal axis) (S'inf) [in3] 0.724 0.352 Plastic section modulus (local axis) (Z) [in3] 0.774 0.774 Plastic section modulus (principal axis) (Z') [in3] 1.120 0.560 Polar radius of gyration. (m) Area for shear (Aw) Torsional constant. (C) Material : A36 Properties Yield stress (Fy): Tensile strength (Fu): Elasticity Modulus (E): Shear modulus for steel (G): DESIGN CRITERIA Description Length for tension slenderness ratio (L) Distance between member lateral bracing points Length (Lb) [ff] Top Bottom ___-- - 2.00 ------ _____________—'—' 2.00 Laterally unbraced length Length [fl] Major axis(L33) Minor axis(L22) Torsional axis(Lt) -------------- ---- —________—_____—_______ 2.00 2.00 2.00 Additional assumptions Continuous lateral torsional restraint Tension field action Continuous flexural torsional restraint Effective length factor value type Major axis frame type Minor axis frame type Single angle connected through width Planar element Consider eccentricity Shear load point of application DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio 0.00 Capacity 35.32 [Kip] Demand 0.00 [Kip] _ --------- —----------------------------- ___. Intermediate results Factored axial tension capacitv(�Pn) Nominal axial tension capacity (Pn) AXIAL COMPRESSION DESIGN Compression in the major axis 33 [in] 1.670 [in2] 0.560 0.560 [in3] 0.068 Unit Value [Kip/in2]` ---' — 36.00 [Kip/in2] 58,00 [Kip/in2] 29000.00 [Kip/in2] 11507.94 Unit [ft]__ Major axis(K33) 1.0 Reference Ctrl Eq. Unit [Kip] [Kip] Value 2.00 Effective length factor Minor axis(K22) Torsional axis(Kt) _____________ 1.0 —1.0 No No No None Sway Sway No No No Gravity center CI.D2 id2 at 0.00% --------------- Value Reference 35.32 CLD2 39.24 Eq.D2-1 Ratio 0.00 Capacity 30.10 [Kip] Demand 0.00 [Kip] Reference CLE3 Ctrl Eq. id2 at 0.00% Intermediate results Unit Value Reference - --- - ------ -___-_ Section classification --------- ____ Unstiffened element classification -- Slender Unstiffened element slenderness (7v) - 16.00 Unstiffened elementlimiting slenderness (Xr) - 12.77 Table.4.1a.Case3 Stiffened element classification -- Slender Stiffened element slenderness (X) -- 16.00 Stiffened element limiting slenderness (7,r) -- 12.77 Table.4.1 a.Case3 Factored flexural buckling strength(�Pn33) [Kip] 30.10 CLE3 Unbraced length (1-33) [ft] 2.00 CLE2 Effective slenderness ((KUr)33) - 25.73 CLE2 Elastic critical buckling stress (Fe33) [Kip/in2] 432.17 Eq.E34 Effective area of the cross section based on the effective width (Aeff33) [in2] 0.96 Critical stress for flexural buckling (Fcr33) [Kip/in2] 34.77 Eq.E3-2 Nominal flexural buckling strength (Pn33) [Kip] 33.45 Eq.E7-1 Compression in the minor axis 22 Ratio 0.00 Capacity 30.10 [Kip] Demand 0.00 [Kip] Reference CLE3 Ctrl Eq. id2 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Slender Unstiffened element slenderness (X) -- 16.00 Unstiffened element limiting slenderness (Xr) -- 12.77 Table.4.1 a.Case3 Stiffened element classification - Slender Stiffened element slenderness 16.00 Stiffened element limiting slenderness (Xr) -- 12.77 Table.4.1 a.Case3 Factored flexural buckling strenoth(�Pn22) [Kip] 30.10 CLE3 Unbraced length (1-22) [ft] 2.00 CLE2 Effective slenderness ((KUr)22) -- 25.73 CLE2 Elastic critical buckling stress (Fe22) [Kip/in2] 432.17 Eq.E34 Effective area of the cross section based on the effective width (Aeff22) [in2] 0.96 Critical stress for flexural buckling (For22) [Kip/in2] 34.77 Eq.E3-2 Nominal flexural buckling strength (Pn22) [Kip] 33.45 Eq.E7-1 FLEXURAL DESIGN I Bending about major axis. M33 Ratio 0.01 Capacity 1.40 [Kip*ft] Demand -0.01 [Kip*ft] Reference CLF10.2 Ctrl Eq. id3 at 0.00% Intermediate results Unit Value Section classification--------------_------------------------------------ Unstiffened element classification -- Noncompact Unstiffened element slenderness (7v) - 16.00 Limiting slenderness for noncompact unstiffened element (%r) - 25.83 Limiting slenderness for compact unstiffened element (Xp) -- 15.33 Stiffened element classification -- Noncompact Stiffened element slenderness 16.00 Limiting slenderness for noncompact stiffened element (2r) -- 25.83 Reference IMM Limiting slenderness for compact stiffened element (Xp) Factored vieldino strenoth(OMn) Yielding (Mn) Factored lateral -torsional bucklino strenoth(010n) Lateral -torsional buckling modification factor (Cb) Elastic lateral -torsional buckling moment (Mcr) Nominal lateral -torsional buckling moment strength (Mn) Factored compression flange local buckling strength(+Mn) Flange local buckling (Mn) Factored web local buckling strength(OMn) Local web buckling (Mn) Factored yielding strength about a geometric axis(�Mn) Yielding (Mn) Factored lateral -torsional buckling strength about a geometric axis(On) Lateral -torsional buckling modification factor (Cb) Elastic lateral -torsional buckling moment (Mcr) Nominal lateral -torsional buckling moment strength (Mn) Factored compression flange local bucklino strength about a geometric ... Flange local buckling (Mn) Factored web local buckling strength about a geometric axis(OMn) Local web buckling (Mn) Bending about minor axis. M22 Ratio 0.01 Capacity 1.39 [Kip*ft] Demand 0.01 [Kip*ft] Intermediate results Section classification Unstiffened element classification Unstiffened element slenderness (7<) Limiting slenderness for noncompact unstiffened element (7`r) Limiting slenderness for compact unstiffened element (Xp) Stiffened element classification Stiffened element slenderness (X) Limiting slenderness for noncompact stiffened element (ivr) Limiting slenderness for compact stiffened element (Xp) Factored yielding strength(�Mn) Yielding (Mn) Factored compression flange local buckling strength(OMn) Flange local buckling (Mn) Factored web local buckling strength(OMn) Local web buckling (Mn) Factored yielding strength(�Mn) Yielding (Mn) Factored lateral -torsional buckling strenuth(OMn) Nominal lateral -torsional buckling moment strength (Mn) Factored compression flange local buckling strength(OMn) Flange local buckling (Mn) Factored web local buckling strength(OMn) Local web buckling (Mn) DESIGN FOR SHEAR Shear in major axis 33 -Ratio 0.00 Capacity 10.94 [Kip] Demand 0.00 [Kip] 15.33 [Kip*ft] 2.93 CLF10.1 [Kip*ft] 3.26 Eq.F10-1 [Kip*ft] 2.93 CI.F10.2 - 2.83 Eq.1`11-1 [Kip*ft] 38.37 Eq.F10-4 [Kip*ft] 3.26 Eq.F10-2 [Kip*ft] 2.85 CI.F10.3 [Kip*ft] 3.17 Eq.1`10-6 [Kip*ft] 2.85 CI.F10.3 [Kip/in2] 0.02 Eq.F10-6 [Kip*ft] 1.75 CI.F10.1 [Kip*ft] 1.95 Eq.F10-1 [Kip*ft] 1.40 CLF10.2 2.24 Eq.F1-1 [Kip*ft] 174.13 Eq.F10-5b [Kip*ft] 1.56 Eq.F10-2 [Kip*ft] 1.37 CLF10.3 [Kip*ft] 1.52 Eq.F10-6 [Kip*ft] 1.37 CLF10.3 [Kip/in2] 0.01 Eq.F10-6 Reference CI.F10.3 Ctrl Eq. id3 at 0.00% Unit Value Reference -- Noncompact - 16.00 25.83 15.33 -- Noncompact 16.00 25.83 15.33 [Kip*ft] 1.43 CI.F10.1 [Kip*ft] 1.58 Eq.F10-1 [Kip*ft] 1.39 CLF10.3 [Kip*ft] 1.54 Eq.F10-6 [Kip*ft] 1.39 CI.F10.3 [Kip/in2] 0.01 Eq.F10-6 [Kip*ft] 1.75 CI.F10.1 [Kip*ft] 1.95 Eq.1`10-1 [Kip*ft] 1.40 CLF10.2 [Kip*ft] 1.56. Eq.F10-2 [Kip*ft] 1.37 CLF10.3 [Kip*ft] 1.52 Eq.F10-6 [Kip*ft] 1.37 CLF10.3 [Kip/in2] 0.01 Eq.F10-6 Reference CI.G1 Ctrl Eq. id2 at 0.00 % use Intermediate results Unit Value Reference Factored shear capacity in a Geometric axl&Vn) [Kip] 10.94 CI.01 Web buckling coefficient (kv) -- 1.20 CLG3 Web buckling coefficient (Cv) -- 1.00 Eq.G2-9 Nominal shear strength (Vn) [Kip] 12.15 Eq.G6-1 Shear In minor axis 22 Ratio 0.00 Capacity 10.94 [Kip] Reference CI.G1 Demand 0.01 [Kip] Ctrl Eq. 10 at 0.00 Intermediate results Unit Value Reference Factored shear capacity in a Geometric axis(�Vn) [Kip] 10.94 CI.G1 Web buckling coefficient (kv) -- 1.20 CLG3 Web buckling coefficient (Cv) -- 1.00 Eq.G2-9 Nominal shear strength (Vn) [Kip] 12.15 Eq.G3-1 COMBINED ACTIONS DESIGN , Combined flexure and axial ............................................................................................................................................................. Ratio 0.01 Ctrl Eq. id3 at 0.00% Reference Eq.H2-1 ............................................................................................................................................................. Intermediate results Unit Value Reference Interaction of flexure and axial force - 0.01 Eq.1-12-1 Required axial stress (fa) [Kip/in2] 0.00 Available axial stress (Fa) [Kip/in2] 26.64 Eq.H2-1 Required flexural stress about major principal axis (fb33) [Kip/in2] -0.60 Available flexural stress about major principal axis (Fb33) [Kip/in2] 94.50 Eq.H2-1 Available flexural slressabout minor principal axis (fb22) [Kip/in2] -0.04 Required flexural stress about minor principal axis (F622) [Kip/in2] 21.63 Eq.1-12-1 Member 3 (c) Design status OK DESIGN WARNINGS Section information Section name: L 3X3X3_16 (US) Dimensions '-" --- - -------- -'--'--"-- ----_-_--_- a 3.000 [in] Flange length k = 0.563 [in] Distance k t = 0.188 [in] Thickness Properties Section properties Gross area of the section. (Ag) Moment of Inertia (local axes) (1) Moment of Inertia (principal axes) (I') Bending constant for moments (principal axis) (S) Radius of gyration (local axes) (r) Radius of gyration (principal axes) (r') Saint-Venanl torsion constant. (J) Section warping constant. (Cw) Distance from centroid to shear center (principal axis) (xo,yo) Top elastic section modulus of the section (local axis) (Ssup) Bottom elastic section modulus of the section (local axis) (Sint) Top elastic section modulus of the section (principal axis) (S'sup) Bottom elastic section modulus of the section (principal axis) (S'inf) Plastic section modulus (local axis) (Z) Plastic section modulus (principal axis) (Z') Polar radius of gyration. (ro) Area for shear (Aw) Torsional constant. (C) Material : A36 Properties Yield stress (Fy): Tensile strength (Fu): Elasticity Modulus (E): Shear modulus for steel (G): DESIGN CRITERIA Description Length for tension slenderness ratio (L) Distance between member lateral bracing points Length (Lb)[ft] Top Bottom 2.00 2.00 Laterally unbraced length Length [ft] Major axis(L33) Minor axis(L22) Torsional axis(Lt) Unit Major axis Minoraxis [in2] 1.090 [in4] 0.948 0.948 [in4] 1.522 0.374 [in] 0.000 2.050 [in] 0.933 0.933 [in] 1.182 0.586 [in4] 0.014 [in6] 0.009 [in] -0.726 -0.726 [in3] 0.433 0.433 [in3] 1.171 1.171 [in3] 0.724 0.352 [10] 0.724 0.352 [in3] 0.774 0.774 [in3] 1.120 0.560 [in] 1,670 [in2] 0.560 0.560 [in3] 0.068 Unit Value [Kip/in2] 36.00 [Kip/in2] 58.00 [Kip/in2] 29000.00 [Kip/in2] 11507.94 Unit Value [k]_____-________ 2.00 Effective length factor Major axis(K33) Minor axis(K22) Torsional axis(Kt) 2.00 2.00 2.00 1.0 Additional assumptions Continuous lateral torsional restraint Tension field action Continuous flexural torsional restraint Effective length factor value type Major axis frame type Minor axis frame type Single angle connected through width Planar element Consider eccentricity Shear load point of application DESIGN CHECKS 1.0 1.0 No No No None Sway Sway No No No Gravity center AXIAL TENSION DESIGN Axial tension Ratio 0.00 Capacity 35.32 [Kip] Reference CI.D2 Demand 0.00 [Kip] Chi Eq. id2 at 0.00% Intermediate results Unit Value Reference Factored axial tension capacitv(OPn) [Kip] 35.32 CLD2 Nominal axial tension capacity (Pn) [Kip] 39.24 Eq.D2-1 AXIAL COMPRESSION DESIGN Compression In the major axis 33 Ratio 0.00 Capacity 30.10 [Kip] Reference CI.E3 Demand 0.00 [Kip] Clrl Eq. id2 at 0.00% Intermediate results Unit Value Reference --_-_____---_-__-_-----_-_ Section classification - ------------------- Unstiffened element classification - Slender Unstiffened element slenderness (?L) - 16.00 Unstiffened element limiting slenderness (ivr) - 12.77 Table.4.1 a.Case3 Stiffened element classification - Slender Stiffened element slenderness (1v) -- 16.00 Stiffened element limiting slenderness (Xr) -- 12.77 Table.4.1 a.Case3 Factored flexural bucklina strenoth(�Pn33) [Kip] 30.10 CI.E3 Unbraced length (L33) [ft] 2.00 CI.E2 Effective slenderness ((KL/r)33) -- 25.73 CLE2 Elastic critical buckling stress (Fe33) [Kip/in2] 432.17 Eq.E34 Effective area of the cross section based on the effective width (Aeff33) [in2] 0.96 Critical stress for flexural buckling (Fcr33) [Kip/in2] 34.77 Eq.E3-2 Nominal flexural buckling strength (Pn33) [Kip] 33.45 Eq.E7-1 Compression in the minor axis 22 Ratio 0.00 Capacity 30.10 [Kip] Reference CI.E3 Demand 0.00 [Kip] Ctrl Eq. id2 at 0.00% Intermediate results Unit Value Reference Section classification Unstiffened element classification -- Slender Unstiffened element slenderness 16.00 Unstiffened element limiting slenderness (%r) -- 12.77 Table.4.1a.Case3 Stiffened element classification -- Slender Stiffened element slenderness (%) -- 16.00 Stiffened element limiting slenderness (2,r) -- 12.77 Table.4.1 a.Case3 Factored flexural buckling strength(OPn22) [Kip] 30.10 CI.E3 Unbraced length (1-22) IN 2.00 CLE2 Effective slenderness ((KL/r)22) - 25.73 CI.E2 Elastic critical buckling stress (Fe22) [Kip/in2] 432.17 Eq.E3-4 Effective area of the cross section based on the effective width (Aeff22) [in2] 0.96 Critical stress for flexural buckling (Fc22) [Kip/in2] 34.77 Eq.E3-2 Nominal flexural buckling strength (Pn22) [Kip] 33.45 Eq.E7-1 FLEXURAL DESIGN , raen Bending about major axis. M33 Ratio 0.01 Capacity 1.40 [Kip*ft] Reference CLF10.2 Demand -0.01 [Kip*ft] Ctrl Eq. id2 at 0.00% Intermediate results Unit Value Reference - -------- __-__________-__-- -- - ---- - Section classification ------- - ----------------------------- Unstiffened element classification - Noncompact Unstiffened element slenderness (7v) -- 16.00 Limiting slenderness for noncompact unstiffened element (ivr) -- 25.83 Limiting slenderness for compact unstiffened element (kp) -- 15.33 Stiffened element classification -- Noncompact Stiffened element slenderness (X) - 16.00 Limiting slenderness for noncompact stiffened element (),r) -- 25.83 Limiting slenderness for compact stiffened element (%p) - 15.33 Factored vielding strenolh(OMn) [Kip*ft] 2.93 CLF10.1 Yielding (Mn) [Kip*ft] 3.26 Eq.F10-1 Factored lateral -torsional buckling strenoth(ifiMn) [Kip*ft] 2.93 CI.F10.2 Lateral -torsional buckling modification factor (Cb) -- 2.24 Eq.F1-1 Elastic lateral -torsional buckling moment (Mcr) [Kip*ft] 30.39 Eq.F10-4 Nominal lateral -torsional buckling moment strength (Mn) [Kip*ft] 3.26 Eq.F10-2 Factored compression flange local buckling strenoth(�Mn) [Kip*ft] 2.85 CI.F10.3 Flange local buckling (Mn) [Kip*ft] 3.17 Eq.F10-6 Factored web local buckling strength(�Mn) [Kip'^ft] 2.85 CI.F10.3 Local web buckling (Mn) [Kip/in2] 0.02 Eq.F10-6 Factored yielding strength about a geometric axis(OMn) [Kip*ft] 1.75 CLF10.1 Yielding (Mn) [Kip*ft] 1.95 Eq.1`10-1 Factored lateral -torsional buckling strength about a geometric axis(OMn) [Kip*ft] 1.40 CLF10.2 Lateral -torsional buckling modification factor (Cb) -- 2.24 Eq.F1-1 Elastic lateral -torsional buckling moment (Mcr) [Kip*ft] 173.92 Eq.F10-5b Nominal lateral -torsional buckling moment strength (Mn) [Kip*ft] 1.56 Eq.F10-2 Factored compression flange local bucklino strength about a geometric ... [Kip*ft] 1.37 CLF10.3 Flange local buckling (Mn) [Kip*ft] 1.52 Eq.1`10-6 Factored web local bucklino strength about a geometric axis(OMn) [Kip*ft] 1.37 CI.1`10.3 Local web buckling (Mn) [Kip/in2] 0.01 Eq.1`10-6 Bending about minor axis, M22 Ratio 0.01 Capacity 1.37 [Kip*ft] Reference CLF10.3 Demand -0.01 [Kip*ft] Ctrl Eq. id2 at 0.00% _____----------- ---------- ------- ------------------------------- Intermediate results Unit -_______-______ Value Reference ---------------------------------- ---- --------- -______-__________-______________--_____-_ Section classification Unstiffened element classification -- Noncompact Unstiffened element slenderness (k) -- 16.00 Limiting slenderness for noncompact unstiffened element (fir) -- 25.83 Limiting slenderness for compact unstiffened element (%p) -- 15.33 Stiffened element classification -- Noncompact Stiffened element slenderness 16.00 Limiting slenderness for noncompact stiffened element (%r) - 25.83 Limiting slenderness for compact stiffened element (Xp) -- 15.33 Factored vielding strength(+Mn) [Kip*ft] 1.43 CI.F10.1 Yielding (Mn) [Kip*ft] 1.58 Eq.1`10-1 Factored compression flange local buckling strength(OMn) [Kip*ft] 1.39 CI.1`10.3 Flange local buckling (Mn) [Kip*ft] 1.54 Eq.1`10-6 Factored web local buckling strenglh(OMn) [Kip*ft] 1.39 CI.F10.3 Local web buckling (Mn) [Kip/in2] 0.01 Eq.F10-6 Factored Yielding strenoth(OMn) [Kip*ft] 1.75 CI.1`10.1 Yielding (Mn) [Kip*ft] 1.95 Eq.F10-1 air Factored lateral -torsional buckling strenath(�Mn) [Kip*ft] 1.40 CI.F10.2 Nominal lateral -torsional buckling moment strength (Mn) [Kip*ft] 1.56 Eq.F10-2 Factored compression flange local buckling strenoth(010n) [Kip*ft] 1.37 CLF10.3 Flange local buckling (Mn) [Kip*ft] 1.52 Eq.F10-6 Factored web local buckling strength(OW) [Kip*ft] 1.37 CI510.3 Local web buckling (Mn) [Kip/in2] 0.01 Eq.1`10-6 DESIGN FOR SHEAR Shear in malor axis 33 Ratio 0.00 Capacity 10.94 [Kip] Reference CI.G1 Demand 0.01 [Kip] Ctrl Eq. id2 at 0.00 Intermediate results Unit -_-_-___-_-__- Value Reference Factored shear capacity in a geometric axis(�Vn) [Kip] 10.94 CI.G1 Web buckling coefficient (kv) - 1.20 CI.G3 Web buckling coefficient (Cv) - 1.00 Eq.G2-9 Nominal shear strength (Vn) [Kip] 12.15 Eq.G6-1 Shear in minor axis 22 Ratio 0.00 Capacity 10.94 [Kip] Reference CI.G1 Demand 0.01 [Kip] - Ctrl Eq. id2 at 0.00 Intermediate results Unit Value Reference Factored shear capacity in a geometric axis(oVn) [Kip] 10.94 CI.G1 Web buckling coefficient (kv) - 1.20 CI.G3 Web buckling coefficient (Cv) - 1.00 Eq.G2-9 Nominal shear strength (Vn) [Kip] 12.15 Eq.G3-1 COMBINED ACTIONS DESIGN Combined flexure and axial .............................................................................................................................................................................. Ratio 0.01 Ctrl Eq. id2 at 0.00 % ..................................................................................................................................................... Reference Eq.1­12-1 I........................ Intermediate results --_-_____-_-_-_-______-_-_-__ Unit Value Reference Interaction of flexure and axial force - 0.01 Eq.1­12-1 Required axial stress (fa) [Kip/in2] 0.00 Eq.1­12-1 Available axial stress (Fa) [Kip/in2] 32.40 Eq.1­12-1 Required flexural stress about major principal axis (fb33) [Kip/in2] -0.11 Available flexural stress about major principal axis (Fb33) [Kip/in2] 94.50 Eq.H2-1 Available flexural slressabout minor principal axis (fb22) [Kip/in2] -0.09 Required flexural stress about minor principal axis (Fb22) [Kip/in2] 21.63 Eq.H2-1 Member 4 (d) Design status OK DESIGN WARNINGS u Section name: L 3X3X3_16 (US) Dimensions -- ------- t --------'--"-"--- a = 3.000 [in] Flange length k = 0.563 [in] Distance k t = 0.188 finl Thickness Properties Section properties Gross area of the section. (Ag) Moment of Inertia (local axes) (1) Moment of Inertia (principal axes) (1) Bending constant for moments (principal axis) (J) Radius of gyration (local axes) (r) Radius of gyration (principal axes) (r') Saint-Venant torsion constant. (J) Section warping constant. (Cw) Distance from centroid to shear center (principal axis) (xo,yo) Top elastic section modulus of the section (local axis) (Ssup) Bottom elastic section modulus of the section (local axis) (Sint) Top elastic section modulus of the section (principal axis) (S'sup) Bottom elastic section modulus of the section (principal axis) (S'inf) Plastic section modulus (local axis) (Z) Plastic section modulus (principal axis) (Z') Polar radius of gyration. (ro) Area for shear (Aw) Torsional constant. (C) Material : A36 Properties Yield stress (Fy): Tensile strength (Fu): Elasticity Modulus (E): Shear modulus for steel (G): DESIGN CRITERIA Description Length for tension slenderness ratio (L) Distance between member lateral bracing points ----- Length (Lb) [tt] Top Bottom ______ ----_________ 4.08 Laterally unbraced unbraced length _-__________-___________-_-____________- Length [ff] Major axis(L33) Minor axis(L22) Torsional axis(Lt) 4.08-_-__-___ 4.08 4.08 Section information Unit [in2] [in4] [in4] [in] [in] [in] [in4] [in6] [in] [in3] [in3] [in3] [in3] [in3] [in3] [in] [in2] [in3] Unit [Kip/in2] [Kip/in2] [Kip/in2] [Kip/in2] Unit Major axis(K33) .__________ 1.0 Major axis 1.090 0.948 1.522 0.000 0.933 1.182 0.014 0.009 -0.726 0.433 1.171 0.724 0.724 0.774 1.120 1.670 0.560 0.068 Value 36.00 58.00 29000.00 11507.94 Value 4.08 Effective length factor Minor axis(K22) _________1.O _______. Minor axis 0.948 0.374 2.050 0.933 0.586 -0.726 0.433 1.171 0,352 0.352 0.774 0.560 0.560 Torsional axis(Kt) Additional assumptions Continuous lateral torsional restraint Tension field action Continuous flexural torsional restraint Effective length factor value type Major axis frame type Minor axis frame type Single angle connected through width Planar element Consider eccentricity Shear load point of application DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio 0.00 Capacity 36.32 [Kip] Demand 0.00 [Kip] Intermediate results Factored axial tension ceded v(OPn) Nominal axial tension capacity (Pn) AXIAL COMPRESSION DESIGN , Compression in the major axis 33 Ratio 0.00 Capacity 27.94 [Kip] Demand 0.13 [Kip] No No No None Sway Sway No No No Gravity center Reference CI.D2 Ctrl Eq. id2 at 0.00% Unit Value Reference [Kip] 35.32 CI.D2 [Kip] 39.24 Eq.D2-1 Reference CLE3 Ctrl Eq. id3 a10.00% Intermediate results Unit Value Reference ----- --- -------- --__---------------------- ---------- --- — Section classification Unstiffened element classification -- Slender Unstiffened element slenderness (1`) — 16,00 Unstiffened element limiting slenderness (Xr) -- 12.77 Table.4.1 a.Case3 Stiffened element classification — Slender Stiffened element slenderness 16.00 Stiffened element limiting slenderness (%r) -- 12.77 Table.4.1a.Case3 Factored flexural buckling strenoth(01`03) [Kip] 27.94 CLE3 Unbraced length (1-33) IN 4.08 CLE2 Effective slenderness ((KUr)33) — 52.54 CLE2 Elastic critical buckling stress (Fe33) [Kip/in2] 103.68 Eq.E34 Effective area of the cross section based on the effective width (Aeff33) [in2] 1.00 Critical stress for flexural buckling (Fcr33) [Kip/in2] 31.13 Eq.E3-2 Nominal flexural buckling strength (Pn33) [Kip] 31.04 Eq.E7-1 Compression In the minor axis 22 Ratio 0.00 Capacity 27.94 [Kip] Reference CI.E3 Demand 0.13 [Kip] Chl Eq. id3 at 0.00% Intermediate results Unit Value Reference ----------- ----- __-__-_--_____-_-___-____ Section classification ______________ Unstiffened element classification -- Slender Unstiffened element slenderness (k). -- 16.00 Unstiffened element limiting slenderness ()Lr) -- 12.77 Table.4.1a.Case3 Stiffened element classification - Slender Stiffened element slenderness (,.) -- 16.00 Stiffened element limiting slenderness (ar) -- 12.77 Table.4.1a.Case3 Factored flexural bucklino strenoth(�Pn22) [Kip] 27.94 CLE3 Unbraced length (1-22) [ft] 4.08 CLE2 Effective slenderness ((KL/r)22) -- 52.54 CLE2 Elastic critical buckling stress (Fe22) [Kip/in2] 103.68 Eq.E3-4 Effective area of the cross section based on the effective width (Aeff22) [in2] 1.00 Critical stress for flexural buckling (Fcr22) [Kip/in2] 31.13 Eq.E3-2 Nominal flexural buckling strength (Pn22) [Kip] 31.04 Eq.E7-1 FLEXURAL DESIGN Bending about major axis. M33 Ratio 0.09 Capacity 1.40 [Kip*ft] Demand -0.12 [Kip*ft] Intermediate results Section classification Unstiffened element classification Unstiffened element slenderness (k) Limiting slenderness for noncompacl unstiffened element (%vr) Limiting slenderness for compact unstiffened element (Xp) Stiffened element classification Stiffened element slenderness (7v) Limiting slenderness for noncompacl stiffened element (Xr) Limiting slenderness for compact stiffened element (kp) Factored yielding strength(OMn) Yielding (Mn) Factored lateral -torsional buckling slrength(OMn) Lateral -torsional buckling modification factor (Cb) Elastic lateral -torsional buckling moment (Mcr) Nominal lateral -torsional buckling moment strength (Mn) Factored compression flange local buckling strenath(OMn) Flange local buckling (Mn) Factored web local buckling strenoth(OMn) Local web buckling (Mn) Factored yielding strength about a geometric axis(oMn) Yielding (Mn) Factored lateral -torsional buckling strength about a geometric axis(4)Mn) Lateral -torsional buckling modification factor (Cb) Elastic lateral -torsional buckling moment (Mcr) Nominal lateral -torsional buckling moment strength (Mr) Factored compression flange local buckling strength about a geometric ... Flange local buckling (Mn) Factored web local buckling strength about a geometric axis(OMn) Local web buckling (Mn) - Bendina about minor axis. M22 Ratio 0.05 Capacity 1.39 [Kip*ft] Demand 0.08 [Kip*ft] 2E Reference CLF10.2 Ctrl Eq. id3 at 0,00% Unit --------------- Value Reference -- Noncompact 16.00 - 25.83 15.33 -- Noncompact 16.00 - 25.83 15.33 [Kip*ft] 2.93 CI.F10.1 [Kip*ft] 3.26 Eq.F10-1 [Kip*ft] 2.81 CLF10.2 -- 1.91 Eq.F1-1 [Kip*ft] 12.72 Eq.F10-4 [Kip*ft] 3.12 Eq.F10-2 [Kip*ft] 2.85 CLF10.3 [Kip*ft] 3.17 Eq.F10-6 [Kip*ft] 2.85 CLF10.3 [Kip/in2] 0.02 Eq.F10-6 [Kip*ft] 1.75 CI.F70.1 [Kip*ft] 1.95 Eq.1`10-1 [Kip*ft] 1.40 CI.F10.2 -- 2.37 Eq.F1-1 [Kip*ft] 50.01 Eq.F10-5b [Kip*ft] 1.56 Eq.F10-2 [Kip*ft] 1.37 CI.F10.3 [Kip*ft] 1.52 Eq.1`10-6 [Kip*ft] 1.37 CLF10.3 [Kip/in2] 0.01 Eq.F10-6 Reference CI110.3 Ctrl Eq. id3 al 0.00% Intermediate results Unit Value Reference ----------- ___-__-_-________-_-_--_- Section classification Unstiffened element classification -- Noncompact Unstiffened element slenderness (1`.) - 16.00 Limiting slenderness for noncompact unstiffened element (fir) - 25.83 Limiting slenderness for compact unstiffened element (%p) - 15.33 Stiffened element classification -- Noncompact Stiffened element slenderness (g.) -- 16.00 Limiting slenderness for noncompact stiffened element (Xr) -- 25.83 Limiting slenderness for compact stiffened element (Xp) -- 15.33 Factored yielding strenoth(�Mn) [Kip*ft] 1.43 CI.1`10.1 Yielding (Mn) [Kip*ft] 1.58 Eq.F10-1 Factored compression flange local bucklino strength(�Mn) [Kip*ft] 1.39 CLF10.3 Flange local buckling (Mn) [Kip*ft] 1.54 Eq.F10-6 Factored web local buckling strenoth(oMn) [Kip*ft] 1.39 CLF10.3 Local web buckling (Mn) [Kip/in2] 0.01 Eq.F10-6 Factored yielding strength(OMn) [Kip*ft] 1.75 CLF10.1 Yielding (Mn) [Kip*ft] 1.95 Eq.F10-1 Factored lateral -torsional buckling strength(OMn) [Kip*ft] 1.39 CLF10.2 Nominal lateral -torsional buckling moment strength (Mn) [Kip*ft] 1.54 Eq.F10-2 Factored compression flange local buckling strength(OMn) [Kip*ft] 1.37 CI.1`10.3 Flange local buckling (Mn) [Kip*ft] 1.52 Eq.1`10-6 Factored web local buckling strenoth(OMn) [Kip*ft] 1.37 CLF10.3 Local web buckling (Mn) [Kip/in2] 0.01 Eq.F10-6 DESIGN FOR SHEAR , Shear in major axis 33 Ratio 0.00 Capacity 10.94 [Kip] Reference CI.G1 Demand 0.01 [Kip] Ctrl Eq. id2 at 0.00% Intermediate results Unit Value Reference Factored shear capacity in a geometric axl&Vn) [Kip] 10.94 CLG1 Web buckling coefficient (kv) -- 1.20 CLG3 Web buckling coefficient (Cv) -- 1.00 Eq.G2-9 Nominal shear strength (Vn) [Kip] 12.15 Eq.G6-1 Shear in minor axis 22 Ratio 0.01 Capacity 10.94 [Kip] Reference CI.Gl Demand 0.14 [Kip] Ctrl Eq. id3 at 0.00% Intermediate results Unit Value Reference Factored shear capacity in a geometric axis(�Vn) [Kip] 10.94 CI.G7 Web buckling coefficient (kv) -- 1.20 CLG3 Web buckling coefficient (Cv) -- 1.00 Eq.G2-9 Nominal shear strength (Vn) [Kip] 12.15 Eq.G3-1 COMBINED ACTIONS DESIGN , Combined flexure and axial .............................................................................................................................................................................. Ratio 0.09 Ctrl Eq. ................................................................................................................................................................I............. id3 at 0.00% Reference Eq.1­12-1 �unu Intermediate results Unit Value Reference -------------- -------- ------------------ __------- ----------------- Interaction of flexure and axial force -- _______ 0.09 _ _ Eq.H2-1 Required axial stress (fa) [Kip/in2] -0.12 Available axial stress (Fa) [Kip/in2] 21.92 Eq.1-12-1 Required flexural stress about major principal axis (fb33) [Kip/in2] -5.12 Available flexural stress about major principal axis (Fb33) [Kip/in2] 94.50 Eq.H2-1 Available flexural stressabout minor principal axis (fb22) [Kip/in2] -0.71 Required flexural stress about minor principal axis (Fb22) [Kip/in2] 21.28 Eq.1-12-1 Member 5 (a) Design status OK DESIGN WARNINGS Section information Section name: HSS_SCR 3X3X3_16 (US) Dimensions ---' ------------------"_"---------------------"-' a = 3.000 [in] Height b = 3.000 [inj Width T = 0.174 (in] Thickness Properties ------------------ ---- ----- -------- ------ ------------------ Sectionproperties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 1.890 Moment of Inertia (local axes) (1) [in4] 2.500 2.500 Moment of Inertia (principal axes) (1) [in4] 2.500 2.500 Bending constant for moments (principal axis) (S) [in] 0.000 0.000 Radius of gyration (local axes) (r) [in] 1.150 1.150 Radius of gyration (principal axes) (r) [in] 1.150 1.150 Saint-Venanl torsion constant. (J) - [in4] 4.030 Section warping constant. (Cw) [in6] 0.000 Distance from centroid to shear center (principal axis) (xo,yo) [in] 0.000 0.000 Top elastic section modulus of the section (local axis) (Ssup) [in3] 1.600 1.600 Bottom elastic section modulus of the section (local axis) (Sint) [in3] 1.600 1.600 Top elastic section modulus of the section (principal axis) (S'sup) [in3] 1.600 1.600 Bottom elastic section modulus of the section (principal axis) (S'inf) [in3] 1.600 1.600 Plastic section modulus (local axis) (Z) [1n3] 2.000 2.000 Plastic section modulus (principal axis) (Z') (in3j 2.000 2.000 Polar radius of gyration. (m) [in] 1.613 Area for shear (Aw) [in2j 0.862 0.862 Torsional constant. (C) [in3] 2.758 Material : A36 Properties Unit Value ------------ ---------------- ------------- _-__---------- Yield stress (Fy): _------------------ [Kip/in2] _-_-_-_- 36.00 Tensile strength (F# [Kip/in2] 58.00 Elasticity Modulus (E): [Kip/in2] 29000.00 Shear modulus for steel (G): [Kip/in2] 11507.94 DESIGN CRITERIA uaa Description Length for tension slenderness ratio (L) Distance between member lateral bracing points Length (Lb) [k] Top Bottom 2.16 2.16 Laterally unbraced length ______-_-___Length [ft] Major axis(L33) Minor axis(L22) ------ ---------- 2.16 -_-_ Additional assumptions Continuous lateral torsional restraint Tension field action Continuous Flexural torsional restraint Effective length factor value type Major axis frame type Minor axis frame type DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio Capacity Demand Intermediate results Torsional axis(Lt) 2.16 0.00 61.24 [Kip] 0.00 [Kip] Factored axial tension capacitv(oPn) Nominal axial tension capacity (Pn) AXIAL COMPRESSION DESIGN , Compression in the major axis 33 Ratio 0.00 Capacity 59.62 [Kip] Demand 0.13 [Kip] Unit [ftl Major axis(K33) 1.0 Reference Ctrl Eq. Value 2.16 Effective length factor Minor axis(K22) -______-1-0 _ -- No No No None Sway Sway CLD2 id2 at 0.00 Torsional axis(Kt) 1.0 - Unit Value Reference [Kip] 61.24 CI.D2 [Kip] 68.04 Eq.D2-1 Reference CLE3 Ctrl Eq. id3 at 0.00 Intermediate results Unit Value Reference Section classification - --------- ------ __-_-_-. Unstiffened element classification - Non slender Unstiffened element slenderness 14.24 Unstiffened element limiting slenderness (kr) -- 39.74 Table.4.1 a.Case6 Stiffened element classification -- Non slender Stiffened element slenderness ()v) -- 14.24 Stiffened element limiting slenderness (ilr) -- 39.74 Table.4.1 a.Case6 Factored flexural buckling strength(OPn33) [Kip] 59.62 CI.E3 Unbraced length (1-33) [k] 2.16 CLE2 Effective slenderness ((KL/r)33) -- 22.54 CLE2 Elastic critical buckling stress (Fe33) [Kip/in2] 563.52 Eq.E3-4 Effective area of the cross section based on the effective width (Aeff33) [in2] 1.89 Critical stress for flexural buckling (Fcr33) [Kip/in2] 35.05 Eq.E3-2 Nominal flexural buckling strength (Pn33) [Kip] 66.24 Eq.E3-1 Compression in the minor axis 22 Ratio 0.00 Capacity 59.62 [Kip] Reference CLE3 Demand 0.13 [Kip] Ctrl Eq. id3 at 0.00% ------------ ------ ____-_-___--_--___----------- ------------------ Intermediate results ----- Unit --_-______________-_-__-_ Value Reference ------- - --------- ----------------- Section classification -_--------- _-_---- Unstiffened element classification -- Non slender Unstiffened element slenderness (X) -- 14.24 Unstiffened element limiting slenderness (Xr) -- 39.74 Table.4.1a.Case6 Stiffened element classification - Non slender Stiffened element slenderness 14.24 Stiffened element limiting slenderness (kr) -- 39.74 Table.4.1 a.Case6 Factored flexural buckling strenpth(�Pn22) [Kip] 59.62 CLE3 Unbraced length (1-22) IN 2.16 CLE2 Effective slenderness ((KL/r)22) - 22.54 CLE2 Elastic critical buckling stress (Fe22) [Kip/in2] 563.52 Eq.E34 Effective area of the cross section based on the effective width (Aeff22) [in2] 1.89 Critical stress for flexural buckling (Fcr22) [Kip/in2] 35.05 Eq.E3-2 Nominal flexural buckling strength (Pn22) [Kip] 66.24 Eq.E3-1 FLEXURAL DESIGN , Bending about major axis. M33 Ratio 0.03 Capacity 5.40 [Kip*ft] Reference CI.F7.1 Demand -0.16 [Kip*ft] Ctrl Eq. id3 at 0.00% ------------- _-_--_--_-_-_-__-_-_______-_-_-_-__--_-_____-_ Intermediate results Unit Value Reference __ -------- ------ _-_-______--__--__-__-_--------------- Section classification _ ----- - --------- _--_----_-____ Unstiffened element classification -- Compact Unstiffened element slenderness (X) -- 14.24 Limiting slenderness for noncompact unstiffened element (Xr) -- 39.74 Limiting slenderness for compact unsfiffened element (Xp) -- 31.79 Stiffened element classification - Compact Stiffened element slenderness (X) -- 14.24 Limiting slenderness for noncompact stiffened element (%r) -- 161.78 Limiting slenderness for compact stiffened element (7.p) -- 68.69 Factored Yielding sfrength(�Mn) [Kip*ft] 5.40 CI.F7.1 Yielding (Mn) [Kip*ft] 6.00 Eq.F7-1 Bending about minor axis. M22 Ratio 0.00 Capacity 5.40 [Kip*ff] Reference CLF7.1 Demand 0.01 [Kip*ft] Ctrl Eq. id3 at 0.00% Intermediate results Unit Value Reference --------------- --------- _------------- Section classification ----------------- ______ Unstiffened element classification -- Compact Unstiffened element slenderness 14.24 Limiting slenderness for noncompact unstiffened element 39.74 Limiting slenderness for compact unstiffened element (%p) -- 31.79 Stiffened element classification -- Compact MO Stiffened. element slenderness (%) Limiting slenderness for noncompact stiffened element (A,r) Limiting slenderness for compact stiffened element (Xp) Factored vieldino strength about a geometric wds(OMn) Yielding (Mn) DESIGN FOR SHEAR , Shear in major axis 33 Ratio 0.00 Capacity 16.76 [Kip] Demand 0.01 [Kip] Intermediate results Factored shear caoacitv(mVn) Web buckling coefficient (kv) Web buckling coefficient (Cv) Nominal shear strength (Vn) Shear in minor axis 22 Ratio 0.01 Capacity 16.76 [Kip] Demand 0.12 [Kip] Intermediate results Factored shear cagacitv(oVn) Web buckling coefficient (kv) Web buckling coefficient (Cv) Nominal shear strength (Vn) TORSION DESIGN , Torsion Ratio 0.00 Capacity 4.47 [Kip'ft] Demand -0.01 [Kip"ft] Intermediate results Factored torsion caoacitv(QTn) Critical torsional buckling stress (Fcr) Nominal torsion capacity (Tn) COMBINED ACTIONS DESIGN , Combined flexure and axial .......................................................................................... Ratio 0.03 Ctrl Eq. id3 at 0.00% .......................................................................................... 14.24 161.78 68.69 [Kip'ft] 5.40 CI.F7.1 [Kip`ft] 6.00 Eq.F7-1 Reference CI.G1 Cbl Eq. id2 at 0.00 % Unit Value Reference [Kip] - 16.76 CI.G1 -- 5.00 CI.G4 -- 1.00 Eq.G2-9 [Kip] 18.63 Eq.G4-1 Reference CI.G1 Clrl Eq. id3 at 0.00 % Unit Value Reference [Kip] 16.76 CI.G1 - 5.00 CI.G4 - 1.00 Eq.G2-9 [Kip] 18.63 Eq.G4-1 Reference CI.1-13.1 Ctrl Eq. id2 at 0.00% Unit Value Reference [Kip'ft] 4.47 CI.H3.1 [Kip/in2] 21.60 Eq.1-13-3 [Kip•ft] 4.97 Eq.1-13-1 Reference ...................... : Eq.H1-lb Intermediate results Interaction of flexure and axial force Available flexural strength about strong axis (Mc33) Available flexural strength about weak axis (Mc22) Available axial strength (Pc) Member Design status DESIGN WARNINGS 7 (f) OK Section name: HSS_SQR 3X3X3_16 (US) Dimensions Unit Value Reference - 0.03 Eq.H1-1b [Kip'ft] 5.40 CI.1-11.1 [Kip'ft] 5.40 CI.1-11.1 [Kip] 59.62 CI.H1.1 Section information a = 3.000 [in] Height b = 3.000 [in) Width T = 0.174 [in] Thickness Properties ---------------- -----------'-"-"-'- -'-'--'-"-- Section properties Unit Major axis Minor axis Gross area of the section. (Ag) [in2] 1.890 Moment of Inertia (local axes) (1) [in4] 2.500 2.500 Moment of Inertia (principal axes) (1) [in4] 2.500 2.500 Bending constant for moments (principal axis) (J') [in] 0.000 0.000 Radius of gyration (local axes) (r) [in] 1.150 1.150 Radius of gyration (principal axes) (r') [in] 1.150 1.150 Saint-Venanl torsion constant. (J) [in4] 4.030 Section warping constant. (Cw) [in6] 0.000 Distance from centroid to shear center (principal axis) (xo,yo) [in] 0.000 0.000 Top elastic section modulus of the section (local axis) (Ssup) [in3] 1.600 1.600 Bottom elastic section modulus of the section (local axis) (Sint) [in3] 1.600 1.600 Top elastic section modulus of the section (principal axis) (S'sup) [in3] 1.600 1.600 Bottom elastic section modulus of the section (principal axis) (S'inf) [in3] 1.600 1.600 Plastic section modulus (local axis) (Z) [in3] 2.000 2.000 Plastic section modulus (principal axis) (Z) [in3] 2.000 2.000 Polar radius of gyration. (ro) [in] 1.613 Area for shear (Aw) [in2] 0.862 0.862 Torsional constant. (C) [in3] 2.758 Material : A36 Properties Unit Value -- --- --------------- ---------------------------------------- Yield stress (Fy): [Kip/in2] ------- 36.00 Tensile strength (Fu): [Kip/in2] 58.00 Elasticity Modulus (E): [Kip/in2] 29000.00 Shear modulus for steel (G): [Kip/in2] 11507.94 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio (L) [fit] 2.16 Distance between member lateral bracing points ___ __ ____________—_--__—_________ Length (Lb) [ft] Top Bottom __________-_-___-_______—_—_____________ 2.16 2.16 Laterally unbraced length Length (ft) Major axis(L33) Minor axis(L22) Torsional axis(Lt) Additional assumptions Continuous lateral torsional restraint Tension field action Continuous flexural torsional restraint Effective length factor value type Major axis frame type Minor axis frame type DESIGN CHECKS AXIAL TENSION DESIGN , Axial tension Ratio 0.00 Capacity 61.24 [Kip] Demand 0.00 [Kip] Intermediate results Factored axial tension capacitv(�Pn) Nominal axial tension capacity (Pn) Effective length factor Major axis(K33) Minor axis(K22) —___-_________________ 1010 No No No None Sway Sway Torsional axis(Kt) .___---- ___ 1.0 Reference CI.D2 Ctrl Eq. id2 at 0.00% Unit Value Reference [Kip] 61.24 CI.132 [Kip] 68.04 Eq.D2-1 AXIAL COMPRESSION DESIGN , Compression In the maior axis 33 Ratio 0.00 Capacity 59.62 [Kip] Reference CLE3 Demand 0.14 [Kip] Ctrl Eq. id3 at 0.00 % ---------- —__________________—______—__—________—_________—______-_____—_______- Intermediate results Unit Value Reference ---------- __—______--- --------- Section classification — --------- -------- —____—________ Unstiffened element classification -- Non slender Unstiffened element slenderness (k) -- 14.24 Unstiffened element limiting slenderness (kr) — 39.74 Table.4.1 a.Case6 Stiffened element classification -- Non slender Stiffened element slenderness (k) — 14.24 Stiffened element limiting slenderness (Xr) — 39.74 Table.4.1 a.Case6 Factored flexural buckling strength(OPn33) [Kip] 59.62 CLE3 Unbraced length (1-33) [ft] 2.16 CLE2 Effective slenderness ((KL/r)33) — 22.54 CLE2 Elastic critical buckling stress (Fe33) [Kip/in2] 563.52 Eq.E3-4 Effective area of the cross section based on the effective width (Aeff33) [in2] 1.89 Critical stress for flexural buckling (Fcr33) [Kip/in2] 35.05 Eq.E3-2 Nominal flexural buckling strength (Pn33) [Kip] 66.24 Eq.E3-1 Compression in the minor axis 22 Ratio 0.00 Capacity 59.62 [Kip] Reference CLE3 Demand 0.14 [Kip] Ctrl Eq. id3 at 0.00% Intermediate results Unit Value Reference _-_-_____________-____-______-______-_______-_____-_________________ Section classification Unstiffened element classification -- Non slender Unstiffened element slenderness 14.24 Unstiffened element limiting slenderness (%r) -- 39.74 Table.41a.Case6 Stiffened element classification -- Non slender Stiffened element slenderness 14.24 Stiffened element limiting slenderness (Xr) -- 39.74 Table.4.1a.Case6 Factored flexural buckling streru th(�Pn22) [Kip] 59.62 CI.E3 Unbraced length (1-22) [ft] 2.16 CLE2 Effective slenderness ((KUr)22) -- 22.54 CLE2 Elastic critical buckling stress (Fe22) [Kip/in2] 563.52 Eq.E3-4 Effective area of the cross section based on the effective width (Aeff22) [in2] 1.89 Critical stress for flexural buckling (Fcr22) [Kip/in2] 35.05 Eq.E3-2 Nominal flexural buckling strength (Pn22) [Kip] 66.24 Eq.E3-1 FLEXURAL DESIGN , Bending about malor axis. M33 Ratio 0.03 Capacity 5.40 [Kip*ft] Reference CLF7.1 Demand -0.18 [Kip*ft] Ctrl Eq. id3 at 0.00 ----------- --- -___-_________________-__-______________-_______- Intermediate results ------- Unit ----------- -_-_-______________. Value Reference ________--------- ----- __----------------- _-- Section classification - ------------------ Unstiffened element classification -- Compact Unstiffened element slenderness (7v) -- 14.24 Limiting slenderness for noncompact unstiffened element (%r) -- 39.74 Limiting slenderness for compact unstiffened element (Xp) -- 31.79 Stiffened element classification - Compact Stiffened element slenderness (7<) -- 14.24 Limiting slenderness for noncompact stiffened element (Xr) -- 161.78 Limiting slenderness for compact stiffened element (?,p) -- 68.69 Factored yielding strength(r Mn) [Kip*ft] 5.40 CI.F7.1 Yielding (Mn) [Kip*ft] 6.00 Eq.F7-1 Bending about minor axis. M22 Ratio 0.00 Capacity 5.40 [Kip*ft] Reference CLF7.1 Demand 0.01 [Kip*ft] Ctrl Eq. id3 at 0.00% _---------- -------------- __------- Intermediate results ----------------- Unit -_-_-__-__________ Value Reference ------------- --------- -------- -____________-_------- --- Section classification Unstiffened element classification -- Compact Unstiffened element slenderness 14.24 Limiting slenderness for noncompact unstiffened element (kr) -- 39.74 Limiting slenderness for compact unstiffened element (Xp) - 31.79 Stiffened element classification -- Compact Stiffened element slenderness (1v) -- 14.24 Limiting slenderness for noncompact stiffened element (Xr) -- 161.78 Limiting slenderness for compact stiffened element (Xp) -- 68.69 Factored yielding strength about a geometric axis(OMn) Yielding (Mn) DESIGN FOR SHEAR , Shear in major axis 33 Ratio 0.00 Capacity 16.76 [Kip] Demand 0.01 [Kip] Intermediate results Factored shear caoacitv(�Vn) Web buckling coefficient (kv) Web buckling coefficient (Cv) Nominal shear strength (Vn) Shear in minor axis 22 Ratio 0.01 Capacity 16.76 [Kip] Demand 0.14 [Kip] -------- Intermediate results ---------------- Factored shear capacity(+Vn) Web buckling coefficient (kv) Web buckling coefficient (Cv) Nominal shear strength (Vn) TORSION DESIGN , Torsion Ratio 0.00 Capacity 4.47 [Kip'ft] Demand -0.01 [Kip'ft[ Intermediate results Factored torsion cagacitv(�Tn) Critical torsional buckling stress (Fcr) Nominal torsion capacity (Tn) COMBINED ACTIONS DESIGN , Combined flexure and axial ............................................................................... Ratio 0.04 Ctd Eq. id3 at 0.00% Intermediate results Interaction of flexure and axial force Available flexural strength about strong axis (Mc33) Available flexural strength about weak axis (MC22) Available axial strength (Pc) [Kip•ft] 5.40 CI.F7.1 [Kip'ft] 6.00 Eq.F7-1 Reference CI.G1 Chi Eq. id2 at 0.00% Unit Value Reference [Kip] 16.76 CI.Gi -- 5.00 CI.G4 -- 1.00 Eq.G2-9 [Kip] 18.63 Eq.G4-1 Reference CI.G1 Ctrl Eq. id3 at 0.00 Unit Value Reference [Kip] 16.76 CI.G1 -- 5.00 CI.G4 -- 1.00 Eq.G2-9 [Kip] 18.63 Eq.G4-1 Reference CI.1-13.1 Chi Eq. id2 at 0.00% Unit Value Reference [Kip'ft] 4.47 CI.1-13.1 [Kip/in2] 21.60 Eq.H3-3 [Kip"ft] 4.97 Eq.H3-1 ........................................................................... Reference ........................................................................... : Eq.Hl-lb Unit Value Reference --------------- 0.04----Eq.Hi-1b [Kip'ft] 5.40 CI.H1.1 [Kip'ft] 5.40 CI.H1.1 [Kip] 59.62 CI.H1.1 Member 8 (g) Design status OK DESIGN WARNINGS Section information Section name: HSS_SQR 3X3X3_16 (US) Dimensions ------------ a = 3.000 [in] Height b = 3.000 [in] Width T = 0.174 [in) Thickness Properties Section properties Unit Majoraxis Minoraxis Gross area of the section. (Ag) [in2] 1.890 Moment of Inertia (local axes) (1) [in4] 2.500 2.500 Moment of Inertia (principal axes) (1) [in4] 2.500 2.500 Bending constant for moments (principal axis) (J') [in] 0.000 0.000 Radius of gyration (local axes) (r) [in) 1.150 1.150 Radius of gyration (principal axes) (r') [in] 1.150 1.150 Saint-Venant torsion constant. (J) [in4] 4.030 Section warping constant. (Cw) [in6] 0.000 Distance from centroid to shear center (principal axis) (xo,yo) [in] 0.000 0.000 Top elastic section modulus of the section (local axis) (Ssup) [in3] 1.600 1.600 Bottom elastic section modulus of the section (local axis) (Sint) [in3] 1.600 1.600 Top elastic section modulus of the section (principal axis) (S'sup) [in3] 1.600 1.600 Bottom elastic section modulus of the section (principal axis) (S'inf) [in3] 1.600 1.600 Plastic section modulus (local axis) (Z) [in3] 2.000 2.000 Plastic section modulus (principal axis) (Z') [in3] 2.000 2.000 Polar radius of gyration. (ro) [in] 1.613 Area for shear (Aw) [in2] 0.862 0.862 Torsional constant. (G) [in3] 2.758 Material : A36 Properties Unit Value --------- --- Yield stress(FY) [---- -----_----36.00 -- Tensile strength (Fu): [Kipfin2] 58.00 Elasticity Modulus (E): [Kip/in2] 29000.00 Shear modulus for steel (G): [Kip/in2] 11507.94 DESIGN CRITERIA Description Unit Value Length for tension slenderness ratio (L) IN 2.16 Distance between member lateral bracing points ------------------ Length (Lb) [ft] Top Bottom Laterally unbraced length ------- --_-_-_-_-_---- [it] -_ Major axis(L33) Minor axis(L22) -------- -_-_-_- 2.16 Additional assumptions Continuous lateral torsional restraint Tension field action Continuous flexural torsional restraint Effective length factor value type Major axis frame type Minor axis frame type DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio Capacity Demand Intermediate results Torsional axis(Lt) --- -- --- 2.16 0.00 61.24 [Kip] 0.02 [Kip] Factored axial tension capacitv(OPn) Nominal axial tension capacity (Pn) AXIAL COMPRESSION DESIGN , Compression in the major axis 33 Ratio 0.00 Capacity 59.62 [Kip] Demand 0.10 [Kip] Major axis(K33) 1.0 Reference Ctrl Eq. Effective length factor Minor axis(K22) 1.0 No No No None Sway Sway CLD2 id2 at 0.00% Torsional axis(Kt) 1.0 Unit Value Reference [Kip] 61.24 CI.D2 [Kip] 68.04 Eq.D2-1 Reference CLE3 Ctrl Eq. id3 at 0.00% Intermediate results Unit Value -_-__-_-_-__--_____-____- Reference ------- ___--- ___-__-_-----_------_-_---_-- Section classification Unstiffened element classification - Non slender Unstiffened element slenderness 14.24 Unstiffened element limiting slenderness (Xr) - 39.74 Table.4.1 a.Case6 Stiffened element classification -- Non slender Stiffened element slenderness 14.24 Stiffened element limiting slenderness (fir) -- 39.74 Table.4.1 a.Case6 Factored flexural buckling strength(OPn33) [Kip] 59.62 CLE3 Unbraced length (1-33) [ff] 2.16 CLE2 Effective slenderness ((KL/r)33) -- 22.54 CLE2 Elastic critical buckling stress (Fe33) [Kip/in2] 563.52 Eq.E3-4 Effective area of the cross section based on the effective width (Aeff33) [in2] 1.89 Critical stress for flexural buckling (Fcr33) [Kip/in2] 35.05 Eq.E3-2 Nominal flexural buckling strength (Pn33) [Kip] 66.24 Eq.E3-1 Compression in the minor axis 22 Ratio 0.00 Capacity 59.62 [Kip] Reference CLE3 Demand 0.10 [Kip] Ctrl Eq. id3 at 0.00% Intermediate results Unit Value Reference _ --- ----------------- --------------- Section classification -_- --------- _-____ Unstiffened element classification -- Non slender Unstiffened element slenderness 14.24 Unstiffened element limiting slenderness (ivr) - 39.74 Table.4.1 a.Case6 Stiffened element classification -- Non slender Stiffened element slenderness (7v) -- 14.24 Stiffened element limiting slenderness (Xr) -- 39.74 Table.4.1 a.Case6 Factored flexural buckling strength(+Pn22) [Kip] 59.62 CLE3 Unbraced length (1-22) [ff] 2.16 CLE2 Effective slenderness ((KL/r)22) -- 22.54 CLE2 Elastic critical buckling stress (Fe22) [Kip/in2] 563.52 Eq.E3-4 Effective area of the cross section based on the effective width (Aeff22) [in2] 1.89 Critical stress for flexural buckling (Fcr22) [Kip/in2] 35.05 Eq.E3-2 Nominal flexural buckling strength (Pn22) [Kip] 66.24 Eq.E3-1 FLEXURAL DESIGN , Bending about major axis. M33 Ratio 0.02 Capacity 5.40 [Kip*ft] Reference CLF7.1 Demand - -0.13 [Kip*ft] Ctrl Eq. id2 at 0.00% Intermediate results Unit Value Reference - --------- Section classification Unstiffened element classification -- Compact Unstiffened element slenderness 14.24 Limiting slenderness for noncompact unstiffened element (%r) -- 39.74 Limiting slenderness for compact unstiffened element (Xp) - 31.79 Stiffened element classification -- Compact Stiffened element slenderness ()v) -- 14.24 Limiting slenderness for noncompact stiffened element (7`.r) -- 161.78 Limiting slenderness for compact stiffened element (2,p) - 68.69 Factored yielding strenath(�Mn) [Kip*ft] 5.40 CLF7.1 Yielding (Mn) [Kip*ft] 6.00 Eq.F7-1 Bending about minor axis. M22 Ratio 0.00 Capacity 5.40 [Kip*fl] Reference CLF7.1 Demand -0.01 [Kip*ft] Ctrl Eq. id3 at 0.00% -------- ------------ ------ ------------- --____--------- Intermediate results --- - ---------- _____-___-__________. Unit Value Reference Section classification ---------------------------- Unstiffened element classification -- Compact Unstiffened element slenderness 14.24 Limiting slenderness for noncompact unstiffened element (fur) - 39.74 Limiting slenderness for compact unstiffened element (Xp) -- 31.79 Stiffened element classification -- Compact Stiffened element slenderness (k) -- 14.24 Limiting slenderness for noncompact stiffened element (Xr) -- 161.78 Limiting slenderness for compact stiffened element (?,p) - 68.69 Factored yielding strength about a geometric axis(OMn) [Kip*ft] 5.40 CLF7.1 Yielding (Mn) [Kip*ft] 6.00 Eq.F7-1 DESIGN FOR SHEAR , Shear in major axis 33 Ratio 0.00 Capacity 16.76 [Kip] Reference CI.G1 Demand 0.01 [Kip] Ctrl Eq. id2 at 0.00% ---- -------------- Intermediate results --- ------------ ______-__________--___�___-__-__________ Unit Value Reference _-______----- ------------- Factored shear capacity(OW) -____------------ _-_-___-______--______-_______________. [Kip] 16.76 CI.G1 Web buckling coefficient (kv) - 5.00 CI.G4 Web buckling coefficient (Cv) - 1.00 Eq.G2-9 Nominal shear strength (Vn) [Kip] 18.63 Eq.G4-1 Shear in minor axis 22 Ratio 0.00 Capacity 16.76 [Kip] Reference CI.Gl Demand 0.08 [Kip] Ctrl Eq. id2 at 0.00% Intermediate results ---- ------------- ------- _----------- - ---- __________-_____-___-_. Unit Value Reference ------- ----- -------------- Factored shear capacity(OW) -__--___________-_____-___-______- ----- [Kip] -_-___________________. 16.76 CI.G1 Web buckling coefficient (kv) -- 5.00 CI.G4 Web buckling coefficient (Cv) - 1.00 Eq.G2-9 Nominal shear strength (Vn) [Kip] 18.63 Eq.G4-1 TORSION DESIGN , Torsion Ratio 0.00 Capacity 4.47 [Kip'ft] Reference CI.H3.1 Demand -0.01 [Kip'ft] Ctrl Eq. id3 at 0.00% ------ _____________-__-_-_______-_-_-_________--___--_____________--__ Intermediate results Unit Value Reference Factored torsion caoacitv(OTn) [Kip'ft] 4.47 CI.H3.1 Critical torsional buckling stress (Fcr) [Kiplin2] 21.60 Eq.1-13-3 Nominal torsion capacity (Tn) [Kip'ft] 4.97 Eq.H3-1 COMBINED ACTIONS DESIGN , Combined flexure and axial .............................................................................................................................................................................. Ratio 0.03 Ctrl Eq. .............................................................................................................................................................................. 1d2 at 0.00% Reference Eq.1-11-11b ------ ------ ____________-___-______-____-_____-__ Intermediate results Unit Value Reference Interaction of flexure and axial force 0.03 Eq.H1-11b Available flexural strength about strong axis (Mc33) [Kip'ft] 5.40 CI.H1.1 Available flexural strength about weak axis (Mc22) [Kip'ft] 5.40 CI.H1.1 Available axial strength (Pc) [Kip] 61.24 CI.H1.1 Member 9 (h) Design status OK DESIGN WARNINGS name: HSS_SQR 3X3X3_16 (US) Dimensions :1a a = 3.000 [in] Height b = 3.000 [in] Width T = 0.174 [in] Thickness Properties Section properties Gross area of the section. (Ag) Moment of Inertia (local axes) (1) Moment of Inertia (principal axes) (1) Bending constant for moments (principal axis) (S) Radius of gyration (local axes) (r) Radius of gyration (principal axes) (r') Saint-Venant torsion constant. (J) Section warping constant. (Cw) Distance from cenlroid to shear center (principal axis) (xo,yo) Top elastic section modulus of the section (local axis) (Ssup) Bottom elastic section modulus of the section (local axis) (Sinf) Top elastic section modulus of the section (principal axis) (S'sup) Bottom elastic section modulus of the section (principal axis) (S'ino Plastic section modulus (local axis) (Z) Plastic section modulus (principal axis) (Z') Polar radius of gyration. (ro) Area for shear (Aw) Torsional constant. (C) Material: A36 Properties Yield stress (Fy): Tensile strength (Fu): Elasticity Modulus (E): Shear modulus for steel (G): DESIGN CRITERIA Description Length for tension slenderness ratio (L) Distance between member lateral bracing points Length (Lb) [ft] Top Bottom 2.16 2.16 Section information v.v�o Unit Major axis Minor axis [in2] 1.890 [in4] 2.500 2.500 [in4j 2.500 2.500 [in] 0.000 0.000 [in] 1.150 1.150 [in] 1.150 1.150 [in4] 4.030 [in6] 0.000 [in] 0.000 0.000 [in3] 1.600 1.600 [in3] 1.600 1.600 [in3] 1.600 1.600 [in3] 1.600 1.600 [in3] 2.000 2.000 [in3] 2.000 2.000 [in] 1.613 [in2] 0.862 0.862 [in3] 2.758 Unit Value [Kip/in2] 36.00 [Kip/in2] 58.00 [Kip/in2] 29000.00 [Kip/in2] 11507.94 Unit Value Ift] 2.16 Laterally unbraced length Length [ft] Major axis(1-33) Minor axis(L22) --__ - --------- - -- 2.16 2.16 Additional assumptions Continuous lateral torsional restraint Tension field action Continuous flexural torsional restraint Effective length factor value type Major axis frame type Minor axis frame type DESIGN CHECKS AXIAL TENSION DESIGN Axial tension Ratio Capacity Demand Intermediate results Torsional axis(Lt) 2.16 0.00 61.24 [Kip] 0.03 [Kip] Factored axial tension capacitv(�Pn) Nominal axial tension capacity (Pn) Major axis(K33) 1.0 Reference Ctrl Eq. Effective length factor Minor axis(K22) 1.0 No No No None Sway Sway CI.D2 id2 at 0.00% Torsional axis(Kt) ------------ 1.0 Unit Value Reference [Kip] 61.24 CLD2 [Kip] 68.04 Eq.D2-1 AXIAL COMPRESSION DESIGN Compression in the major axis 33 Ratio 0.00 Capacity 59.62 [Kip] Reference CLE3 Demand 0.09 [Kip] Ctrl Eq. id3 at 0.00% ------------ ___-___- Intermediate results ------ -_---_-- Unit --- Value ---_---___-_-_-_. Reference - --------- __-__-_______-___-_------------ Section classification ---____-----_-_-_-_------------- _-_-_ Unstiffened element classification -- Non slender Unstiffened element slenderness 14.24 Unstiffened element limiting slenderness (kr) -- 39.74 Table.4.1a.Case6 Stiffened element classification -- Non slender Stiffened element slenderness (%) - 14.24 Stiffened element limiting slenderness (),r) - 39.74 Table.4.1a.Case6 Factored flexural buckling strenoth(OPn33) [Kip] 59.62 CLE3 Unbraced length (1-33) [ft] 2.16 CLE2 Effective slenderness ((KL/r)33) -- 22.54 CLE2 Elastic critical buckling stress (Fe33) [Kip/in2] 563.52 Eq.E3-4 Effective area of the cross section based on the effective width (Aeff33) [in2] 1.89 Critical stress for flexural buckling (Fcr33) [Kip/in2] 35.05 Eq.E3-2 Nominal flexural buckling strength (Pn33) [Kip] 66.24 Eq.E3-1 Compression in the minor axis 22 Ratio 0.00 Capacity 59.62 [Kip] Reference CLE3 Demand 0.09 [Kip] Ctrl Eq. id3 at 0.00 % Intermediate results Unit Value Reference --- _------------------- ----- -_-_______ Section classification -------- Unstiffened element classification -- Non slender Unstiffened element slenderness (X) -- 14.24 Unstiffened element limiting slenderness (kr) - 39.74 Table.41a.Case6 Stiffened element classification -- Non slender Stiffened element slenderness (1v) 1424 Stiffened element limiting slenderness (Xr) -- 39.74 Table.4.1 a.Case6 Factored flexural buckling strenoth(OPn22) [Kip] 59.62 CLE3 Unbraced length (1-22) [ff] 2.16 CLE2 Effective slenderness ((KL/r)22) -- 22.54 CLE2 Elastic critical buckling stress (Fe22) [Kip/in2] 563.52 Eq.E3-4 Effective area of the cross section based on the effective width (Aeff22) [in2] 1.89 Critical stress for flexural buckling (Fcr22) [Kip/in2] 35.05 Eq.E3-2 Nominal flexural buckling strength (Pn22) [Kip] 66.24 Eq.E3-1 FLEXURAL DESIGN , Bending about major axis. M33 Ratio 0.03 Capacity 5.40 [Kip*ft] Demand -0.15 [Kip*ft] Intermediate results Section classification Unstiffened element classification Unstiffened element slenderness (�.) Limiting slenderness for noncompact unstiffened element (2,r) Limiting slenderness for compact unstiffened element (Xp) Stiffened element classification Stiffened element slenderness (7v) Limiting slenderness for noncompact stiffened element (ivr) Limiting slenderness for compact stiffened element (Xp) Factored yielding strenoth(OMn) Yielding (Mn) Bending about minor axis. M22 Ratio 0.00 Capacity 5.40 [Kip*ft] Demand -0.01 [Kip*fl] Intermediate results Section classification Unstiffened element classification Unstiffened element slenderness (7v) Limiting slenderness for noncompact unstiffened element (Rr) Limiting slenderness for compact unstiffened element (Xp) Stiffened element classification Stiffened element slenderness ()u) Limiting slenderness for noncompact stiffened element (fur) Limiting slenderness for compact stiffened element (Xp) Factored yielding strength about a geometric axis(OMn) Yielding (Mn) DESIGN FOR SHEAR , Pa9�i Reference CLF7.1 Ctrl Eq. id2 at 0.00% Unit Value Reference [Kip*ft] [Kip*ff] Compact 14.24 39.74 31.79 Compact 14.24 161.78 68.69 5.40 6.00 CLF7.1 Eq.F7-1 Reference CI.F7.1 Ctrl Eq. id3 at 0.00% Unit [Kip*ft] [Kip*ft] Value Reference Compact 14.24 39.74 31.79 Compact 14.24 161.78 68.69 5.40 6.00 CLF7.1 Eq.F7-1 Shear in major axis 33 Ratio 0.00 Capacity 16.76 [Kip] Demand 0.01 [Kip] Intermediate results Factored shear caoacitv(�Vn) Web buckling coefficient (kv) Web buckling coefficient (Cv) Nominal shear strength (Vn) Shear in minor axis 22 Ratio 0.01 Capacity 16.76 [Kip] Demand 0.09 [Kip] Intermediate results Factored shear caoacitv(�Vn) Web buckling coefficient (kv) Web buckling coefficient (Cv) Nominal shear strength (Vn) TORSION DESIGN , Torsion Ratio 0.00 Capacity 4.47 [Kip'ft] Demand -0.01 [Kip'ft] Intermediate results Factored torsion caoacitv(�Tn) Critical torsional buckling stress (For) Nominal torsion capacity (Tn) COMBINED ACTIONS DESIGN , Combined flexure and axial ............................................................................ Ratio 0.03 Ctd Eq. ............................................................................ 1d2 at 0.00% Intermediate results Interaction of flexure and axial force Available flexural strength about strong axis (Mc33) Available flexural strength about weak axis (Mc22) Available axial strength (Pc) Reference CI.G7 Ctrl Eq. id2 at 0.00% Unit Value Reference [Kip] 16.76 CI.G1 -- 5.00 CI.G4 -- 1.00 Eq.G2-9 [Kip] 18.63 Eq.G4-1 Reference CI.Gt Ctrl Eq. id2 at 0.00% Unit Value Reference [Kip] 16.76 CI.G1 -- 5.00 CI.04 -- - 1.00 Eq.G2-9 [Kip] 18.63 Eq.134-1 Reference CI.H3.1 Ctrl Eq. id3 at 0.00% Unit Value Reference [Kip'ft] 4.47 CI.H3.1 [Kip/in2] 21.60 Eq.H3-3 [Kip'ft] 4.97 Eq.H3-1 ........................................................................... Reference ........................................................................... : Eq.1-11-11h Unit Value Reference ---------- ------- __-_- 0.03 Eq.H1-1b [Kip'ft] 5.40 CI.1-11.1 [Kip'ft] 5.40 CI.1-11.1 [Kip] 61.24 CI.1-11.1 Foundation Connection To Footing Best Civii Engineering PROJECT PAGE CLIENT: DESIGN BY: JOB NO. DATE. d REVIEW BY: Fixed Moment Condition Design Based on ACI 318-19 DATA & DESIGN SUMMARY I SHAPE (Tube, Pipe, or WF) & SIZE HSS3XU3)16 <_= Tube !TE STRENGTH f,' = 2:5 ksi ED SHEAR LOAD Vn=,. 0.383...' kips ED MOMENT My =pn 0,571- t 111 ED VERTICAL LOAD (negative for uplift) Pe =._ 0.115. kips ENT DEPTH D= 18 in THE FIXED MOMENT DESIGN IS ADEQUATE. ( A, = 0.0 in2 , Required Area of Shear Studs or Welded Reinforcement) ( Edge of Concrete Footing / Grade Beam must be wider than %,') CK BASE FLEXURAL & SHEAR CAPACITY (ACI 318 21 & 22) 50 45 40 35 (k) 30 25 20 15 10 5 0 n in In an nn 0 Mn (ft-k) Mu d A bf 3.0 1.9 3.0 Steel Column MU PU VU 1I II a II II Ilg ql _d o < UJI i u Footing / Grade Beam 0.85 (2) fc' 0.003 i I U <_ 0.003 STRAIN DIAGRAM parab lic 0 0.85 (2) fc' STRESS DIAGRAM 0Mn= 42 ft-kips @Vs= 0 -kips Eo=2fc —0.851vin 2 EC=57 fc > Mu = 1 ft-kips Az EC AI [Satisfactory] 0 s Vim.. = 44.07 kips, when C = 12.4 in 10.85,Wrn� Ai +, 2(660CY6E0� , for 0<EC<Eo > Ve= 0.383 ft-kip _ o o [Satisfactory] fr r l where 0= 0.65 ,(ACI 318212) 0.85Min Ai 21f� for Eo>_Eo Bearing factor=2, (ACI31814.5.1.1) l b = effective bearing width = 95% bf= 2.85 in < VERTICAL CAPACITY OI=End Bering + Friction = 45.7 kips > Pv= 0.115 kips [Satisfactory] where End Bering = 0.65 (2) 0.85 f� A = 5.2 kips, (ACI 318 14.5.1.1) Friction= 0.75 MIN( 0.2fc Ac, 800 Ac)= 40.5 kips, (ACI 31822.9.4) A = 2 in', end bearing area Ac = 0.5 (2d + 21cf) D = 108 in', (0.5 for concrete cracked) A, = Pu,Fdction f (d fy µ) = 0.0 in', Required Area of Shear Studs or Welded Reinforcement where += 0.75 ,(ACI 31821.2) p = 0.70 (ACI 31822.9.4.2) fy = 60 ks �y53die � �lZtri,t� C�11 ` nsi' 6 V> Bearing Capacity of Post Footing