HomeMy WebLinkAboutX2022-0544 - CalcsN, S.Vzz
23 Harbor Ridge Dr.
Newport Beach CA 92660
,oqq7-- 20?-z
K2o2ti-0� ��
21?Y��ridy2 bra
Generator Hold Down Calculations
No. 84617 C/*
Exp.9I30123
I
t "
Kristofer Bartelle
19900 Acre Street
Northridge CA 91324
BUILDING DIVISION
A P P - 5 2022
BY S.E.C.
OSHPD
23 Harbor Ridge Dr, Newport Beach, CA 92660, USA
Latitude, Longitude: 33.6176301,-117.848496
Hi/1Sbotough a
Q 1�
a
F H a
o ac
-
m a,
.
Y
o o
roc `y w t
dry?
r�D
� o m 7 co
%
NS
Google
a
Date
Design Code Reference Document
3/2512022, 5:44:13 PM
Risk Category
ASCE7-16
;Site Class
II
- -
D - Default (See Section 11.4.3)
-:
Type Value
Description --- -- --
!. Ss 1.305
MCER ground motion. (for 0.2 second period)
S, 0.464
MCER ground motion. (for i.Os period)
SMS 1.566
Site -modified spectral acceleration value
SMI null -See Section 11.4.8
Site -modified spectral acceleration value
SDS 1.044
Numeric
seismic design value at 0.2 second SA
Sot null -See Section 11 4 8
Numeric seismic design value at 1.0 second SA
.Type Value
.._Description
SDC null -See Section 11.4.8
Seismic design category
Fa 1.2
Site amplification factor at 0.2 second
F, null -See Section 11.4.8
Site amplification factor at 1.0 second
PGA 0.564
MCEO peak ground acceleration
FPOA 1.2
Site amplification factor at PGA
PGAM 0.676
Site modified peak ground acceleration
TL a
Long -period transition period in seconds
! SsRT 1.305
Probabilistic risk -targeted ground motion. (0.2 second)
SsUH 1.421
Factored uniform -hazard (2 % Probability of exceedance in 50 years) spectral acceleration
SSD 2.61
Factored deterministic acceleration value. (0.2 second)
S1 RT 0,464
Probabilistic risk -targeted ground motion. (1.0 second)
S1 UH 0.501
i
Factored uniform -hazard (2% probability of exceedance in 50 years) spectral acceleration.
+$1D- 0.831
Factored deterministic acceleration value. (1.0 second)
PGAd 1.057
Factored deterministic acceleration value. (Peak Ground Acceleration)
CRS 0.919
Mapped value of the risk coefficient at short periods
'_ CR7 0.926
Mapped value of the risk coefficient at a period of 1 s
JOB TITLE qn)XK tom,
PROJECT/JOB NO. CALCULATION NO.
COMPUTED BY DATE�
VERIFIED BY .DATE
13
SCALE SHEET NO OF -, -
1[, Inrl, Al vl Ink 5x5 = I in
JOB TITLE 14
VV w q�4
PROJECT/JO5 NO.
CALCULATION I
COMPUTED BY
DI
VERIFIED BY
DF
SCALE
SHEETP
OF 3
5x5 = 1 in
20/22/24 kW
INCLUDES:
• True Power'" Electrical Technology
• Two-line multilingual digital LCD Evolution'" controller
(English/Spanish/French/Portuguese)
• 200 amp service rated transfer switch available
• Electronic governor
• Standard Wi-Fig connectivity
• System status & maintenance interval LED indicators
• Sound attenuated enclosure
• Flexible fuel line connector
• Natural gas or LP gas operation
• 5 Year limited warranty
• Listed and labeled by the Southwest Research Institute allowing
installation as close as 18 in (457 mm) to a structure.`
-Must be located awayfrom doors, windows, and fresh airintakes and in
accordance with local codes.
hops.//assets.s Rorg/library/OirectoryOlListedProducis/
Constructionindustryl973_OOC_204_13204-01-01_Rev9.pol
FEATURES
O INNOVATIVE ENGINE DESIGN & RIGOROUS TESTING are at the heart of Gen-
stop's success in providing the most reliable generators possible. Generac's G-
Force engine lineup offers added peace of mind and reliability for when it's needed
the most. The G-Force series engines are purpose built and designed to handle the
rigors of extended run times in high temperatures and extreme operating conditions.
O TRUE POWER'" ELECTRICAL TECHNOLOGY: Superior harmonics and sine wave
form produce less than 5% Total Harmonic Distortion for utility quality power. This
allows confident operation of sensitive electronic equipment and micro -chip based
appliances, such as variable speed HVAC systems.
O TEST CRITERIA:
✓ PROTOTYPE. TESTED ✓ NEMA MG11-22 EVALUATION
✓ SYSTEM TORSIONAL TESTED ✓ MOTOR STARTING ABILITY
O MOBILE LINK® CONNECTIVITY: FREE with select Guardian Series Home standby
generators, Mobile Link WI-Fi allows users to monitor generator status from any-
where in the world using a smartphone, tablet, or PC. Easily access information such
as the current operating status and maintenance alerts. Users can connect an
account to an authorized service dealer for fast, friendly, and proactive service. With
Mobile Link, users are taken care of before the next power outage.
GENERAC°
MENSEEM
GUARDIANO SERIES
Residential Standby Generators
Air -Cooled Gas Engine
Standby Power Rating
G007038-I, G007039-1. 0007038.3, G007039-3 (AIOmIOUm - Bis(ue) - 20 kW 60 He
3007042-2, 0007043-2, G007042-3. G007043-3 (Aluminum - BIeg41e) -22 MAY 60 Hz
G007209-0. G007210-0 (Aluminum- Bisque) - 24 kW 60 Hz
c \1/ us or CLRt-EGOS Ui�
a 0% .0
Note: CETL or CUL cerlification only applies to unbundled units and units packaged
with limited circuit switches. Units packaged with the Smart Switch are ETL or UL
certified in the USA only.
O SOLID-STATE, FREQUENCY COMPENSATED VOLTAGE REGULATION: This
state-of-the-art power maximizing regulation system is standard on all Generac mod-
els. It provides optimized FAST RESPONSE to changing load conditions and MAXI-
MUM MOTOR STARTING CAPABILITY by electronically torque -matching the surge
loads to the engine. Digital voltage regulation at —1 %.
O SINGLE SOURCE SERVICE RESPONSE from Generac's extensive dealer network
provides parts and service know-how for the entire unit, from the engine to the small-
est electronic component.
O GENERAC TRANSFER SWITCHES: Long life and reliability are synonymous with
GENERAC POWER SYSTEMS. One reason for this confidence is that the GENERAC
product line is offered with its own transfer systems and controls for total system
compatibility.
O PWRVIEW'" TRANSFER SWITCH: The Generale PWRview Automatic Transfer
Switch integrates the PWRview energy monitor to provide real-time energy con-
sumption data that can help lower a home's electricity bill. Using a convenient
mobile app, homeowners can access energy usage and alert information while under
utility power or generator power. The PWRview energy monitor is a simple to use and
low cost tool which helps save money over the life of the generator. Included with
model G007210-0.
w GENERAC GENERAC'
PROMISEr "°. I PWRI�^
GENERACO
20/22/24 kW Specifications
f:uneratnr
Displacement
".
Aluminum w/cast uon sleeve
Cylinder blook
Overhead valve
Valve arrangement
Solid stale w/magneto
Igmlieo system
_
Electronic
Governor system
Compression ratio
2 VD IC
Two-line plain text multilingual LCD Simple user interface for ease of groaner.
Mode buttons AUTO Automatic start on ladfly fnilure Weekly,.B-weeidy or Monthly selectable exerciser.
MANUAL Start with starter control unit stays on. It utility tails transfer to load takes place.
OFF Slops unit. Power is remov tonVoland charga{still operate
Readv to Rum/Maintenance messages Standard
sec on,
Standard
emergency
the ration .,h.,.itypo .._outagrload_....
ncy power for the duration of the utility power outage. No overload capability is available for this rating. (All ratings in accordance with BS5514, IS03046 and DIN6271). Maximum k1loVo
subject to and limited by such factors as fuel BTU/megajcule content, ambient temperature, altitude, engine power and condition, etc. Maximum power decreases approximately 3.5%for each 1,000
level; and also will decrease approximately i%for each 10'F (6'C) above 60'F (16'C).
20/22/24 kW
GENERAC°
Available Accessories
Model # Product
Descriplion
G005819-0 26R Wet Cell Battery
+Every standby generator requires a battery to start the system. Generac offers the recommended 26R wet cell battery for!
!
luse with all air-cooled standby product (excluding PowerPact®).
IG007101-0 !Battery Pad Warmer
Pad warmer rests under the battery. Recommended for use if temperature regularly falls below 0 °F (-18 °C). (Not nec-
essary for use with AGM -style batteries). "
13007102-0 'Oil Warmer
Oil warmer slips directly over the oil filter. Recommended for use'rf temperature regularly falls below 0 °F (-18 °C).
G007103-1 ;Breather Warmer
Breather warmer is for use in extreme cold weather applications. For use with Evolution controllers only in climates where
heavy icing occurs.
9005621-0- 'Auxiliary Transfer Switch
The auxiliary transfer switch contact kit allows the transfer switch to lock out a single large electrical load that may not be!
:Contact Kit
!needed. Not compatible with 50 amp pre -wired switches.
G007027-0 - Bisque ;Fascia Base Wrap Kit
The fascia base wrap snaps together around the bottom of the new air-cooled generators. This offers a sleek contoured
;(Standard on 22/24 kW)
!appearance as well as offering protection from rodents and insects by covering the lifting holes located in the base.
GO05703-0 - Bisque Touch -Up Paint Kit
If the generator enclosure is scratched or damaged, it is important to touch up the paint to protect from future corrosion.
The touch-up paint kit includes the necessary paint to correctly maintain or touch up a generator enclosure.
G006485-0 .Scheduled Maintenance Kit
Generac's scheduled maintenance kit provides all the items necessary to perform complete routine maintenance on a
:Generac automatic standby generator (ail not included).
13007005-0 'Wi-Fi LP Tank Fuel Level
The Wi-Fi enabled LP tank fuel level monitor provides constant monitoring of the connected LP fuel tank. Monitoring the
iMonitor
d.LP tank's fuel level is an important step in verifying the generator is ready to run during an unexpected power failure. Sta-
tus alerts are available through a free application to notify users when the LP tank is in need of a refill.
G0070od-0 (SO amp) Smart Management Module Smart Management Modules (SMM) are used to optimize the performance of a standby generator. It manages large elec-:
IG007006-0
Adcal loads upon startup and sheds them to aid in recovery when overloaded. In many cases, using SMM's can reduce:.
(100 amp)
the overall size and cost of the system.
,,i
GO07169-0- 413 LTE Mobile Link`v Cellular
The Mobile Link family of Cellular Accessories allow users to monitor generator status from anywhere in the world using
Go07170-0 - WI-Fi/ (Accessories
'a smart phone, tablet, or PC. Easily access information such as the current operating status and maintenance alerts. Us-'
;Ethernet
ors can connect an account with an authorized service dealer for last, friendly, and proactive service. With Mobile Link,'i
'!users are taken care of before the next power outage.
'G007220-0 - Bisque Base Plug Kit
Base plugs snap into the lifting holes on the base of air-cooled home standby generators. This offers a sleek contoured -.
.:appearance, as well as offers protection from rodents and insects by covering the lifting holes located in the base. Kit,
`contains four plugs, sufficient for use on a single air-cooled home standby generator.
Model
UPC
G007038-1
696471074185
G007038-3
696471074185
G007039-1
696471074192
G007039-3
696471074192
G007042-2
696471074208
G007042-3
696471074208
G007043-2
696471074215
G007043-3
696471074215
0007209-0
696471071511
G007210-0
696471078220
Dimensions & PCs
LEFT SIDE VIEW
Dimensions shown are approximate. See' installation manual for exact dimensions. DO NOT USE THESE
PURPOSES.
GENE RACE Generate Power Systems, Inc. • S45 W29290 HWY. 59, Waukesha, WI 53189 • generac.com
OMENUFAM m2020 Generac Power Systems, Inc. All rights reserved. All specifications are subject to change without notice. Pad No. A0000937814 Rev.B 07/30/2020
II
lA
2
Gorilla Manufacturing LLC
19525 Wled Rd
Suite 450
Spring, TX 77388
281-705-9701
281-705-9702
+.OL
A.Ot'
OI:1
24" stand shown. 12-30' models share the same design, the only difference is height.
Sized to fit both Generac and Kohler air cooled units. Fully MIG welded one piece construction
speeds installation and makes the stands unbelievably sturdy.
A painted finish is standard, upgrades to powder coat or hot dip galvanized finishes are available
(Note, finish upgrades may increase delivery time).
Top support frames are 4X3X0.25" angle. All models use 3x3x0.187" square tubular legs. Leg mounting
pads are 6.5x4x0.25" with a pre -drilled hole for 1 /2' hold down hardware. Mounting holes to match
factory hold down locations for Generac and Kohler are pre -drilled.
Welding complies with AWS D1.1 Electrodes used are E70XX
Steel plates are A36, Grade 36 or higher. Angle members are ASTM A36. HSS (square)
members are ASTM A500 grade B (46KSI).
Stands have been load tested in excess of 3400lbs. Stands have been designed to withstand 180mph
wind loads.
All specifications are subject to change
PROPRIETARY AND CONFIDENTIAL
DRAWNG ISINOESOIE KOPERRCONTAINEDP OF 13
Gl]TILUI.IANUfACWRING ANY
WI UUW X[WNIIIIpN Y[XOMI>AUNIUfOE
WRILEAAMNIIfAC1URINGIi FROhIIBIIE].
DIMENSIONS ARE IN WCNES
2
11/11/2021
General Specifications for
Gorilla Manufacturing
Generator Stands
" DT4i "A'A 41n Generator Stand A
KAU I_+ IVDc I: SNEEI IofI
0 s
0
A36 Steel
POST HOLE
EACH LEG
fc=2500
GENERATOR STAND FOUNDATION
1
wM,e,^°^° Hewlett-Packard Company
Current Data: 3/25/2022 4:41 PM
Units system: English
File name: C:\Users\Kristopfer barlelle\Desktop\23 Harbor Ridge\frrame.retx
FEM Model Generator Pad
- Loads
ass� Distributed user loads -Members
Concentrated - Nodes
Q ,E °^°° Hewlett-Packard Company
Current Date: 3/25/2022 4:37 PM
Units system: English
File name: C:\Users\Kristopfer bartelle0esktop\23 Harbor Ridge\frrame.retx
Cb22, Cb33
Cm22, Cm33
d0
DJX -
DJY
DJZ
DKX
DKY
DKZ
dL
Ig factor
K22
K33
L22
L33
LB pos
LB neg
RX
RY
RZ
TO
TX
TY
TZ
Nodes
Geometry data
Moment gradient coefficients
Coefficients applied to bending term in interaction formula
Tapered member section depth at J and of member
Rigid end offset distance measured from J node in axis X
Rigid end offset distance measured from J node in axis Y
Rigid end offset distance measured from J node in axis Z
Rigid end offset distance measured from K node in axis X
Rigid end offset distance measured from K node in axis Y
Rigid end offset distance measured from K node in axis Z
Tapered member section depth at K end of member
Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
Effective length factor about axis 2
Effective length factor about axis 3
Member length for calculation of axial capacity
Member length for calculation of axial capacity
Lateral unbraced length of the compression flange in the positive side of local axis 2
Lateral unbraced length of the compression flange in the negative side of local axis 2
Rotation about X
Rotation about Y
Rotation about Z
1 = Tension only member 0 = Normal member
Translation in X
Translation in Y
Translation in Z
Node
X
Y
Z
Rigid Floor
Ift]
Ift]
Ift]
2
2.16
0.00
2.00
0
3
2.16
4.0833
2.00
0
4
0.00
4.0833
2.00
0
5
0.00
0.00
0.00
0
6
2.16
0.00
0.00
0
7
2.16
4.0833
0.00
0
8
0.00
4.0833
0.00
0
Restraints
Node TX TY TZ RX RY RZ
Members
o
Member
NJ
NK
Description
Section
Material
d0
dL
Ig factor
— ------------------
'— '_------------------
[in]
[in]
1
5
8
a
— — --
L 3X3X3 16
-
——-------
A36
-- 0.00 ---
0.00 ---
0.00
2
4
8
b
L 3X3X3 16
A36
0.00
0.00
0.00
3
1
5
c
L 3X3X3 16
A36
0.00
0.00
0.00
4
1
4
d
L 3X3X3 16
A36
0.00
0.00
0.00
5
6
5
e
HSS_SQR 3X3X3 16
A36
0.00
0.00
0.00
7
2
1
f
HSSSQR 3X3X3 16
A36
0.00
0.00
0.00
8
7
8
g
HSS__SQR 3X3X3-16
A36
0.00
0.00
0.00
9
3
4
h
HSS_SQR 3X3X3_16
A36
0.00
0.00
0.00
^M],E ° ,- Hewlett-Packard Company
Current Date: 3/25/2022 4:37 PM
Units system: English
File name: C:\Users\Kristopfer bartelle\Desktop\23 Harbor Ridge\frrame.retz
Load data
GLOSSARY
Comb : Indicates if load condition is a load combination
Load Conditions
Condition
Description
Comb.
Category
_
DL _-_ ---
Dead Load ---_-_-_-_ -----
No
DL _-_-
EQ
Earthquake
No
EQ
d1
DL
Yes
id2
EQ
Yes
id3
DL+EQ
Yes
Load on nodes
Condition Node FX
FY
FZ
MX
MY
MZ
[Kip]
--------- --------- ----------- -----------
[Kip]
------- ----
[Kip]
—
[Kip*ft]
[Kip*ft]
[Kip*ft]
ED 4 0.00
-0.172
---- ------- -------
0.00
—___-_---_-_--_-__—__—__-__-_--_-_
0.00
0.00
0.00
8 0.00
-0.172
0.00
0.00
0.00
0.00
Distributed force on members
Condition Member Dirt Vail
Va12
Dist1
%
Dist2
[Kip/ft]
[Kip/ft]
[it]
[ft]
DL 1 2 -0.056
-0.056
0.00
Yes
4.0833
No
4 2 -0.056
-0.056
0.00
Yes
4.0833
No
Self weight multipliers for load conditions
Condition Description
DL
Dead Load
EQ
Earthquake
d1
DL
id2
EQ
id3
DL+EQ
Earthquake (Dynamic analysis only)
r
Self weight multiplier
Comb.
MultX
MultY
MultZ
No
0.00
0.00
0.00
No
0.00
0.00
0.00
Yes
0.00
0.00
0.00
Yes
0.00
0.00
0.00
Yes
0.00
0.00
0.00
Condition
a/g
Ang.
Damp.
[Deg]
1%)
DL
0.00
0.00
0.00
EQ
0.00
0.00
0.00
d1
0.00
0.00
0.00
id2
0.00
0.00
0.00
id3
0.00
0.00
0.00
M
Hewlett-Packard Company
Current Date: 3/25/2022 4:34 PM
Units system: English
File name: C:\Users\Kristopfer bartelle\Desktop\23 Harbor Ridge\frrame.retx
Analysis result
Forces diagram printout
d1=DL
id2=EQ
id3=DL+EQ
.MEMBER 1
Length 4.083 [it] Node J
Material A36
Section L 3X3X3 16 Node K
Condition : d1=DL
-- ---------- —____________
M33 bending moment
V2 shear forces
Moments [Kip*ft], Length [ft]
' Forces [Kip], Length [ft]
Max: 0.0356[Kip'ft] at 2.04
at 0.00[ft
6
(((Mapppxppp:qqq0.0808[Kip]
���,,,ppp
L-4,
L-4
-0.0468 -0.047
-0.080
Min :-0.0471fKfD*ftl at 4.0E
Min:-0.0809TKiDl at 4.081ft
Axialforces
Forces [Kip], Length [ft]
Max: -0.0443[Kip]at 0.00[i
L=4.1
-0 0443
Min:-004434(ml at 0.00(ft
Condition : id2=EQ
M33 bending moment
V2 shear forces
Moments [Kip*ft], Length [ft]
Forces [Kip], Length [ft]
Max: 0.0387[Kip*ft]at 4.08
Max: 0.0191[Kip] at 0.00[ft
038,
WW--dg,,L = 4.,
L=4.,
0.0391
Min:-0.0391FKID'ftl at 0.0C
Min: 0O191IKiolat O.00MI
Axial forces
Forces [Kip], Length [it]
Max: -0.0863[Kip]at 0.00p
L=4.,
-0.0863
Min:-00863(Kiol at 0.00M
Condition : id3=DL+EQ
M33 bending moment
V2 shear forces
Moments [Kip*ft], Length [ft]
Forces [Kip], Length [ft]
Max : O0400[Kip*ft] at 2.5E
Max : 0.0999[Kip] at 0.00[ft
`I -b.ndd
L = 4
-0.0859
-0.061
Min : -0 0859fKiD*ftl at 0.0E
Min-0.0618fKiD1 at 4 0PM
5
8
Axial forces
Forces [Kip], Length [ft]
Max: -0.1305[Kip] at 0.001t
L=4,,
-0.1305
Min '-0.13051Kiol at 000M
MEMBER 2
Length 2.000 [ft] Node J
Material A36
Section L 3X3X3 16 Node K
---- ---—--------
Condition :
—
--- ---- ------------------------ ---- ------
M33 bending moment
V2 shear forces
Moments [Kip•ft], Length [ft]
Forces [Kip], Length [ft]
Max: 0.0025[Kip'ft] at 2.00
Max: 0.0025[Kip] at 0.00[ft
002E
WW—wdldfL_2,
L_2.,
0.0025
Min :-00025FKV lat 001
Min:000251KiD1 at 0.00fftl
Axial forces
Forces [Kip], Length [ft]
Max: 1.08E-05[Kip]at O.00
L=2
Min: 108E-05fKinl at 0001
Condition : id2=EQ
M33 bending moment
V2 shear forces
Moments [Kip•ft], Length [ft]
Forces [Kip], Length [ft]
Max: 0.0013[Ktp'ft] at 2.00
Max : 0.0023[Kip] at 0.00[ft
�01E
L0y
L=z
-0.0032
Min:-0.0032[KiD"ftl at O.00
Min: 0.00231KID1 at 0.001ttl
Axial forces
Forces [Kip], Length [ft]
Max: -0.0011 [Kip] at 0.00[t
= 2!
-0.0011
Min:-0.0011FKinl at O.00fft
Condition : id3=DL+EQ
4
8
M33 bending moment
V2 shear forces
Moments [Kip*ft], Length [ft]
Forces [Kip], Length [ft]
Max: 0.0039[Kip*ft] at 2.00
Max: 0.0048(Klpj at 0.00[ft
003t
ffiw�L=21
L_21
0.0057
Min:-0.0057fKio*ftl at 0.017
Min: 0.00491Kio1 at 0.00rk1
Axial forces
Forces [Kip], Length [ft]
Max:-0.0011[Kipjat 0.001f
L=2!
-0.0011
Min:-0.001 IWO at O.00fft
MEMBER 3
Length 2.000 [ft] Node J
Material A36
Section L 3X3X3_16 Node K
------ -----------------
Condition : d1=DL
_----------- ------------ -_-----------
M33 bending moment
V2 shear forces
Moments [Kip*ft], Length [ft]
Forces [Kip], Length [ft]
Max : 0.0027[Kip*ft] at O.00
Max: -0.0027[Kip] at. 0.00[I
ffi7 L=2'
L_2'
-0.002
-0.0027
Min:-0.0027fKio*ftl at 20C
Min'-0.00271Kiol at O.00tft
Axial forces
Forces [Kip], Length [ft]
Max:-4.09E-06[Klpj at 0.0
L=21
-4.09E-06
Min:-409E-O61Kio1 at 0.0(
Condition : id2=EQ
M33 bending moment
V2 shear forces
Moments [Kip*ft], Length [ft]
Forces [Kip], Length [ft]
Max: 0.0102[Kp*ft] at 2.00
Max: 0.0111[Kip] at 0.00[ft
010,
L=2.1
L=2'
0,0120
Min: -0.0120FKio*M at O.00
Min : 0.0111 Wal at 0.00fftl
Axial forces
Forces [Kip], Length [ft]
Max: 4.66E-04[Kip]at O.00
= 2.-
Min :4.66E-04[Klol at 0.001
1
5
Condition : id3=DL+EQ
M33 bending moment
Moments [Kip*ft], Length [it]
Max: 0.0075[Kip*ftl at 2.00
007E
Ww---Og,L_2,
0.0093
Min:-0.0093FKio*ftl at OAC
Axial forces
Forces [Kip], Length [ft]
Max: 4.62E-04[Kip]at O.00
=y
Min : 4 62E-04tKia1 at 0 001
MEMBER 4
Material A36
Condition : dt=DL
M33 bending moment
Moments [Kip*ft], Length [ft]
Max: 0.0356[Kip*ft] at 2.04
IV 6
L=4!
-0.0467 -0.047
Min:-0.04711Kio'Mat 4.0E
Axial forces
Forces [Kip], Length [ft]
Max: -0,0501 [Kip] at 0.00[t
L=41
-0,0501
Min :-0.0501 FKiol at 0.001ft
Condition : id2=EQ
M33 bending moment
Moments [Kip*ft], Length [ft]
Maxi 0.0468[Kp*ft] at 4.08
048E
WW--INWL_q!
0.0472
Min :-0.0472IKio*ftl at UC
Axial forces
Forces [Kip], Length [ft]
Max: -0.08411Kip]at 0.00[t
L=4.1
-0.0841
Min:-0.0841[KiDl at 0.001ft
Length 4.083 [ft]
Section L 3X3X3 16
V2 shear forces
Forces [Kip], Length [it]
Max: 0.0084[Kip] at 0.00[ft
ffiffiw�L=2.1
Min :.0008411(iol at 0OCIM
Node
Node K
V2 shear forces
Forces [Kip], Length [ft]
Max: 0.0807[Kip] at 0.00[ft
7
L_q,,
-0.080
Min: -0.080911(iol at 4.08tf1
V2 shear forces
Forces [Kip], Length [ft]
Max : 0.0230[Kip] at 0.00[ft
�L=4.
Min : 0.0230[KiDI at 0.00(ftl
1
4
Condition : id3=DL+EQ
M33 bending moment
Moments [Kip'ft], Length [ft]
Max: 0.0420[Kip'ft] at 2.65
3A�E
-0.0939
Min :-0.O939D(W lat DOC
Axial forces
Forces [Kip], Length [ft]
Max: -0.13421Kip] at 0.Oop
L = 4.-
-0,1342
Min:-0. 1342UG.1 at 0.00(ft
MEMBER 5
Material A36
Condition : d1=DL
M33 bending moment
Moments [Kip•ft], Length [ft]
Max: 0.0704[Klp'ft] at 2.16
O--�(070,
=2.
-0.0317
Min:-0.0317fKin'M at 0.01
Axial forces
Forces [Kip], Length [ft]
Max:-0.1151[Kip] at 0.00[f
L=2,
-0.1151
Min :-0.115111(ml at O.00Ift
Condition : id2=EQ
M33 bending moment
Moments [Kip'ft], Length [ft]
Max: 0.0411[Kip'ft] at 2.1E
04�1
-0.1263
Min:-0.1263fKiD'ftl at 0.0(
Axial forces
Forces [Kip], Length [it]
Max:-0.0132(Kip]at 0.00[f
L=2.
-00132
Mtn: -0.01 321KU at O.00Ift
V2 shear forces
Forces [Kip], Length [it]
Max, 0.1037[Kip] at 0.00[ft
L = 4,
-0.057
Min : -0 0579110ol at 4 08M
Length 2.160 [ft[ Node J .
Section HSS SQR 3X3X3 16 Node K
Ngss
V2 shear forces
Forces [Kip], Length [it]
Max: 0.0473[Kip] at 0.00[ft
i=2.
Min: 0.04731KID1at 0.001ft1
V2 shear forces
Farces [Kip], Length [it]
Max : 0.0775[Kip] at 0.00[ft
Au�L=2.
Min: 0.07751Kiol at O.00tftt
6
5
Condition : id3=DL+EQ
M33 bending moment
Moments [Kip*ft], Length [it]
Max: 0.1115(Kip*ft] at 2.16
111!
ww---Oml,L = 2.
0.1580
Min :-0.1580fl(V lat O.00
Axial forces
Farces [Kip], Length [ft]
Max:-0.1283[Kipj at 0.00[t
L=2.
-0.1283
Min :-0.1283FKiol at 0 OOfft
MEMBER 7
Material A36
Condition : d7=DL
M33 bending moment
Moments [Kip*ft], Length [ftj
Max: 0.0703[Kirft] at 2.10
070E
= 2,
0.0313
Min :-0.0313FKiD*ftl at O.00
Axial forces
Forces [Kip], Length [ft]
Max: -0.1135[Kip]at 0.0011
L=2,
-0,1135
Min:-0.1135IKiD1 at O.00fft
Condition : id2=EQ
M33 bending moment
Moments [Kip*ft], Length [ft]
Max: 0.0493[Kip*ft] at 2.16
04 F
-0.1513
Min:-0.1513fK1o*fti at O.00
Axial forces
Forces [Kip], Length [ft]
Max: -0.0311[Kpj at 0.00[f
L=2.
-0.0311
Min:-0.0311FKiul at 0.00fft
V2 shear forces
Forces [Kip], Length [ft]
Max: 0.1248[Kip] at 0.001ft
ffi�k=2.
Min: 0. 124orKiol at O.00ffn
Length 2.160 [ft] Node J 2
Section HSS SQR 3X3X3 16 Node K 1
V2 shear forces
Forces [Kip], Length [ft]
Max: 0.0471[Kip] at 0.00[ft
�L=2.
Min: 0.0471[KiDlat 0.00tft1
V2 shear forces
Forces [Kip], Length [ft]
Max: 0.0929[Kip] at 0.00111
�L=2.
Min : 0.0929fKiD1 at O:OOfftl
Condition : id3=DL+EQ
M33 bending moment
Moments [Kip*ft], Length [ft]
Max: 0.1196[Kip*ft] at 2.16
119E
L=2.
0.1826
Min :-0.1826NDi lat OOC
Axial forces
Forces [Kip], Length [ft]
Max: -0.1446[Kip] at 0.00[t
L=2,
-0.1446
Min:-0. 1446FKioi at 0.00W
MEMBER 8
Material A36
Condition : d1=DL
M33 bending moment
Moments [Kip*ft], Length [ft]
Max: 0.0313[Kip*ft]at O.00
L=2.
-0.070
Min:-0.0704FKio*fll at 2.1E
Axial forces
Forces [Kip], Length [ft]
Max:-0.11361Kip]at 0.00[i
L=2.
-0.1136
Min: -0.1 136DDD1 at 0.00fft
Condition : [d2=EQ
M33 bending moment
Moments [Kip*ft], Length [ft]
Maxi 0.0412(Kio*ft] at 2.16
04
0.1298
Min:-0.1296fKVItl at O.00
Axial forces
Forces [Kip], Length [ft]
Max : 0.0168[Kip] at 0.00[ft
L=2.
Min: 0.01681Kiol at 0.001ftl
V2 shear forces
Forces [Kip], Length [ft]
Max, 0.1399[Kip] at 0.00[ft
ffiw�L=2.
Min: 0. 1399110ai at 000fft1
Length 2.160 [ft] Node J
Section HSS SQR 3X3X3 16 Node K
zM
V2 shear forces
Forces [Kip], Length [ft]
Max:Max:-0.0471[Kip]at 0.00[I
®L=2.
-0.0471
Min:-0.047liKlol at O.00fft
V2 shear forces
Forces [Kip], Length [ft]
Max : 0.0792[Kip] at 0.00[ft
PUW�L=2.
Min:.0.07921Kiol at 0.001ftl
7
8
Condition : id3=DL+EQ
M33 bending moment
Moments [Kip`ft], Length [ft]
Max: -0.0293[Kip'ft] at 2.11
0.0985 �9
-0.0985
Min : -0 0985f1(i.•f l at O.00
Axial forces
Forces [Kip], Length [ft]
Max: -0.0968[Kip]at 0.00[i
L=2.
-0.0968
Min:-0.0968FKinl at 0.00M
MEMBER 9
Material A36
Condition : d1=DL
M33 bending moment
Moments [Kip'ft], Length [ft]
rpMrpaxxx: 0.0315[Kip'ftj at O.00
- 1L=2.
-0.070
Min:-0.0705FKio'ftl at 2.1E
Axial forces
Forces [Kip], Length [ft]
Max:-0.1151[Kipj at 0.00[I
L=2.
-0.1151
Min: -0.1151flowl at 0.00M
Condition : id2=EQ
M33 bending moment
Moments [Kip`ft], Length [ft]
Max: 0.0494[Kip"ft] at 2.16
049e
-0.1547 2
Min:-0.1547[KiD'ftl at O.00
Axial forces
Forces [Kip], Length [ft]
Max: 0.0275[Kip] at 0.00[ft
L=2.
Min : 0.0275FKID1 at 0.001ftl
V2 shear forces
Forces [Kip], Length [ft]
Max: 0.0320(KIp]at 0.00[ft
ffi�L=2.
Min: 003201KIn1 at 0DOW
Length 2.160 [ft] Node J
Section HSS_SQR 3X3X3_16 Node K
V2 shear forces
Forces [Kip], Length [ft]
Max:-0.0472[Kipj at 0.00[I
L=2.
-0.0472
Min: -0.0472[KiDl at 9.00ffI
V2 shear forces
Forces [Kip], Length [ft]
Max: 0.0945[Kip] at 0.00[ft
L=2.
Min: 0.0945WID1 at 0.00fft1
3
4
Condition : id3=DL+EQ
M33 bending moment
Moments [Kip'ft], Length [tt]
Max:-0.0211[Klp'ft] at 2.11
-bA�t
-0.1232
Min:-0. 1232[Kio`ftl at 0Or
Axial forces
Forces [Kip], Length [ft]
Max: -0.0876[Kip] at 0.00[I
L=2.
-0:0876
Min 0.0876[Kinl at 0.00(ft
V2 shear forces
Forces [Kip], Length [ft]
Max: 0.0473[Kip] at 0.00[ft
L=2.
Min: 00473[Kiol at 0Witt
E Hewlett-Packard Company
Current Date: 3/25/2022 4:32 PM
Units system: English
File name: C:\Users\Kristopfer bartelle\Desktop\23 Harbor Ridge\frrame.retx
Steel Code Check
Report: Comprehensive
Members: Hot -rolled
Design code: AISC 360-2016 LRFD
Member 1 (a)
Design status OK
DESIGN WARNINGS
Section information
Section name: L 3X3X3_16 (US)
Dimensions
------------
a = 3.000 [in] Flange length
k = 0.563 [in] Distance k
t = 0.188 [in] Thickness
Properties
Section properties
Unit
Majoraxls
Minor axis
Gross area of the section. (Ag)
[in2]
1.090
Moment of Inertia (local axes) (p
[in4]
0,948
0.948
Moment of Inertia (principal axes) (I')
[in4]
1.522
0.374
Bending constant for moments (principal axis) (S)
[in]
0.000
2.050
Radius of gyration (local axes) (r)
[in]
0.933
0.933
Radius of gyration (principal axes) (r')
[in]
1.182
0.586
Saint-Venant torsion constant. (J)
[in4]
0.014
Section warping constant. (Cw)
[in6]
0.009
Distance from centroid to shear center (principal axis) (xo,yo)
[in]
-0.726
-0.726
Top elastic section modulus of the section (local axis) (Ssup)
[in3]
0.433
0.433
Bottom elastic section modulus of the section (local axis) (Sinf)
[10]
1.171
1.171
Top elastic section modulus of the section (principal axis) (S'sup)
[in3]
0.724
0.352
Bottom elastic section modulus of the section (principal axis) (S'inf)
[in3]
0.724
0.352
Plastic section modulus (local axis) (Z)
[in3]
0.774
0.774
Plastic section modulus (principal axis) (Z')
[in3]
1.120
0.560
Polar radius of gyration. (ro)
[in]
1.670
Area for shear (Aw)
[in2]
0.560
0.560
Torsional constant. (C)
[in3]
0.068
Material : A36
Properties
Unit
-------------
Value
---
----------
Yield stress (Fy)--------_-------------------[Kip/in2]
---------
36.00
Tensile strength (Fu):
[Kip/in2]
58.00
Elasticity Modulus (E):
[Kip/in2]
29000.00
Shear modulus for steel (G):
[Kip/in2]
11507.94
DESIGN CRITERIA
Description
Length for tension slenderness ratio (L)
Distance between member lateral bracing points
Length (Lb) [it] —----___---____-
Tap Bottom
-_-
------______ -- _-_-__—__--_--_.—--- 4.08
Laterally unbraced length
----- --_-_-_---_- Length [g] —"—"-------'—'—'
Major axis(L33) Minor axis(L22) Torsional axis(Lt)
-_-----------
4.08— 4.08 4.08
Additional assumptions
Continuous lateral torsional restraint
Tension field action
Continuous flexural torsional restraint
Effective length factor value type
Major axis frame type
Minor axis frame type
Single angle connected through width
Planar element
Consider eccentricity
Shear load point of application
DESIGN CHECKS
Unit Value
4.08
Effective length factor
Major axis(K33) Minor axis(K22) Torsional axis(Kt)
--------
--------- ---- --- '---------
-------- 1.0--
1.0
No
No
No
None
Sway
Sway
No
No
No
Gravity center
AXIAL TENSION DESIGN ,
Axial tension
Ratio 0.00
Capacity 35.32 [Kip]
Reference
CLD2
Demand 0.00 [Kip]
Ctrl Eq.
id2 at 0.00 %
------ --------
Intermediate results ---------------_-—
--------- ------------
Unit
Value -----Reference
-----
Factored axial tension caoacitv(OPn)
[Kip]
35.32
CI.D2
Nominal axial tension capacity (Pn)
[Kip]
39.24
Eq.D2-1
AXIAL COMPRESSION DESIGN ,
Compression in the major axis 33
Ratio 0.00
Capacity 27.94 [Kip]
Reference
CLE3
Demand 0.13 [Kip]
Ctrl Eq.
id3 at 0.00%
Intermediate results ---- ---- ------ ------------ ------------
-_--_--__---_--___-__-_-_---_--_---_-_-__________--
-- -------- -------------
Unit
-----------
Value
Reference----
Section classification
-------- --_--___-_-_-_----
_---__--___
Unstiffened element classification
--
Slender
Unsliffened element slenderness (b)
--
16.00
Unstiffened-element limiting slenderness (Xr)
—
' 12.77
Table.4.1a.Case3
Stiffened element classification
—
Slender
Stiffened element slenderness (k)
--
16.00
Stiffened element limiting slenderness (Xr)
--
12.77
Table.4.1a.Case3
Factored flexural buckling slrenoth(OPn33)
[Kip]
27.94
CLE3
Unbraced length (1-33)
[it]
4.08
CLE2
Effective slenderness ((KL/r)33)
--
52.54
CLE2
Elastic critical buckling stress (Fe33)
[Kip/in2]
103.68
Eq.E34
Effective area of the cross section based on the effective width (Aeff33)
[in2]
1.00
Critical stress for flexural buckling (Fcr33)
[Kip/in2]
31.13
Eq.E3-2
Nominal flexural buckling strength (Pn33)
[Kip]
31.04
Eq.E7-1
Compression In the minor axis 22
Ratio 0.00
Capacity 27.94 [Kip]
Reference
CLE3
Demand 0.13 [Kip]
Ctrl Eq.
id3 at 0.00%
Intermediate results
Unit
Value
Reference
Section classification
Unstiffened element classification
--
Slender
Unstiffened element slenderness
16.00
Unstiffened element limiting slenderness (ilr)
--
12.77
Table.4.1a.Case3
Stiffened element classification
--
Slender
Stiffened element slenderness (1v)
--
16.00
Stiffened element limiting slenderness (ivr)
--
12.77
Table.4.1a.Case3
Factored flexural buckling strength(OPn22)
[Kip]
27.94
CLE3
Unbraced length (1-22)
[it]
4.08
CLE2
Effective slenderness ((KL/r)22)
--
52.54
CLE2
Elastic critical buckling stress (Fe22)
[Kip/in2]
103.68
Eq.E3-4
Effective area of the cross section based on the effective width (Aeff22)
[in2]
1.00
Critical stress for flexural buckling (Fcr22)
[Kip/in2]
31.13
Eq.E3-2
Nominal flexural buckling strength (Pn22)
[Kip]
31.04
Eq.E7-1
FLEXURAL DESIGN
Bending about major axis. M33
Ratio 0.08
Capacity 1.40 [Kip*ft]
Reference
CLF10.2
Demand -0.11 [Kip*fl]
Ctrl Eq.
id3 at 0.00%
Intermediate results
Unit
Value
Reference
_----____-_--_-_-_-__--_--___-__-_--_--_---
Section classification
-------
----- ------- ______
Unstiffened element classification
-
Noncompact
Unstiffened element slenderness (7r)
-
16.00
Limiting slenderness for noncompact unstiffened element (%<r)
-
25.83
Limiting slenderness for compact unstiffened element ()Lp)
-
15.33
Stiffened element classification
-
Noncompact
Stiffened element slenderness j7v)
-
16.00
Limiting slenderness for noncompact stiffened element (Xr)
--
25.83
Limiting slenderness for compact stiffened element (Xp)
--
15.33
Factored yielding strenoth(�Mn)
[Kip*ft]
2.93
CI.F10.1
Yielding (Mn)
[Kip*ft]
3.26
Eq.F10-1
Factored lateral -torsional buckling strength(�Mn)
[Kip*ft]
2.82
CI.1`10.2
Lateral -torsional buckling modification factor (Cb)
--
1.96
Eq.F1-1
Elastic lateral -torsional buckling moment (Mcr)
[Kip*ft]
13.01
Eq.F10-4
Nominal lateral -torsional buckling moment strength (Mn)
[Kip*ft]
3.13
Eq.1`10-2
Factored compression flange local buckling strenglh(OMn)
[Kip*ft]
2.85
CI.F10.3
Flange local buckling (Mn)
[Kip*ft]
3.17
Eq.F10-6
Factored web local buckling strength(OMn)
[Kip*ft]
2.85
CI.F10.3
Local web buckling (Mn)
[Kip/in2]
0.02
Eq.1`10-6
Factored yielding strength about a geometric axis(OMn)
[Kip*ft]
1.75
CI.F10.1
Yielding (Mn)
[Kip*ft]
1.95
Eq.110-1
Factored lateral -torsional buckling strength about a geometric axis(OMn)
[Kip*ft]
1.40
GLF10.2
Lateral -torsional buckling modification factor (Cb)
-
2.37
Eq.Ft-1
Elastic lateral -torsional buckling moment (Mcr)
[Kip*ft]
50.16
Eq.F10-5b
Nominal lateral -torsional buckling moment strength (Mn)
[Kip*ft]
1.56
Eq.F10-2
Factored compression flange local buckling strength about a geometric ...
[Kip*ft]
1.37
0I.1`10.3
Flange local buckling (Mn)
[Kip*ft]
1.52
Eq.1`10-6
Factored web local buckling strength about a aeometric axis(OMn)
[Kip*ft]
1.37
CLF10.3
Local web buckling (Mn)
[Kip/in2]
0.01
Eq.F10-6
Bending about minor axis. M22
Ratio 0.05
Capacity 1.39 [Kip*ft]
Reference
CLF10.3
Demand 0.07 [Kip*ft]
Ctrl Eq.
id3 at 0.00 %
------------- ---- _------------------- ---------------- --------------------
Intermediate results
Unit
_--- --_____--_-
Value
Reference
-_- -------- ---___-__-_-_-__
Section classification
Unstiffened element classification
--
Noncompact
Unstiffened element slenderness
16.00
Limiting slenderness for noncompact unstiffened element (%.r)
--
25.83
Limiting slenderness for compact unstiffened element (?Lp)
--
15.33
Stiffened element classification
--
Noncompact
Stiffened element slenderness (1,.)
--
16.00
Limiting slenderness for noncompact stiffened element (1vr)
--
25.83
Limiting slenderness for compact stiffened element (Xp)
--
15.33
Factored yielding strength(OMn)
[Kip*ft]
1.43
CI510.1
Yielding (Mn)
[Kip*ft]
1.58
Eq.F10-1
Factored compression flange local buckling strength(OMn)
[Kip*ft]
1.39
CLF10.3
Flange local buckling (Mn)
[Kip*ft]
1.54
Eq.F10-6
Factored web local buckling strenoth(OMn)
[Kip*ft]
1.39
CI.F10.3
Local web buckling (Mn)
[Kip/in2]
0.01
Eq.1`10-6
Factored yielding strenoth(OMn)
[Kip*ft]
1.75
CLF10.1
Yielding (Mn)
[Kip*ft]
1.95
Eq.F10-1
Factored lateral -torsional buckling strength(OMn)
[Kip*ft]
1.39
CI.F10.2
Nominal lateral -torsional buckling moment strength (Mn)
[Kip*ft]
1.54
Eq.1`10-2
Factored compression flange local buckling strength(OMn)
[Kip*ft]
1.37
CLF10.3
Flange local buckling (Mn)
[Kip*ft]
1.52
Eq.F10-6
Factored web local buckling strenoth(oMn)
[Kip*ft]
1.37
CLF10.3
Local web buckling (Mn)
[Kip/in2]
0.01
Eq:1`10-6
DESIGN FOR SHEAR
Shear in major axis 33
Ratio 0.00
Capacity 10.94 [Kip]
Reference
CI.G1
Demand 0.01 [Kip]
Ctrl Eq.
id2 at 0.00
%
Intermediate results
_--_-_--______-_-
Unit
Value
Reference
Factored shear capacity in a geometric axis(�Vn)
[Kip]
10.94
CI.G1
Web buckling coefficient (kv)
--
1.20
CLG3
Web buckling coefficient (Cv)
--
1.00
Eq.G2-9
Nominal shear strength (Vn)
[Kip]
12.15
Eq.G6-1
Shear in minor axis 22
Ratio 0.01
Capacity 10.94 [Kip] Reference CI.G1
Demand 0.13 [Kip] Ctrl Eq. id3 at 0.00%
Intermediate results
Unit
Value
Reference
Factored shear capacity in a aeometric axis(ifiVn)
[Kip]
10.94
CI.G1
Web buckling coefficient (kv)
-
1.20
CI.G3
Web buckling coefficient (Cv)
-
1.00
Eq.G2-9
Nominal shear strength (Vn)
[Kip]
12.15
Eq.G3-1
COMBINED ACTIONS DESIGN ,
Combined flexure and axial
..............................................................................................................................................................................
Ratio 0.09
Ctrl Eq.. id3 at 0.00%
..............................................................................................................................................................................
Reference
Eq.1-12-1
Intermediate results
Unit
Value
Reference
Interaction of flexure and axial force
-
0.09
Eq.1-12-1
Required axial stress (fa)
[Kip/in2]
-0.12
Available axial stress (Fa)
[Kip/in2]
21.92
Eq.1-12-1
Required flexural stress about major principal axis (fb33)
[Kip/in2]
4.89
-
Available flexural stress about major principal axis (Fb33)
[Kip/in2]
94.50
Eq.1-12-1
Available flexural slressaboul minor principal axis (fb22)
[Kip/in2]
-0.65
Required flexural stress about minor principal axis (Fb22)
[Kip/in2]
21.36
Eq.1-12-1
Member 2 (b)
Design status OK
DESIGN WARNINGS
Section information
Section name: L 3X3X3_16 (US)
Dimensions
a = 3.000 [in] Flange length
k = 0.563 [in] Distance k
t = 0.188 [in] Thickness
Properties
Section properties
Unit
Major axis
Minor axis
Gross area of the section. (Ag)
[in2]
1.090
Moment of Inertia (local axes) (1)
[in4]
0.948
0.948
Moment of Inertia (principal axes) (1)
[in4]
1.522
0.374
Bending constant for moments (principal axis) (J')
[in]
0.000
2.050
Radius of gyration (local axes) (r)
[in]
0.933
0.933
Radius of gyration (principal axes) (r')
[in]
1.182
0.586
Saint-Venant torsion constant. (J)
[in4]
0.014
Section warping constant. (Cw)
[in6]
0.009
Distance from centroid to shear center (principal axis) (xo,yo)
[in]
-0.726
-0.726
Top elastic section modulus of the section (local axis) (Ssup)
[in3]
0.433
0.433
Bottom elastic section modulus of the section (local axis) (Sind)
[in3]
1.171
1.171
Top elastic section modulus of the section (principal axis) (S'sup)
[in3]
0.724
0.352
Bottom elastic section modulus of the section (principal axis) (S'inf)
[in3]
0.724
0.352
Plastic section modulus (local axis) (Z)
[in3]
0.774
0.774
Plastic section modulus (principal axis) (Z')
[in3]
1.120
0.560
Polar radius of gyration. (m)
Area for shear (Aw)
Torsional constant. (C)
Material : A36
Properties
Yield stress (Fy):
Tensile strength (Fu):
Elasticity Modulus (E):
Shear modulus for steel (G):
DESIGN CRITERIA
Description
Length for tension slenderness ratio (L)
Distance between member lateral bracing points
Length (Lb) [ff]
Top Bottom
___-- - 2.00 ------ _____________—'—'
2.00
Laterally unbraced length
Length [fl]
Major axis(L33) Minor axis(L22) Torsional axis(Lt)
-------------- ---- —________—_____—_______
2.00 2.00 2.00
Additional assumptions
Continuous lateral torsional restraint
Tension field action
Continuous flexural torsional restraint
Effective length factor value type
Major axis frame type
Minor axis frame type
Single angle connected through width
Planar element
Consider eccentricity
Shear load point of application
DESIGN CHECKS
AXIAL TENSION DESIGN
Axial tension
Ratio 0.00
Capacity 35.32 [Kip]
Demand 0.00 [Kip]
_ --------- —----------------------------- ___.
Intermediate results
Factored axial tension capacitv(�Pn)
Nominal axial tension capacity (Pn)
AXIAL COMPRESSION DESIGN
Compression in the major axis 33
[in]
1.670
[in2]
0.560 0.560
[in3]
0.068
Unit
Value
[Kip/in2]`
---' —
36.00
[Kip/in2]
58,00
[Kip/in2]
29000.00
[Kip/in2]
11507.94
Unit
[ft]__
Major axis(K33)
1.0
Reference
Ctrl Eq.
Unit
[Kip]
[Kip]
Value
2.00
Effective length factor
Minor axis(K22) Torsional axis(Kt)
_____________
1.0 —1.0
No
No
No
None
Sway
Sway
No
No
No
Gravity center
CI.D2
id2 at 0.00%
---------------
Value
Reference
35.32
CLD2
39.24
Eq.D2-1
Ratio 0.00
Capacity 30.10 [Kip]
Demand 0.00 [Kip]
Reference CLE3
Ctrl Eq. id2 at 0.00%
Intermediate results
Unit
Value
Reference
- --- - ------ -___-_
Section classification
---------
____
Unstiffened element classification
--
Slender
Unstiffened element slenderness (7v)
-
16.00
Unstiffened elementlimiting slenderness (Xr)
-
12.77
Table.4.1a.Case3
Stiffened element classification
--
Slender
Stiffened element slenderness (X)
--
16.00
Stiffened element limiting slenderness (7,r)
--
12.77
Table.4.1 a.Case3
Factored flexural buckling strength(�Pn33)
[Kip]
30.10
CLE3
Unbraced length (1-33)
[ft]
2.00
CLE2
Effective slenderness ((KUr)33)
-
25.73
CLE2
Elastic critical buckling stress (Fe33)
[Kip/in2]
432.17
Eq.E34
Effective area of the cross section based on the effective width (Aeff33)
[in2]
0.96
Critical stress for flexural buckling (Fcr33)
[Kip/in2]
34.77
Eq.E3-2
Nominal flexural buckling strength (Pn33)
[Kip]
33.45
Eq.E7-1
Compression in the minor axis 22
Ratio 0.00
Capacity 30.10 [Kip]
Demand 0.00 [Kip]
Reference CLE3
Ctrl Eq. id2 at 0.00%
Intermediate results
Unit
Value
Reference
Section classification
Unstiffened element classification
--
Slender
Unstiffened element slenderness (X)
--
16.00
Unstiffened element limiting slenderness (Xr)
--
12.77
Table.4.1 a.Case3
Stiffened element classification
-
Slender
Stiffened element slenderness
16.00
Stiffened element limiting slenderness (Xr)
--
12.77
Table.4.1 a.Case3
Factored flexural buckling strenoth(�Pn22)
[Kip]
30.10
CLE3
Unbraced length (1-22)
[ft]
2.00
CLE2
Effective slenderness ((KUr)22)
--
25.73
CLE2
Elastic critical buckling stress (Fe22)
[Kip/in2]
432.17
Eq.E34
Effective area of the cross section based on the effective width (Aeff22)
[in2]
0.96
Critical stress for flexural buckling (For22)
[Kip/in2]
34.77
Eq.E3-2
Nominal flexural buckling strength (Pn22)
[Kip]
33.45
Eq.E7-1
FLEXURAL DESIGN I
Bending about major axis. M33
Ratio 0.01
Capacity 1.40 [Kip*ft]
Demand -0.01 [Kip*ft]
Reference CLF10.2
Ctrl Eq. id3 at 0.00%
Intermediate results
Unit Value
Section classification--------------_------------------------------------
Unstiffened element classification
-- Noncompact
Unstiffened element slenderness (7v)
- 16.00
Limiting slenderness for noncompact unstiffened element (%r)
- 25.83
Limiting slenderness for compact unstiffened element (Xp)
-- 15.33
Stiffened element classification
-- Noncompact
Stiffened element slenderness
16.00
Limiting slenderness for noncompact stiffened element (2r)
-- 25.83
Reference
IMM
Limiting slenderness for compact stiffened element (Xp)
Factored vieldino strenoth(OMn)
Yielding (Mn)
Factored lateral -torsional bucklino strenoth(010n)
Lateral -torsional buckling modification factor (Cb)
Elastic lateral -torsional buckling moment (Mcr)
Nominal lateral -torsional buckling moment strength (Mn)
Factored compression flange local buckling strength(+Mn)
Flange local buckling (Mn)
Factored web local buckling strength(OMn)
Local web buckling (Mn)
Factored yielding strength about a geometric axis(�Mn)
Yielding (Mn)
Factored lateral -torsional buckling strength about a geometric axis(On)
Lateral -torsional buckling modification factor (Cb)
Elastic lateral -torsional buckling moment (Mcr)
Nominal lateral -torsional buckling moment strength (Mn)
Factored compression flange local bucklino strength about a geometric ...
Flange local buckling (Mn)
Factored web local buckling strength about a geometric axis(OMn)
Local web buckling (Mn)
Bending about minor axis. M22
Ratio 0.01
Capacity 1.39 [Kip*ft]
Demand 0.01 [Kip*ft]
Intermediate results
Section classification
Unstiffened element classification
Unstiffened element slenderness (7<)
Limiting slenderness for noncompact unstiffened element (7`r)
Limiting slenderness for compact unstiffened element (Xp)
Stiffened element classification
Stiffened element slenderness (X)
Limiting slenderness for noncompact stiffened element (ivr)
Limiting slenderness for compact stiffened element (Xp)
Factored yielding strength(�Mn)
Yielding (Mn)
Factored compression flange local buckling strength(OMn)
Flange local buckling (Mn)
Factored web local buckling strength(OMn)
Local web buckling (Mn)
Factored yielding strength(�Mn)
Yielding (Mn)
Factored lateral -torsional buckling strenuth(OMn)
Nominal lateral -torsional buckling moment strength (Mn)
Factored compression flange local buckling strength(OMn)
Flange local buckling (Mn)
Factored web local buckling strength(OMn)
Local web buckling (Mn)
DESIGN FOR SHEAR
Shear in major axis 33
-Ratio 0.00
Capacity 10.94 [Kip]
Demand 0.00 [Kip]
15.33
[Kip*ft]
2.93
CLF10.1
[Kip*ft]
3.26
Eq.F10-1
[Kip*ft]
2.93
CI.F10.2
-
2.83
Eq.1`11-1
[Kip*ft]
38.37
Eq.F10-4
[Kip*ft]
3.26
Eq.F10-2
[Kip*ft]
2.85
CI.F10.3
[Kip*ft]
3.17
Eq.1`10-6
[Kip*ft]
2.85
CI.F10.3
[Kip/in2]
0.02
Eq.F10-6
[Kip*ft]
1.75
CI.F10.1
[Kip*ft]
1.95
Eq.F10-1
[Kip*ft]
1.40
CLF10.2
2.24
Eq.F1-1
[Kip*ft]
174.13
Eq.F10-5b
[Kip*ft]
1.56
Eq.F10-2
[Kip*ft]
1.37
CLF10.3
[Kip*ft]
1.52
Eq.F10-6
[Kip*ft]
1.37
CLF10.3
[Kip/in2]
0.01
Eq.F10-6
Reference CI.F10.3
Ctrl Eq. id3 at 0.00%
Unit Value Reference
-- Noncompact
- 16.00
25.83
15.33
-- Noncompact
16.00
25.83
15.33
[Kip*ft]
1.43
CI.F10.1
[Kip*ft]
1.58
Eq.F10-1
[Kip*ft]
1.39
CLF10.3
[Kip*ft]
1.54
Eq.F10-6
[Kip*ft]
1.39
CI.F10.3
[Kip/in2]
0.01
Eq.F10-6
[Kip*ft]
1.75
CI.F10.1
[Kip*ft]
1.95
Eq.1`10-1
[Kip*ft]
1.40
CLF10.2
[Kip*ft]
1.56.
Eq.F10-2
[Kip*ft]
1.37
CLF10.3
[Kip*ft]
1.52
Eq.F10-6
[Kip*ft]
1.37
CLF10.3
[Kip/in2]
0.01
Eq.F10-6
Reference CI.G1
Ctrl Eq. id2 at 0.00 %
use
Intermediate results
Unit
Value
Reference
Factored shear capacity in a Geometric axl&Vn)
[Kip]
10.94
CI.01
Web buckling coefficient (kv)
--
1.20
CLG3
Web buckling coefficient (Cv)
--
1.00
Eq.G2-9
Nominal shear strength (Vn)
[Kip]
12.15
Eq.G6-1
Shear In minor axis 22
Ratio 0.00
Capacity 10.94 [Kip]
Reference
CI.G1
Demand 0.01 [Kip]
Ctrl Eq.
10 at 0.00
Intermediate results
Unit
Value
Reference
Factored shear capacity in a Geometric axis(�Vn)
[Kip]
10.94
CI.G1
Web buckling coefficient (kv)
--
1.20
CLG3
Web buckling coefficient (Cv)
--
1.00
Eq.G2-9
Nominal shear strength (Vn)
[Kip]
12.15
Eq.G3-1
COMBINED ACTIONS DESIGN ,
Combined flexure and axial
.............................................................................................................................................................
Ratio 0.01
Ctrl Eq. id3 at 0.00% Reference Eq.H2-1
.............................................................................................................................................................
Intermediate results
Unit
Value
Reference
Interaction of flexure and axial force
-
0.01
Eq.1-12-1
Required axial stress (fa)
[Kip/in2]
0.00
Available axial stress (Fa)
[Kip/in2]
26.64
Eq.H2-1
Required flexural stress about major principal axis (fb33)
[Kip/in2]
-0.60
Available flexural stress about major principal axis (Fb33)
[Kip/in2]
94.50
Eq.H2-1
Available flexural slressabout minor principal axis (fb22)
[Kip/in2]
-0.04
Required flexural stress about minor principal axis (F622)
[Kip/in2]
21.63
Eq.1-12-1
Member 3 (c)
Design status OK
DESIGN WARNINGS
Section information
Section name:
L 3X3X3_16
(US)
Dimensions
'-" --- -
-------- -'--'--"--
----_-_--_-
a
3.000 [in]
Flange length
k =
0.563 [in]
Distance k
t =
0.188 [in]
Thickness
Properties
Section properties
Gross area of the section. (Ag)
Moment of Inertia (local axes) (1)
Moment of Inertia (principal axes) (I')
Bending constant for moments (principal axis) (S)
Radius of gyration (local axes) (r)
Radius of gyration (principal axes) (r')
Saint-Venanl torsion constant. (J)
Section warping constant. (Cw)
Distance from centroid to shear center (principal axis) (xo,yo)
Top elastic section modulus of the section (local axis) (Ssup)
Bottom elastic section modulus of the section (local axis) (Sint)
Top elastic section modulus of the section (principal axis) (S'sup)
Bottom elastic section modulus of the section (principal axis) (S'inf)
Plastic section modulus (local axis) (Z)
Plastic section modulus (principal axis) (Z')
Polar radius of gyration. (ro)
Area for shear (Aw)
Torsional constant. (C)
Material : A36
Properties
Yield stress (Fy):
Tensile strength (Fu):
Elasticity Modulus (E):
Shear modulus for steel (G):
DESIGN CRITERIA
Description
Length for tension slenderness ratio (L)
Distance between member lateral bracing points
Length (Lb)[ft]
Top Bottom
2.00 2.00
Laterally unbraced length
Length [ft]
Major axis(L33) Minor axis(L22) Torsional axis(Lt)
Unit
Major axis
Minoraxis
[in2]
1.090
[in4]
0.948
0.948
[in4]
1.522
0.374
[in]
0.000
2.050
[in]
0.933
0.933
[in]
1.182
0.586
[in4]
0.014
[in6]
0.009
[in]
-0.726
-0.726
[in3]
0.433
0.433
[in3]
1.171
1.171
[in3]
0.724
0.352
[10]
0.724
0.352
[in3]
0.774
0.774
[in3]
1.120
0.560
[in]
1,670
[in2]
0.560
0.560
[in3]
0.068
Unit Value
[Kip/in2] 36.00
[Kip/in2] 58.00
[Kip/in2] 29000.00
[Kip/in2] 11507.94
Unit Value
[k]_____-________ 2.00
Effective length factor
Major axis(K33) Minor axis(K22) Torsional axis(Kt)
2.00 2.00 2.00 1.0
Additional assumptions
Continuous lateral torsional restraint
Tension field action
Continuous flexural torsional restraint
Effective length factor value type
Major axis frame type
Minor axis frame type
Single angle connected through width
Planar element
Consider eccentricity
Shear load point of application
DESIGN CHECKS
1.0 1.0
No
No
No
None
Sway
Sway
No
No
No
Gravity center
AXIAL TENSION DESIGN
Axial tension
Ratio 0.00
Capacity 35.32 [Kip]
Reference
CI.D2
Demand 0.00 [Kip]
Chi Eq.
id2 at 0.00%
Intermediate results
Unit
Value
Reference
Factored axial tension capacitv(OPn)
[Kip]
35.32
CLD2
Nominal axial tension capacity (Pn)
[Kip]
39.24
Eq.D2-1
AXIAL COMPRESSION DESIGN
Compression In the major axis 33
Ratio 0.00
Capacity 30.10 [Kip]
Reference
CI.E3
Demand 0.00 [Kip]
Clrl Eq.
id2 at 0.00%
Intermediate results
Unit
Value
Reference
--_-_____---_-__-_-----_-_
Section classification
- -------------------
Unstiffened element classification
-
Slender
Unstiffened element slenderness (?L)
-
16.00
Unstiffened element limiting slenderness (ivr)
-
12.77
Table.4.1 a.Case3
Stiffened element classification
-
Slender
Stiffened element slenderness (1v)
--
16.00
Stiffened element limiting slenderness (Xr)
--
12.77
Table.4.1 a.Case3
Factored flexural bucklina strenoth(�Pn33)
[Kip]
30.10
CI.E3
Unbraced length (L33)
[ft]
2.00
CI.E2
Effective slenderness ((KL/r)33)
--
25.73
CLE2
Elastic critical buckling stress (Fe33)
[Kip/in2]
432.17
Eq.E34
Effective area of the cross section based on the effective width (Aeff33)
[in2]
0.96
Critical stress for flexural buckling (Fcr33)
[Kip/in2]
34.77
Eq.E3-2
Nominal flexural buckling strength (Pn33)
[Kip]
33.45
Eq.E7-1
Compression in the minor axis 22
Ratio 0.00
Capacity 30.10 [Kip]
Reference
CI.E3
Demand 0.00 [Kip]
Ctrl Eq.
id2 at 0.00%
Intermediate results
Unit
Value
Reference
Section classification
Unstiffened element classification
--
Slender
Unstiffened element slenderness
16.00
Unstiffened element limiting slenderness (%r)
--
12.77
Table.4.1a.Case3
Stiffened element classification
--
Slender
Stiffened element slenderness (%)
--
16.00
Stiffened element limiting slenderness (2,r)
--
12.77
Table.4.1 a.Case3
Factored flexural buckling strength(OPn22)
[Kip]
30.10
CI.E3
Unbraced length (1-22)
IN
2.00
CLE2
Effective slenderness ((KL/r)22)
-
25.73
CI.E2
Elastic critical buckling stress (Fe22)
[Kip/in2]
432.17
Eq.E3-4
Effective area of the cross section based on the effective width (Aeff22)
[in2]
0.96
Critical stress for flexural buckling (Fc22)
[Kip/in2]
34.77
Eq.E3-2
Nominal flexural buckling strength (Pn22)
[Kip]
33.45
Eq.E7-1
FLEXURAL DESIGN ,
raen
Bending about major axis. M33
Ratio 0.01
Capacity 1.40 [Kip*ft]
Reference
CLF10.2
Demand -0.01 [Kip*ft]
Ctrl Eq.
id2 at 0.00%
Intermediate results
Unit
Value
Reference
- -------- __-__________-__-- -- - ---- -
Section classification
------- - -----------------------------
Unstiffened element classification
-
Noncompact
Unstiffened element slenderness (7v)
--
16.00
Limiting slenderness for noncompact unstiffened element (ivr)
--
25.83
Limiting slenderness for compact unstiffened element (kp)
--
15.33
Stiffened element classification
--
Noncompact
Stiffened element slenderness (X)
-
16.00
Limiting slenderness for noncompact stiffened element (),r)
--
25.83
Limiting slenderness for compact stiffened element (%p)
-
15.33
Factored vielding strenolh(OMn)
[Kip*ft]
2.93
CLF10.1
Yielding (Mn)
[Kip*ft]
3.26
Eq.F10-1
Factored lateral -torsional buckling strenoth(ifiMn)
[Kip*ft]
2.93
CI.F10.2
Lateral -torsional buckling modification factor (Cb)
--
2.24
Eq.F1-1
Elastic lateral -torsional buckling moment (Mcr)
[Kip*ft]
30.39
Eq.F10-4
Nominal lateral -torsional buckling moment strength (Mn)
[Kip*ft]
3.26
Eq.F10-2
Factored compression flange local buckling strenoth(�Mn)
[Kip*ft]
2.85
CI.F10.3
Flange local buckling (Mn)
[Kip*ft]
3.17
Eq.F10-6
Factored web local buckling strength(�Mn)
[Kip'^ft]
2.85
CI.F10.3
Local web buckling (Mn)
[Kip/in2]
0.02
Eq.F10-6
Factored yielding strength about a geometric axis(OMn)
[Kip*ft]
1.75
CLF10.1
Yielding (Mn)
[Kip*ft]
1.95
Eq.1`10-1
Factored lateral -torsional buckling strength about a geometric axis(OMn)
[Kip*ft]
1.40
CLF10.2
Lateral -torsional buckling modification factor (Cb)
--
2.24
Eq.F1-1
Elastic lateral -torsional buckling moment (Mcr)
[Kip*ft]
173.92
Eq.F10-5b
Nominal lateral -torsional buckling moment strength (Mn)
[Kip*ft]
1.56
Eq.F10-2
Factored compression flange local bucklino strength about a geometric ...
[Kip*ft]
1.37
CLF10.3
Flange local buckling (Mn)
[Kip*ft]
1.52
Eq.1`10-6
Factored web local bucklino strength about a geometric axis(OMn)
[Kip*ft]
1.37
CI.1`10.3
Local web buckling (Mn)
[Kip/in2]
0.01
Eq.1`10-6
Bending about minor axis, M22
Ratio 0.01
Capacity 1.37 [Kip*ft]
Reference
CLF10.3
Demand -0.01 [Kip*ft]
Ctrl Eq.
id2 at 0.00%
_____----------- ---------- ------- -------------------------------
Intermediate results
Unit
-_______-______
Value
Reference
---------------------------------- ---- --------- -______-__________-______________--_____-_
Section classification
Unstiffened element classification
--
Noncompact
Unstiffened element slenderness (k)
--
16.00
Limiting slenderness for noncompact unstiffened element (fir)
--
25.83
Limiting slenderness for compact unstiffened element (%p)
--
15.33
Stiffened element classification
--
Noncompact
Stiffened element slenderness
16.00
Limiting slenderness for noncompact stiffened element (%r)
-
25.83
Limiting slenderness for compact stiffened element (Xp)
--
15.33
Factored vielding strength(+Mn)
[Kip*ft]
1.43
CI.F10.1
Yielding (Mn)
[Kip*ft]
1.58
Eq.1`10-1
Factored compression flange local buckling strength(OMn)
[Kip*ft]
1.39
CI.1`10.3
Flange local buckling (Mn)
[Kip*ft]
1.54
Eq.1`10-6
Factored web local buckling strenglh(OMn)
[Kip*ft]
1.39
CI.F10.3
Local web buckling (Mn)
[Kip/in2]
0.01
Eq.F10-6
Factored Yielding strenoth(OMn)
[Kip*ft]
1.75
CI.1`10.1
Yielding (Mn)
[Kip*ft]
1.95
Eq.F10-1
air
Factored lateral -torsional buckling strenath(�Mn)
[Kip*ft]
1.40
CI.F10.2
Nominal lateral -torsional buckling moment strength (Mn)
[Kip*ft]
1.56
Eq.F10-2
Factored compression flange local buckling strenoth(010n)
[Kip*ft]
1.37
CLF10.3
Flange local buckling (Mn)
[Kip*ft]
1.52
Eq.F10-6
Factored web local buckling strength(OW)
[Kip*ft]
1.37
CI510.3
Local web buckling (Mn)
[Kip/in2]
0.01
Eq.1`10-6
DESIGN FOR SHEAR
Shear in malor axis 33
Ratio 0.00
Capacity 10.94 [Kip]
Reference
CI.G1
Demand 0.01 [Kip]
Ctrl Eq.
id2 at 0.00
Intermediate results
Unit
-_-_-___-_-__-
Value
Reference
Factored shear capacity in a geometric axis(�Vn)
[Kip]
10.94
CI.G1
Web buckling coefficient (kv)
-
1.20
CI.G3
Web buckling coefficient (Cv)
-
1.00
Eq.G2-9
Nominal shear strength (Vn)
[Kip]
12.15
Eq.G6-1
Shear in minor axis 22
Ratio 0.00
Capacity 10.94 [Kip]
Reference
CI.G1
Demand 0.01 [Kip]
- Ctrl Eq.
id2 at 0.00
Intermediate results
Unit
Value
Reference
Factored shear capacity in a geometric axis(oVn)
[Kip]
10.94
CI.G1
Web buckling coefficient (kv)
-
1.20
CI.G3
Web buckling coefficient (Cv)
-
1.00
Eq.G2-9
Nominal shear strength (Vn)
[Kip]
12.15
Eq.G3-1
COMBINED ACTIONS DESIGN
Combined flexure and axial
..............................................................................................................................................................................
Ratio 0.01
Ctrl Eq. id2 at 0.00 %
.....................................................................................................................................................
Reference
Eq.112-1
I........................
Intermediate results
--_-_____-_-_-_-______-_-_-__
Unit
Value
Reference
Interaction of flexure and axial force
-
0.01
Eq.112-1
Required axial stress (fa)
[Kip/in2]
0.00
Eq.112-1
Available axial stress (Fa)
[Kip/in2]
32.40
Eq.112-1
Required flexural stress about major principal axis (fb33)
[Kip/in2]
-0.11
Available flexural stress about major principal axis (Fb33)
[Kip/in2]
94.50
Eq.H2-1
Available flexural slressabout minor principal axis (fb22)
[Kip/in2]
-0.09
Required flexural stress about minor principal axis (Fb22)
[Kip/in2]
21.63
Eq.H2-1
Member 4 (d)
Design status OK
DESIGN WARNINGS
u
Section name:
L 3X3X3_16
(US)
Dimensions
-- -------
t
--------'--"-"---
a =
3.000 [in]
Flange length
k =
0.563 [in]
Distance k
t =
0.188 finl
Thickness
Properties
Section properties
Gross area of the section. (Ag)
Moment of Inertia (local axes) (1)
Moment of Inertia (principal axes) (1)
Bending constant for moments (principal axis) (J)
Radius of gyration (local axes) (r)
Radius of gyration (principal axes) (r')
Saint-Venant torsion constant. (J)
Section warping constant. (Cw)
Distance from centroid to shear center (principal axis) (xo,yo)
Top elastic section modulus of the section (local axis) (Ssup)
Bottom elastic section modulus of the section (local axis) (Sint)
Top elastic section modulus of the section (principal axis) (S'sup)
Bottom elastic section modulus of the section (principal axis) (S'inf)
Plastic section modulus (local axis) (Z)
Plastic section modulus (principal axis) (Z')
Polar radius of gyration. (ro)
Area for shear (Aw)
Torsional constant. (C)
Material : A36
Properties
Yield stress (Fy):
Tensile strength (Fu):
Elasticity Modulus (E):
Shear modulus for steel (G):
DESIGN CRITERIA
Description
Length for tension slenderness ratio (L)
Distance between member lateral bracing points
----- Length (Lb) [tt]
Top Bottom
______ ----_________ 4.08
Laterally unbraced unbraced length
_-__________-___________-_-____________-
Length [ff]
Major axis(L33) Minor axis(L22) Torsional axis(Lt)
4.08-_-__-___ 4.08 4.08
Section information
Unit
[in2]
[in4]
[in4]
[in]
[in]
[in]
[in4]
[in6]
[in]
[in3]
[in3]
[in3]
[in3]
[in3]
[in3]
[in]
[in2]
[in3]
Unit
[Kip/in2]
[Kip/in2]
[Kip/in2]
[Kip/in2]
Unit
Major axis(K33)
.__________ 1.0
Major axis
1.090
0.948
1.522
0.000
0.933
1.182
0.014
0.009
-0.726
0.433
1.171
0.724
0.724
0.774
1.120
1.670
0.560
0.068
Value
36.00
58.00
29000.00
11507.94
Value
4.08
Effective length factor
Minor axis(K22)
_________1.O _______.
Minor axis
0.948
0.374
2.050
0.933
0.586
-0.726
0.433
1.171
0,352
0.352
0.774
0.560
0.560
Torsional axis(Kt)
Additional assumptions
Continuous lateral torsional restraint
Tension field action
Continuous flexural torsional restraint
Effective length factor value type
Major axis frame type
Minor axis frame type
Single angle connected through width
Planar element
Consider eccentricity
Shear load point of application
DESIGN CHECKS
AXIAL TENSION DESIGN
Axial tension
Ratio
0.00
Capacity
36.32 [Kip]
Demand
0.00 [Kip]
Intermediate results
Factored axial tension ceded v(OPn)
Nominal axial tension capacity (Pn)
AXIAL COMPRESSION DESIGN ,
Compression in the major axis 33
Ratio 0.00
Capacity 27.94 [Kip]
Demand 0.13 [Kip]
No
No
No
None
Sway
Sway
No
No
No
Gravity center
Reference CI.D2
Ctrl Eq. id2 at 0.00%
Unit Value Reference
[Kip] 35.32 CI.D2
[Kip] 39.24 Eq.D2-1
Reference CLE3
Ctrl Eq. id3 a10.00%
Intermediate results
Unit
Value
Reference
----- --- -------- --__---------------------- ---------- --- —
Section classification
Unstiffened element classification
--
Slender
Unstiffened element slenderness (1`)
—
16,00
Unstiffened element limiting slenderness (Xr)
--
12.77
Table.4.1 a.Case3
Stiffened element classification
—
Slender
Stiffened element slenderness
16.00
Stiffened element limiting slenderness (%r)
--
12.77
Table.4.1a.Case3
Factored flexural buckling strenoth(01`03)
[Kip]
27.94
CLE3
Unbraced length (1-33)
IN
4.08
CLE2
Effective slenderness ((KUr)33)
—
52.54
CLE2
Elastic critical buckling stress (Fe33)
[Kip/in2]
103.68
Eq.E34
Effective area of the cross section based on the effective width (Aeff33)
[in2]
1.00
Critical stress for flexural buckling (Fcr33)
[Kip/in2]
31.13
Eq.E3-2
Nominal flexural buckling strength (Pn33)
[Kip]
31.04
Eq.E7-1
Compression In the minor axis 22
Ratio 0.00
Capacity 27.94 [Kip]
Reference
CI.E3
Demand 0.13 [Kip]
Chl Eq.
id3 at 0.00%
Intermediate results
Unit
Value
Reference
----------- ----- __-__-_--_____-_-___-____
Section classification
______________
Unstiffened element classification
--
Slender
Unstiffened element slenderness (k).
--
16.00
Unstiffened element limiting slenderness ()Lr)
--
12.77
Table.4.1a.Case3
Stiffened element classification
-
Slender
Stiffened element slenderness (,.)
--
16.00
Stiffened element limiting slenderness (ar)
--
12.77
Table.4.1a.Case3
Factored flexural bucklino strenoth(�Pn22)
[Kip]
27.94
CLE3
Unbraced length (1-22)
[ft]
4.08
CLE2
Effective slenderness ((KL/r)22)
--
52.54
CLE2
Elastic critical buckling stress (Fe22)
[Kip/in2]
103.68
Eq.E3-4
Effective area of the cross section based on the effective width (Aeff22)
[in2]
1.00
Critical stress for flexural buckling (Fcr22)
[Kip/in2]
31.13
Eq.E3-2
Nominal flexural buckling strength (Pn22)
[Kip]
31.04
Eq.E7-1
FLEXURAL DESIGN
Bending about major axis. M33
Ratio 0.09
Capacity 1.40 [Kip*ft]
Demand -0.12 [Kip*ft]
Intermediate results
Section classification
Unstiffened element classification
Unstiffened element slenderness (k)
Limiting slenderness for noncompacl unstiffened element (%vr)
Limiting slenderness for compact unstiffened element (Xp)
Stiffened element classification
Stiffened element slenderness (7v)
Limiting slenderness for noncompacl stiffened element (Xr)
Limiting slenderness for compact stiffened element (kp)
Factored yielding strength(OMn)
Yielding (Mn)
Factored lateral -torsional buckling slrength(OMn)
Lateral -torsional buckling modification factor (Cb)
Elastic lateral -torsional buckling moment (Mcr)
Nominal lateral -torsional buckling moment strength (Mn)
Factored compression flange local buckling strenath(OMn)
Flange local buckling (Mn)
Factored web local buckling strenoth(OMn)
Local web buckling (Mn)
Factored yielding strength about a geometric axis(oMn)
Yielding (Mn)
Factored lateral -torsional buckling strength about a geometric axis(4)Mn)
Lateral -torsional buckling modification factor (Cb)
Elastic lateral -torsional buckling moment (Mcr)
Nominal lateral -torsional buckling moment strength (Mr)
Factored compression flange local buckling strength about a geometric ...
Flange local buckling (Mn)
Factored web local buckling strength about a geometric axis(OMn)
Local web buckling (Mn) -
Bendina about minor axis. M22
Ratio 0.05
Capacity 1.39 [Kip*ft]
Demand 0.08 [Kip*ft]
2E
Reference
CLF10.2
Ctrl Eq.
id3 at 0,00%
Unit
---------------
Value
Reference
--
Noncompact
16.00
-
25.83
15.33
--
Noncompact
16.00
-
25.83
15.33
[Kip*ft]
2.93
CI.F10.1
[Kip*ft]
3.26
Eq.F10-1
[Kip*ft]
2.81
CLF10.2
--
1.91
Eq.F1-1
[Kip*ft]
12.72
Eq.F10-4
[Kip*ft]
3.12
Eq.F10-2
[Kip*ft]
2.85
CLF10.3
[Kip*ft]
3.17
Eq.F10-6
[Kip*ft]
2.85
CLF10.3
[Kip/in2]
0.02
Eq.F10-6
[Kip*ft]
1.75
CI.F70.1
[Kip*ft]
1.95
Eq.1`10-1
[Kip*ft]
1.40
CI.F10.2
--
2.37
Eq.F1-1
[Kip*ft]
50.01
Eq.F10-5b
[Kip*ft]
1.56
Eq.F10-2
[Kip*ft]
1.37
CI.F10.3
[Kip*ft]
1.52
Eq.1`10-6
[Kip*ft]
1.37
CLF10.3
[Kip/in2]
0.01
Eq.F10-6
Reference CI110.3
Ctrl Eq. id3 al 0.00%
Intermediate results
Unit
Value
Reference
----------- ___-__-_-________-_-_--_-
Section classification
Unstiffened element classification
--
Noncompact
Unstiffened element slenderness (1`.)
-
16.00
Limiting slenderness for noncompact unstiffened element (fir)
-
25.83
Limiting slenderness for compact unstiffened element (%p)
-
15.33
Stiffened element classification
--
Noncompact
Stiffened element slenderness (g.)
--
16.00
Limiting slenderness for noncompact stiffened element (Xr)
--
25.83
Limiting slenderness for compact stiffened element (Xp)
--
15.33
Factored yielding strenoth(�Mn)
[Kip*ft]
1.43
CI.1`10.1
Yielding (Mn)
[Kip*ft]
1.58
Eq.F10-1
Factored compression flange local bucklino strength(�Mn)
[Kip*ft]
1.39
CLF10.3
Flange local buckling (Mn)
[Kip*ft]
1.54
Eq.F10-6
Factored web local buckling strenoth(oMn)
[Kip*ft]
1.39
CLF10.3
Local web buckling (Mn)
[Kip/in2]
0.01
Eq.F10-6
Factored yielding strength(OMn)
[Kip*ft]
1.75
CLF10.1
Yielding (Mn)
[Kip*ft]
1.95
Eq.F10-1
Factored lateral -torsional buckling strength(OMn)
[Kip*ft]
1.39
CLF10.2
Nominal lateral -torsional buckling moment strength (Mn)
[Kip*ft]
1.54
Eq.F10-2
Factored compression flange local buckling strength(OMn)
[Kip*ft]
1.37
CI.1`10.3
Flange local buckling (Mn)
[Kip*ft]
1.52
Eq.1`10-6
Factored web local buckling strenoth(OMn)
[Kip*ft]
1.37
CLF10.3
Local web buckling (Mn)
[Kip/in2]
0.01
Eq.F10-6
DESIGN FOR SHEAR ,
Shear in major axis 33
Ratio
0.00
Capacity
10.94 [Kip]
Reference
CI.G1
Demand
0.01 [Kip]
Ctrl Eq.
id2 at 0.00%
Intermediate results
Unit
Value
Reference
Factored shear capacity in a geometric axl&Vn)
[Kip]
10.94
CLG1
Web buckling coefficient (kv)
--
1.20
CLG3
Web buckling coefficient (Cv)
--
1.00
Eq.G2-9
Nominal shear strength (Vn)
[Kip]
12.15
Eq.G6-1
Shear in minor axis 22
Ratio
0.01
Capacity
10.94 [Kip]
Reference
CI.Gl
Demand
0.14 [Kip]
Ctrl Eq.
id3 at 0.00%
Intermediate results
Unit
Value
Reference
Factored shear capacity in a geometric axis(�Vn)
[Kip]
10.94
CI.G7
Web buckling coefficient (kv)
--
1.20
CLG3
Web buckling coefficient (Cv)
--
1.00
Eq.G2-9
Nominal shear strength (Vn)
[Kip]
12.15
Eq.G3-1
COMBINED ACTIONS DESIGN
,
Combined flexure and axial
..............................................................................................................................................................................
Ratio
0.09
Ctrl Eq.
................................................................................................................................................................I.............
id3 at 0.00%
Reference
Eq.112-1
�unu
Intermediate results
Unit
Value
Reference
-------------- -------- ------------------ __------- -----------------
Interaction of flexure and axial force
--
_______
0.09
_ _
Eq.H2-1
Required axial stress (fa)
[Kip/in2]
-0.12
Available axial stress (Fa)
[Kip/in2]
21.92
Eq.1-12-1
Required flexural stress about major principal axis (fb33)
[Kip/in2]
-5.12
Available flexural stress about major principal axis (Fb33)
[Kip/in2]
94.50
Eq.H2-1
Available flexural stressabout minor principal axis (fb22)
[Kip/in2]
-0.71
Required flexural stress about minor principal axis (Fb22)
[Kip/in2]
21.28
Eq.1-12-1
Member 5 (a)
Design status OK
DESIGN WARNINGS
Section information
Section name: HSS_SCR 3X3X3_16 (US)
Dimensions
---' ------------------"_"---------------------"-'
a = 3.000 [in] Height
b = 3.000 [inj Width
T = 0.174 (in] Thickness
Properties
------------------
---- ----- -------- ------ ------------------
Sectionproperties
Unit
Major axis
Minor axis
Gross area of the section. (Ag)
[in2]
1.890
Moment of Inertia (local axes) (1)
[in4]
2.500
2.500
Moment of Inertia (principal axes) (1)
[in4]
2.500
2.500
Bending constant for moments (principal axis) (S)
[in]
0.000
0.000
Radius of gyration (local axes) (r)
[in]
1.150
1.150
Radius of gyration (principal axes) (r)
[in]
1.150
1.150
Saint-Venanl torsion constant. (J) -
[in4]
4.030
Section warping constant. (Cw)
[in6]
0.000
Distance from centroid to shear center (principal axis) (xo,yo)
[in]
0.000
0.000
Top elastic section modulus of the section (local axis) (Ssup)
[in3]
1.600
1.600
Bottom elastic section modulus of the section (local axis) (Sint)
[in3]
1.600
1.600
Top elastic section modulus of the section (principal axis) (S'sup)
[in3]
1.600
1.600
Bottom elastic section modulus of the section (principal axis) (S'inf)
[in3]
1.600
1.600
Plastic section modulus (local axis) (Z)
[1n3]
2.000
2.000
Plastic section modulus (principal axis) (Z')
(in3j
2.000
2.000
Polar radius of gyration. (m)
[in]
1.613
Area for shear (Aw)
[in2j
0.862
0.862
Torsional constant. (C)
[in3]
2.758
Material : A36
Properties
Unit
Value
------------ ---------------- ------------- _-__----------
Yield stress (Fy):
_------------------
[Kip/in2]
_-_-_-_-
36.00
Tensile strength (F#
[Kip/in2]
58.00
Elasticity Modulus (E):
[Kip/in2]
29000.00
Shear modulus for steel (G):
[Kip/in2]
11507.94
DESIGN CRITERIA
uaa
Description
Length for tension slenderness ratio (L)
Distance between member lateral bracing points
Length (Lb) [k]
Top Bottom
2.16 2.16
Laterally unbraced length
______-_-___Length [ft]
Major axis(L33) Minor axis(L22)
------ ---------- 2.16 -_-_
Additional assumptions
Continuous lateral torsional restraint
Tension field action
Continuous Flexural torsional restraint
Effective length factor value type
Major axis frame type
Minor axis frame type
DESIGN CHECKS
AXIAL TENSION DESIGN
Axial tension
Ratio
Capacity
Demand
Intermediate results
Torsional axis(Lt)
2.16
0.00
61.24 [Kip]
0.00 [Kip]
Factored axial tension capacitv(oPn)
Nominal axial tension capacity (Pn)
AXIAL COMPRESSION DESIGN ,
Compression in the major axis 33
Ratio 0.00
Capacity 59.62 [Kip]
Demand 0.13 [Kip]
Unit
[ftl
Major axis(K33)
1.0
Reference
Ctrl Eq.
Value
2.16
Effective length factor
Minor axis(K22)
-______-1-0 _ --
No
No
No
None
Sway
Sway
CLD2
id2 at 0.00
Torsional axis(Kt)
1.0 -
Unit Value Reference
[Kip] 61.24 CI.D2
[Kip] 68.04 Eq.D2-1
Reference CLE3
Ctrl Eq. id3 at 0.00
Intermediate results
Unit
Value
Reference
Section classification
- ---------
------ __-_-_-.
Unstiffened element classification
-
Non slender
Unstiffened element slenderness
14.24
Unstiffened element limiting slenderness (kr)
--
39.74
Table.4.1 a.Case6
Stiffened element classification
--
Non slender
Stiffened element slenderness ()v)
--
14.24
Stiffened element limiting slenderness (ilr)
--
39.74
Table.4.1 a.Case6
Factored flexural buckling strength(OPn33)
[Kip]
59.62
CI.E3
Unbraced length (1-33)
[k]
2.16
CLE2
Effective slenderness ((KL/r)33)
--
22.54
CLE2
Elastic critical buckling stress (Fe33)
[Kip/in2]
563.52
Eq.E3-4
Effective area of the cross section based on the effective width (Aeff33)
[in2]
1.89
Critical stress for flexural buckling (Fcr33)
[Kip/in2]
35.05
Eq.E3-2
Nominal flexural buckling strength (Pn33)
[Kip]
66.24
Eq.E3-1
Compression in the minor axis 22
Ratio 0.00
Capacity 59.62 [Kip]
Reference
CLE3
Demand 0.13 [Kip]
Ctrl Eq.
id3 at 0.00%
------------ ------ ____-_-___--_--___----------- ------------------
Intermediate results
-----
Unit
--_-______________-_-__-_
Value
Reference
------- - --------- -----------------
Section classification
-_---------
_-_----
Unstiffened element classification
--
Non slender
Unstiffened element slenderness (X)
--
14.24
Unstiffened element limiting slenderness (Xr)
--
39.74
Table.4.1a.Case6
Stiffened element classification
-
Non slender
Stiffened element slenderness
14.24
Stiffened element limiting slenderness (kr)
--
39.74
Table.4.1 a.Case6
Factored flexural buckling strenpth(�Pn22)
[Kip]
59.62
CLE3
Unbraced length (1-22)
IN
2.16
CLE2
Effective slenderness ((KL/r)22)
-
22.54
CLE2
Elastic critical buckling stress (Fe22)
[Kip/in2]
563.52
Eq.E34
Effective area of the cross section based on the effective width (Aeff22)
[in2]
1.89
Critical stress for flexural buckling (Fcr22)
[Kip/in2]
35.05
Eq.E3-2
Nominal flexural buckling strength (Pn22)
[Kip]
66.24
Eq.E3-1
FLEXURAL DESIGN ,
Bending about major axis. M33
Ratio 0.03
Capacity 5.40 [Kip*ft]
Reference
CI.F7.1
Demand -0.16 [Kip*ft]
Ctrl Eq.
id3 at 0.00%
------------- _-_--_--_-_-_-__-_-_______-_-_-_-__--_-_____-_
Intermediate results
Unit
Value
Reference
__ -------- ------ _-_-______--__--__-__-_---------------
Section classification
_
----- - ---------
_--_----_-____
Unstiffened element classification
--
Compact
Unstiffened element slenderness (X)
--
14.24
Limiting slenderness for noncompact unstiffened element (Xr)
--
39.74
Limiting slenderness for compact unsfiffened element (Xp)
--
31.79
Stiffened element classification
-
Compact
Stiffened element slenderness (X)
--
14.24
Limiting slenderness for noncompact stiffened element (%r)
--
161.78
Limiting slenderness for compact stiffened element (7.p)
--
68.69
Factored Yielding sfrength(�Mn)
[Kip*ft]
5.40
CI.F7.1
Yielding (Mn)
[Kip*ft]
6.00
Eq.F7-1
Bending about minor axis. M22
Ratio 0.00
Capacity 5.40 [Kip*ff]
Reference
CLF7.1
Demand 0.01 [Kip*ft]
Ctrl Eq.
id3 at 0.00%
Intermediate results
Unit
Value
Reference
--------------- --------- _-------------
Section classification
-----------------
______
Unstiffened element classification
--
Compact
Unstiffened element slenderness
14.24
Limiting slenderness for noncompact unstiffened element
39.74
Limiting slenderness for compact unstiffened element (%p)
--
31.79
Stiffened element classification
--
Compact
MO
Stiffened. element slenderness (%)
Limiting slenderness for noncompact stiffened element (A,r)
Limiting slenderness for compact stiffened element (Xp)
Factored vieldino strength about a geometric wds(OMn)
Yielding (Mn)
DESIGN FOR SHEAR ,
Shear in major axis 33
Ratio 0.00
Capacity 16.76 [Kip]
Demand 0.01 [Kip]
Intermediate results
Factored shear caoacitv(mVn)
Web buckling coefficient (kv)
Web buckling coefficient (Cv)
Nominal shear strength (Vn)
Shear in minor axis 22
Ratio 0.01
Capacity 16.76 [Kip]
Demand 0.12 [Kip]
Intermediate results
Factored shear cagacitv(oVn)
Web buckling coefficient (kv)
Web buckling coefficient (Cv)
Nominal shear strength (Vn)
TORSION DESIGN ,
Torsion
Ratio 0.00
Capacity 4.47 [Kip'ft]
Demand -0.01 [Kip"ft]
Intermediate results
Factored torsion caoacitv(QTn)
Critical torsional buckling stress (Fcr)
Nominal torsion capacity (Tn)
COMBINED ACTIONS DESIGN ,
Combined flexure and axial
..........................................................................................
Ratio 0.03
Ctrl Eq. id3 at 0.00%
..........................................................................................
14.24
161.78
68.69
[Kip'ft]
5.40
CI.F7.1
[Kip`ft]
6.00
Eq.F7-1
Reference
CI.G1
Cbl Eq.
id2 at 0.00
%
Unit
Value
Reference
[Kip] -
16.76
CI.G1
--
5.00
CI.G4
--
1.00
Eq.G2-9
[Kip]
18.63
Eq.G4-1
Reference
CI.G1
Clrl Eq.
id3 at 0.00 %
Unit
Value
Reference
[Kip]
16.76
CI.G1
-
5.00
CI.G4
-
1.00
Eq.G2-9
[Kip]
18.63
Eq.G4-1
Reference
CI.1-13.1
Ctrl Eq.
id2 at 0.00%
Unit
Value
Reference
[Kip'ft]
4.47
CI.H3.1
[Kip/in2]
21.60
Eq.1-13-3
[Kip•ft]
4.97
Eq.1-13-1
Reference
......................
: Eq.H1-lb
Intermediate results
Interaction of flexure and axial force
Available flexural strength about strong axis (Mc33)
Available flexural strength about weak axis (Mc22)
Available axial strength (Pc)
Member
Design status
DESIGN WARNINGS
7 (f)
OK
Section name: HSS_SQR 3X3X3_16 (US)
Dimensions
Unit
Value
Reference
-
0.03
Eq.H1-1b
[Kip'ft]
5.40
CI.1-11.1
[Kip'ft]
5.40
CI.1-11.1
[Kip]
59.62
CI.H1.1
Section information
a = 3.000 [in] Height
b = 3.000 [in) Width
T = 0.174 [in] Thickness
Properties
---------------- -----------'-"-"-'- -'-'--'-"--
Section properties
Unit
Major axis
Minor axis
Gross area of the section. (Ag)
[in2]
1.890
Moment of Inertia (local axes) (1)
[in4]
2.500
2.500
Moment of Inertia (principal axes) (1)
[in4]
2.500
2.500
Bending constant for moments (principal axis) (J')
[in]
0.000
0.000
Radius of gyration (local axes) (r)
[in]
1.150
1.150
Radius of gyration (principal axes) (r')
[in]
1.150
1.150
Saint-Venanl torsion constant. (J)
[in4]
4.030
Section warping constant. (Cw)
[in6]
0.000
Distance from centroid to shear center (principal axis) (xo,yo)
[in]
0.000
0.000
Top elastic section modulus of the section (local axis) (Ssup)
[in3]
1.600
1.600
Bottom elastic section modulus of the section (local axis) (Sint)
[in3]
1.600
1.600
Top elastic section modulus of the section (principal axis) (S'sup)
[in3]
1.600
1.600
Bottom elastic section modulus of the section (principal axis) (S'inf)
[in3]
1.600
1.600
Plastic section modulus (local axis) (Z)
[in3]
2.000
2.000
Plastic section modulus (principal axis) (Z)
[in3]
2.000
2.000
Polar radius of gyration. (ro)
[in]
1.613
Area for shear (Aw)
[in2]
0.862
0.862
Torsional constant. (C)
[in3]
2.758
Material : A36
Properties
Unit
Value
-- --- --------------- ----------------------------------------
Yield stress (Fy):
[Kip/in2]
-------
36.00
Tensile strength (Fu):
[Kip/in2]
58.00
Elasticity Modulus (E):
[Kip/in2]
29000.00
Shear modulus for steel (G):
[Kip/in2]
11507.94
DESIGN CRITERIA
Description
Unit
Value
Length for tension slenderness ratio (L)
[fit]
2.16
Distance between member lateral bracing points
___ __ ____________—_--__—_________
Length (Lb) [ft]
Top Bottom
__________-_-___-_______—_—_____________
2.16 2.16
Laterally unbraced length
Length (ft)
Major axis(L33) Minor axis(L22) Torsional axis(Lt)
Additional assumptions
Continuous lateral torsional restraint
Tension field action
Continuous flexural torsional restraint
Effective length factor value type
Major axis frame type
Minor axis frame type
DESIGN CHECKS
AXIAL TENSION DESIGN ,
Axial tension
Ratio 0.00
Capacity 61.24 [Kip]
Demand 0.00 [Kip]
Intermediate results
Factored axial tension capacitv(�Pn)
Nominal axial tension capacity (Pn)
Effective length factor
Major axis(K33) Minor axis(K22)
—___-_________________ 1010
No
No
No
None
Sway
Sway
Torsional axis(Kt)
.___---- ___
1.0
Reference CI.D2
Ctrl Eq. id2 at 0.00%
Unit Value Reference
[Kip] 61.24 CI.132
[Kip] 68.04 Eq.D2-1
AXIAL COMPRESSION DESIGN ,
Compression In the maior axis 33
Ratio 0.00
Capacity 59.62 [Kip]
Reference
CLE3
Demand 0.14 [Kip]
Ctrl Eq.
id3 at 0.00
%
---------- —__________________—______—__—________—_________—______-_____—_______-
Intermediate results
Unit
Value
Reference
---------- __—______--- ---------
Section classification
— ---------
-------- —____—________
Unstiffened element classification
--
Non slender
Unstiffened element slenderness (k)
--
14.24
Unstiffened element limiting slenderness (kr)
—
39.74
Table.4.1 a.Case6
Stiffened element classification
--
Non slender
Stiffened element slenderness (k)
—
14.24
Stiffened element limiting slenderness (Xr)
—
39.74
Table.4.1 a.Case6
Factored flexural buckling strength(OPn33)
[Kip]
59.62
CLE3
Unbraced length (1-33)
[ft]
2.16
CLE2
Effective slenderness ((KL/r)33)
—
22.54
CLE2
Elastic critical buckling stress (Fe33)
[Kip/in2]
563.52
Eq.E3-4
Effective area of the cross section based on the effective width (Aeff33)
[in2]
1.89
Critical stress for flexural buckling (Fcr33)
[Kip/in2]
35.05
Eq.E3-2
Nominal flexural buckling strength (Pn33)
[Kip]
66.24
Eq.E3-1
Compression in the minor axis 22
Ratio 0.00
Capacity 59.62 [Kip]
Reference
CLE3
Demand 0.14 [Kip]
Ctrl Eq.
id3 at 0.00%
Intermediate results
Unit
Value
Reference
_-_-_____________-____-______-______-_______-_____-_________________
Section classification
Unstiffened element classification
--
Non slender
Unstiffened element slenderness
14.24
Unstiffened element limiting slenderness (%r)
--
39.74
Table.41a.Case6
Stiffened element classification
--
Non slender
Stiffened element slenderness
14.24
Stiffened element limiting slenderness (Xr)
--
39.74
Table.4.1a.Case6
Factored flexural buckling streru th(�Pn22)
[Kip]
59.62
CI.E3
Unbraced length (1-22)
[ft]
2.16
CLE2
Effective slenderness ((KUr)22)
--
22.54
CLE2
Elastic critical buckling stress (Fe22)
[Kip/in2]
563.52
Eq.E3-4
Effective area of the cross section based on the effective width (Aeff22)
[in2]
1.89
Critical stress for flexural buckling (Fcr22)
[Kip/in2]
35.05
Eq.E3-2
Nominal flexural buckling strength (Pn22)
[Kip]
66.24
Eq.E3-1
FLEXURAL DESIGN ,
Bending about malor axis. M33
Ratio 0.03
Capacity 5.40 [Kip*ft]
Reference
CLF7.1
Demand -0.18 [Kip*ft]
Ctrl Eq.
id3 at 0.00
----------- --- -___-_________________-__-______________-_______-
Intermediate results
-------
Unit
----------- -_-_-______________.
Value
Reference
________--------- ----- __----------------- _--
Section classification -
------------------
Unstiffened element classification
--
Compact
Unstiffened element slenderness (7v)
--
14.24
Limiting slenderness for noncompact unstiffened element (%r)
--
39.74
Limiting slenderness for compact unstiffened element (Xp)
--
31.79
Stiffened element classification
-
Compact
Stiffened element slenderness (7<)
--
14.24
Limiting slenderness for noncompact stiffened element (Xr)
--
161.78
Limiting slenderness for compact stiffened element (?,p)
--
68.69
Factored yielding strength(r Mn)
[Kip*ft]
5.40
CI.F7.1
Yielding (Mn)
[Kip*ft]
6.00
Eq.F7-1
Bending about minor axis. M22
Ratio 0.00
Capacity 5.40 [Kip*ft]
Reference
CLF7.1
Demand 0.01 [Kip*ft]
Ctrl Eq.
id3 at 0.00%
_---------- -------------- __-------
Intermediate results
-----------------
Unit
-_-_-__-__________
Value
Reference
------------- --------- -------- -____________-_------- ---
Section classification
Unstiffened element classification
--
Compact
Unstiffened element slenderness
14.24
Limiting slenderness for noncompact unstiffened element (kr)
--
39.74
Limiting slenderness for compact unstiffened element (Xp)
-
31.79
Stiffened element classification
--
Compact
Stiffened element slenderness (1v)
--
14.24
Limiting slenderness for noncompact stiffened element (Xr)
--
161.78
Limiting slenderness for compact stiffened element (Xp)
--
68.69
Factored yielding strength about a geometric axis(OMn)
Yielding (Mn)
DESIGN FOR SHEAR ,
Shear in major axis 33
Ratio 0.00
Capacity 16.76 [Kip]
Demand 0.01 [Kip]
Intermediate results
Factored shear caoacitv(�Vn)
Web buckling coefficient (kv)
Web buckling coefficient (Cv)
Nominal shear strength (Vn)
Shear in minor axis 22
Ratio 0.01
Capacity 16.76 [Kip]
Demand 0.14 [Kip]
-------- Intermediate results ----------------
Factored shear capacity(+Vn)
Web buckling coefficient (kv)
Web buckling coefficient (Cv)
Nominal shear strength (Vn)
TORSION DESIGN ,
Torsion
Ratio 0.00
Capacity 4.47 [Kip'ft]
Demand -0.01 [Kip'ft[
Intermediate results
Factored torsion cagacitv(�Tn)
Critical torsional buckling stress (Fcr)
Nominal torsion capacity (Tn)
COMBINED ACTIONS DESIGN ,
Combined flexure and axial
...............................................................................
Ratio 0.04
Ctd Eq. id3 at 0.00%
Intermediate results
Interaction of flexure and axial force
Available flexural strength about strong axis (Mc33)
Available flexural strength about weak axis (MC22)
Available axial strength (Pc)
[Kip•ft] 5.40 CI.F7.1
[Kip'ft] 6.00 Eq.F7-1
Reference
CI.G1
Chi Eq.
id2 at 0.00%
Unit
Value
Reference
[Kip]
16.76
CI.Gi
--
5.00
CI.G4
--
1.00
Eq.G2-9
[Kip]
18.63
Eq.G4-1
Reference
CI.G1
Ctrl Eq.
id3 at 0.00
Unit
Value
Reference
[Kip]
16.76
CI.G1
--
5.00
CI.G4
--
1.00
Eq.G2-9
[Kip]
18.63
Eq.G4-1
Reference
CI.1-13.1
Chi Eq.
id2 at 0.00%
Unit
Value
Reference
[Kip'ft]
4.47
CI.1-13.1
[Kip/in2]
21.60
Eq.H3-3
[Kip"ft]
4.97
Eq.H3-1
...........................................................................
Reference
...........................................................................
: Eq.Hl-lb
Unit
Value
Reference
---------------
0.04----Eq.Hi-1b
[Kip'ft]
5.40
CI.H1.1
[Kip'ft]
5.40
CI.H1.1
[Kip]
59.62
CI.H1.1
Member 8 (g)
Design status OK
DESIGN WARNINGS
Section information
Section name: HSS_SQR 3X3X3_16 (US)
Dimensions
------------
a = 3.000 [in] Height
b = 3.000 [in] Width
T = 0.174 [in) Thickness
Properties
Section properties
Unit
Majoraxis
Minoraxis
Gross area of the section. (Ag)
[in2]
1.890
Moment of Inertia (local axes) (1)
[in4]
2.500
2.500
Moment of Inertia (principal axes) (1)
[in4]
2.500
2.500
Bending constant for moments (principal axis) (J')
[in]
0.000
0.000
Radius of gyration (local axes) (r)
[in)
1.150
1.150
Radius of gyration (principal axes) (r')
[in]
1.150
1.150
Saint-Venant torsion constant. (J)
[in4]
4.030
Section warping constant. (Cw)
[in6]
0.000
Distance from centroid to shear center (principal axis) (xo,yo)
[in]
0.000
0.000
Top elastic section modulus of the section (local axis) (Ssup)
[in3]
1.600
1.600
Bottom elastic section modulus of the section (local axis) (Sint)
[in3]
1.600
1.600
Top elastic section modulus of the section (principal axis) (S'sup)
[in3]
1.600
1.600
Bottom elastic section modulus of the section (principal axis) (S'inf)
[in3]
1.600
1.600
Plastic section modulus (local axis) (Z)
[in3]
2.000
2.000
Plastic section modulus (principal axis) (Z')
[in3]
2.000
2.000
Polar radius of gyration. (ro)
[in]
1.613
Area for shear (Aw)
[in2]
0.862
0.862
Torsional constant. (G)
[in3]
2.758
Material : A36
Properties
Unit
Value
--------- ---
Yield stress(FY)
[---- -----_----36.00
--
Tensile strength (Fu):
[Kipfin2]
58.00
Elasticity Modulus (E):
[Kip/in2]
29000.00
Shear modulus for steel (G):
[Kip/in2]
11507.94
DESIGN CRITERIA
Description Unit Value
Length for tension slenderness ratio (L) IN 2.16
Distance between member lateral bracing points
------------------
Length (Lb) [ft]
Top Bottom
Laterally unbraced length
------- --_-_-_-_-_---- [it] -_
Major axis(L33) Minor axis(L22)
--------
-_-_-_- 2.16
Additional assumptions
Continuous lateral torsional restraint
Tension field action
Continuous flexural torsional restraint
Effective length factor value type
Major axis frame type
Minor axis frame type
DESIGN CHECKS
AXIAL TENSION DESIGN
Axial tension
Ratio
Capacity
Demand
Intermediate results
Torsional axis(Lt)
---
-- --- 2.16
0.00
61.24 [Kip]
0.02 [Kip]
Factored axial tension capacitv(OPn)
Nominal axial tension capacity (Pn)
AXIAL COMPRESSION DESIGN ,
Compression in the major axis 33
Ratio 0.00
Capacity 59.62 [Kip]
Demand 0.10 [Kip]
Major axis(K33)
1.0
Reference
Ctrl Eq.
Effective length factor
Minor axis(K22)
1.0
No
No
No
None
Sway
Sway
CLD2
id2 at 0.00%
Torsional axis(Kt)
1.0
Unit Value Reference
[Kip] 61.24 CI.D2
[Kip] 68.04 Eq.D2-1
Reference CLE3
Ctrl Eq. id3 at 0.00%
Intermediate results
Unit
Value
-_-__-_-_-__--_____-____-
Reference
------- ___--- ___-__-_-----_------_-_---_--
Section classification
Unstiffened element classification
-
Non slender
Unstiffened element slenderness
14.24
Unstiffened element limiting slenderness (Xr)
-
39.74
Table.4.1 a.Case6
Stiffened element classification
--
Non slender
Stiffened element slenderness
14.24
Stiffened element limiting slenderness (fir)
--
39.74
Table.4.1 a.Case6
Factored flexural buckling strength(OPn33)
[Kip]
59.62
CLE3
Unbraced length (1-33)
[ff]
2.16
CLE2
Effective slenderness ((KL/r)33)
--
22.54
CLE2
Elastic critical buckling stress (Fe33)
[Kip/in2]
563.52
Eq.E3-4
Effective area of the cross section based on the effective width (Aeff33)
[in2]
1.89
Critical stress for flexural buckling (Fcr33)
[Kip/in2]
35.05
Eq.E3-2
Nominal flexural buckling strength (Pn33)
[Kip]
66.24
Eq.E3-1
Compression in the minor axis 22
Ratio 0.00
Capacity 59.62 [Kip]
Reference
CLE3
Demand 0.10 [Kip]
Ctrl Eq.
id3 at 0.00%
Intermediate results
Unit
Value
Reference
_ --- ----------------- ---------------
Section classification
-_-
--------- _-____
Unstiffened element classification
--
Non slender
Unstiffened element slenderness
14.24
Unstiffened element limiting slenderness (ivr)
-
39.74
Table.4.1 a.Case6
Stiffened element classification
--
Non slender
Stiffened element slenderness (7v)
--
14.24
Stiffened element limiting slenderness (Xr)
--
39.74
Table.4.1 a.Case6
Factored flexural buckling strength(+Pn22)
[Kip]
59.62
CLE3
Unbraced length (1-22)
[ff]
2.16
CLE2
Effective slenderness ((KL/r)22)
--
22.54
CLE2
Elastic critical buckling stress (Fe22)
[Kip/in2]
563.52
Eq.E3-4
Effective area of the cross section based on the effective width (Aeff22)
[in2]
1.89
Critical stress for flexural buckling (Fcr22)
[Kip/in2]
35.05
Eq.E3-2
Nominal flexural buckling strength (Pn22)
[Kip]
66.24
Eq.E3-1
FLEXURAL DESIGN ,
Bending about major axis. M33
Ratio 0.02
Capacity 5.40 [Kip*ft] Reference CLF7.1
Demand - -0.13 [Kip*ft] Ctrl Eq. id2 at 0.00%
Intermediate results
Unit
Value Reference
- ---------
Section classification
Unstiffened element classification
--
Compact
Unstiffened element slenderness
14.24
Limiting slenderness for noncompact unstiffened element (%r)
--
39.74
Limiting slenderness for compact unstiffened element (Xp)
-
31.79
Stiffened element classification
--
Compact
Stiffened element slenderness ()v)
--
14.24
Limiting slenderness for noncompact stiffened element (7`.r)
--
161.78
Limiting slenderness for compact stiffened element (2,p)
-
68.69
Factored yielding strenath(�Mn)
[Kip*ft]
5.40 CLF7.1
Yielding (Mn)
[Kip*ft]
6.00 Eq.F7-1
Bending about minor axis. M22
Ratio 0.00
Capacity 5.40 [Kip*fl]
Reference
CLF7.1
Demand -0.01 [Kip*ft]
Ctrl Eq.
id3 at 0.00%
-------- ------------ ------ ------------- --____---------
Intermediate results
--- - ---------- _____-___-__________.
Unit
Value Reference
Section classification
----------------------------
Unstiffened element classification
--
Compact
Unstiffened element slenderness
14.24
Limiting slenderness for noncompact unstiffened element (fur)
-
39.74
Limiting slenderness for compact unstiffened element (Xp)
--
31.79
Stiffened element classification
--
Compact
Stiffened element slenderness (k)
--
14.24
Limiting slenderness for noncompact stiffened element (Xr)
--
161.78
Limiting slenderness for compact stiffened element (?,p)
-
68.69
Factored yielding strength about a geometric axis(OMn)
[Kip*ft]
5.40 CLF7.1
Yielding (Mn)
[Kip*ft]
6.00 Eq.F7-1
DESIGN FOR SHEAR ,
Shear in major axis 33
Ratio
0.00
Capacity
16.76 [Kip]
Reference
CI.G1
Demand
0.01 [Kip]
Ctrl Eq.
id2 at 0.00%
---- --------------
Intermediate results
--- ------------ ______-__________--___�___-__-__________
Unit
Value
Reference
_-______----- -------------
Factored shear capacity(OW)
-____------------ _-_-___-______--______-_______________.
[Kip]
16.76
CI.G1
Web buckling coefficient (kv)
-
5.00
CI.G4
Web buckling coefficient (Cv)
-
1.00
Eq.G2-9
Nominal shear strength (Vn)
[Kip]
18.63
Eq.G4-1
Shear in minor axis 22
Ratio
0.00
Capacity
16.76 [Kip]
Reference
CI.Gl
Demand
0.08 [Kip]
Ctrl Eq.
id2 at 0.00%
Intermediate results
---- ------------- -------
_----------- - ---- __________-_____-___-_.
Unit
Value
Reference
------- ----- --------------
Factored shear capacity(OW)
-__--___________-_____-___-______-
-----
[Kip]
-_-___________________.
16.76
CI.G1
Web buckling coefficient (kv)
--
5.00
CI.G4
Web buckling coefficient (Cv)
-
1.00
Eq.G2-9
Nominal shear strength (Vn)
[Kip]
18.63
Eq.G4-1
TORSION DESIGN
,
Torsion
Ratio
0.00
Capacity
4.47 [Kip'ft]
Reference
CI.H3.1
Demand
-0.01 [Kip'ft]
Ctrl Eq.
id3 at 0.00%
------ _____________-__-_-_______-_-_-_________--___--_____________--__
Intermediate results
Unit
Value
Reference
Factored torsion caoacitv(OTn)
[Kip'ft]
4.47
CI.H3.1
Critical torsional buckling stress (Fcr)
[Kiplin2]
21.60
Eq.1-13-3
Nominal torsion capacity (Tn)
[Kip'ft]
4.97
Eq.H3-1
COMBINED ACTIONS DESIGN
,
Combined flexure and axial
..............................................................................................................................................................................
Ratio
0.03
Ctrl Eq.
..............................................................................................................................................................................
1d2 at 0.00%
Reference
Eq.1-11-11b
------ ------ ____________-___-______-____-_____-__
Intermediate results
Unit
Value
Reference
Interaction of flexure and axial force
0.03
Eq.H1-11b
Available flexural strength about strong axis (Mc33)
[Kip'ft]
5.40
CI.H1.1
Available flexural strength about weak axis (Mc22)
[Kip'ft]
5.40
CI.H1.1
Available axial strength (Pc)
[Kip]
61.24
CI.H1.1
Member 9 (h)
Design status OK
DESIGN WARNINGS
name: HSS_SQR 3X3X3_16 (US)
Dimensions
:1a
a =
3.000 [in]
Height
b =
3.000 [in]
Width
T =
0.174 [in]
Thickness
Properties
Section properties
Gross area of the section. (Ag)
Moment of Inertia (local axes) (1)
Moment of Inertia (principal axes) (1)
Bending constant for moments (principal axis) (S)
Radius of gyration (local axes) (r)
Radius of gyration (principal axes) (r')
Saint-Venant torsion constant. (J)
Section warping constant. (Cw)
Distance from cenlroid to shear center (principal axis) (xo,yo)
Top elastic section modulus of the section (local axis) (Ssup)
Bottom elastic section modulus of the section (local axis) (Sinf)
Top elastic section modulus of the section (principal axis) (S'sup)
Bottom elastic section modulus of the section (principal axis) (S'ino
Plastic section modulus (local axis) (Z)
Plastic section modulus (principal axis) (Z')
Polar radius of gyration. (ro)
Area for shear (Aw)
Torsional constant. (C)
Material: A36
Properties
Yield stress (Fy):
Tensile strength (Fu):
Elasticity Modulus (E):
Shear modulus for steel (G):
DESIGN CRITERIA
Description
Length for tension slenderness ratio (L)
Distance between member lateral bracing points
Length (Lb) [ft]
Top Bottom
2.16 2.16
Section information
v.v�o
Unit
Major axis
Minor axis
[in2]
1.890
[in4]
2.500
2.500
[in4j
2.500
2.500
[in]
0.000
0.000
[in]
1.150
1.150
[in]
1.150
1.150
[in4]
4.030
[in6]
0.000
[in]
0.000
0.000
[in3]
1.600
1.600
[in3]
1.600
1.600
[in3]
1.600
1.600
[in3]
1.600
1.600
[in3]
2.000
2.000
[in3]
2.000
2.000
[in]
1.613
[in2]
0.862
0.862
[in3]
2.758
Unit Value
[Kip/in2] 36.00
[Kip/in2] 58.00
[Kip/in2] 29000.00
[Kip/in2] 11507.94
Unit Value
Ift] 2.16
Laterally unbraced length
Length [ft]
Major axis(1-33) Minor axis(L22)
--__ - --------- - -- 2.16 2.16
Additional assumptions
Continuous lateral torsional restraint
Tension field action
Continuous flexural torsional restraint
Effective length factor value type
Major axis frame type
Minor axis frame type
DESIGN CHECKS
AXIAL TENSION DESIGN
Axial tension
Ratio
Capacity
Demand
Intermediate results
Torsional axis(Lt)
2.16
0.00
61.24 [Kip]
0.03 [Kip]
Factored axial tension capacitv(�Pn)
Nominal axial tension capacity (Pn)
Major axis(K33)
1.0
Reference
Ctrl Eq.
Effective length factor
Minor axis(K22)
1.0
No
No
No
None
Sway
Sway
CI.D2
id2 at 0.00%
Torsional axis(Kt)
------------
1.0
Unit Value Reference
[Kip] 61.24 CLD2
[Kip] 68.04 Eq.D2-1
AXIAL COMPRESSION DESIGN
Compression in the major axis 33
Ratio 0.00
Capacity 59.62 [Kip]
Reference
CLE3
Demand 0.09 [Kip]
Ctrl Eq.
id3 at 0.00%
------------ ___-___-
Intermediate results
------ -_---_--
Unit
---
Value
---_---___-_-_-_.
Reference
- --------- __-__-_______-___-_------------
Section classification
---____-----_-_-_-_-------------
_-_-_
Unstiffened element classification
--
Non slender
Unstiffened element slenderness
14.24
Unstiffened element limiting slenderness (kr)
--
39.74
Table.4.1a.Case6
Stiffened element classification
--
Non slender
Stiffened element slenderness (%)
-
14.24
Stiffened element limiting slenderness (),r)
-
39.74
Table.4.1a.Case6
Factored flexural buckling strenoth(OPn33)
[Kip]
59.62
CLE3
Unbraced length (1-33)
[ft]
2.16
CLE2
Effective slenderness ((KL/r)33)
--
22.54
CLE2
Elastic critical buckling stress (Fe33)
[Kip/in2]
563.52
Eq.E3-4
Effective area of the cross section based on the effective width (Aeff33)
[in2]
1.89
Critical stress for flexural buckling (Fcr33)
[Kip/in2]
35.05
Eq.E3-2
Nominal flexural buckling strength (Pn33)
[Kip]
66.24
Eq.E3-1
Compression in the minor axis 22
Ratio 0.00
Capacity 59.62 [Kip]
Reference
CLE3
Demand 0.09 [Kip]
Ctrl Eq.
id3 at 0.00
%
Intermediate results
Unit
Value
Reference
--- _------------------- ----- -_-_______
Section classification
--------
Unstiffened element classification
--
Non slender
Unstiffened element slenderness (X)
--
14.24
Unstiffened element limiting slenderness (kr)
-
39.74
Table.41a.Case6
Stiffened element classification
--
Non slender
Stiffened element slenderness (1v)
1424
Stiffened element limiting slenderness (Xr)
--
39.74
Table.4.1 a.Case6
Factored flexural buckling strenoth(OPn22)
[Kip]
59.62
CLE3
Unbraced length (1-22)
[ff]
2.16
CLE2
Effective slenderness ((KL/r)22)
--
22.54
CLE2
Elastic critical buckling stress (Fe22)
[Kip/in2]
563.52
Eq.E3-4
Effective area of the cross section based on the effective width (Aeff22)
[in2]
1.89
Critical stress for flexural buckling (Fcr22)
[Kip/in2]
35.05
Eq.E3-2
Nominal flexural buckling strength (Pn22)
[Kip]
66.24
Eq.E3-1
FLEXURAL DESIGN
,
Bending about major axis.
M33
Ratio
0.03
Capacity
5.40 [Kip*ft]
Demand
-0.15 [Kip*ft]
Intermediate results
Section classification
Unstiffened element classification
Unstiffened element slenderness (�.)
Limiting slenderness for noncompact unstiffened element (2,r)
Limiting slenderness for compact unstiffened element (Xp)
Stiffened element classification
Stiffened element slenderness (7v)
Limiting slenderness for noncompact stiffened element (ivr)
Limiting slenderness for compact stiffened element (Xp)
Factored yielding strenoth(OMn)
Yielding (Mn)
Bending about minor axis. M22
Ratio 0.00
Capacity 5.40 [Kip*ft]
Demand -0.01 [Kip*fl]
Intermediate results
Section classification
Unstiffened element classification
Unstiffened element slenderness (7v)
Limiting slenderness for noncompact unstiffened element (Rr)
Limiting slenderness for compact unstiffened element (Xp)
Stiffened element classification
Stiffened element slenderness ()u)
Limiting slenderness for noncompact stiffened element (fur)
Limiting slenderness for compact stiffened element (Xp)
Factored yielding strength about a geometric axis(OMn)
Yielding (Mn)
DESIGN FOR SHEAR ,
Pa9�i
Reference CLF7.1
Ctrl Eq. id2 at 0.00%
Unit Value Reference
[Kip*ft]
[Kip*ff]
Compact
14.24
39.74
31.79
Compact
14.24
161.78
68.69
5.40
6.00
CLF7.1
Eq.F7-1
Reference CI.F7.1
Ctrl Eq. id3 at 0.00%
Unit
[Kip*ft]
[Kip*ft]
Value Reference
Compact
14.24
39.74
31.79
Compact
14.24
161.78
68.69
5.40
6.00
CLF7.1
Eq.F7-1
Shear in major axis 33
Ratio
0.00
Capacity
16.76 [Kip]
Demand
0.01 [Kip]
Intermediate results
Factored shear caoacitv(�Vn)
Web buckling coefficient (kv)
Web buckling coefficient (Cv)
Nominal shear strength (Vn)
Shear in minor axis 22
Ratio
0.01
Capacity
16.76 [Kip]
Demand
0.09 [Kip]
Intermediate results
Factored shear caoacitv(�Vn)
Web buckling coefficient (kv)
Web buckling coefficient (Cv)
Nominal shear strength (Vn)
TORSION DESIGN
,
Torsion
Ratio
0.00
Capacity
4.47 [Kip'ft]
Demand
-0.01 [Kip'ft]
Intermediate results
Factored torsion caoacitv(�Tn)
Critical torsional buckling stress (For)
Nominal torsion capacity (Tn)
COMBINED ACTIONS DESIGN
,
Combined flexure and axial
............................................................................
Ratio
0.03
Ctd Eq.
............................................................................
1d2 at 0.00%
Intermediate results
Interaction of flexure and axial force
Available flexural strength about strong axis (Mc33)
Available flexural strength about weak axis (Mc22)
Available axial strength (Pc)
Reference
CI.G7
Ctrl Eq.
id2 at 0.00%
Unit
Value
Reference
[Kip]
16.76
CI.G1
--
5.00
CI.G4
--
1.00
Eq.G2-9
[Kip]
18.63
Eq.G4-1
Reference
CI.Gt
Ctrl Eq.
id2 at 0.00%
Unit
Value
Reference
[Kip]
16.76
CI.G1
--
5.00
CI.04
-- -
1.00
Eq.G2-9
[Kip]
18.63
Eq.134-1
Reference
CI.H3.1
Ctrl Eq.
id3 at 0.00%
Unit
Value
Reference
[Kip'ft]
4.47
CI.H3.1
[Kip/in2]
21.60
Eq.H3-3
[Kip'ft]
4.97
Eq.H3-1
...........................................................................
Reference
...........................................................................
: Eq.1-11-11h
Unit
Value
Reference
---------- -------
__-_- 0.03
Eq.H1-1b
[Kip'ft]
5.40
CI.1-11.1
[Kip'ft]
5.40
CI.1-11.1
[Kip]
61.24
CI.1-11.1
Foundation Connection To Footing
Best Civii Engineering PROJECT PAGE
CLIENT: DESIGN BY:
JOB NO. DATE. d REVIEW BY:
Fixed Moment Condition Design Based on ACI 318-19
DATA & DESIGN SUMMARY
I SHAPE (Tube, Pipe, or WF) & SIZE HSS3XU3)16
<_= Tube
!TE STRENGTH f,' = 2:5
ksi
ED SHEAR LOAD Vn=,. 0.383...'
kips
ED MOMENT My =pn 0,571-
t 111
ED VERTICAL LOAD (negative for uplift) Pe =._ 0.115.
kips
ENT DEPTH D= 18
in
THE FIXED MOMENT DESIGN IS ADEQUATE.
( A, = 0.0 in2 , Required Area of Shear Studs or Welded Reinforcement)
( Edge of Concrete Footing / Grade Beam must be wider than %,')
CK BASE FLEXURAL & SHEAR CAPACITY (ACI 318 21 & 22)
50
45
40
35
(k) 30
25
20
15
10
5
0
n in In an nn
0 Mn (ft-k)
Mu
d A bf
3.0 1.9 3.0
Steel Column
MU PU
VU
1I II a
II II
Ilg ql _d o
< UJI
i u
Footing / Grade Beam
0.85 (2) fc'
0.003 i I
U
<_ 0.003
STRAIN DIAGRAM
parab lic
0
0.85 (2) fc'
STRESS DIAGRAM
0Mn= 42 ft-kips @Vs= 0 -kips
Eo=2fc —0.851vin 2 EC=57 fc > Mu = 1 ft-kips
Az
EC AI
[Satisfactory]
0 s Vim.. = 44.07 kips, when C = 12.4 in
10.85,Wrn� Ai +, 2(660CY6E0� , for 0<EC<Eo > Ve= 0.383 ft-kip
_ o o [Satisfactory]
fr r l where 0= 0.65 ,(ACI 318212)
0.85Min Ai 21f� for Eo>_Eo Bearing factor=2, (ACI31814.5.1.1)
l b = effective bearing width = 95% bf= 2.85 in
< VERTICAL CAPACITY
OI=End Bering + Friction = 45.7 kips > Pv= 0.115 kips [Satisfactory]
where End Bering = 0.65 (2) 0.85 f� A = 5.2 kips, (ACI 318 14.5.1.1)
Friction= 0.75 MIN( 0.2fc Ac, 800 Ac)= 40.5 kips, (ACI 31822.9.4)
A = 2 in', end bearing area
Ac = 0.5 (2d + 21cf) D = 108 in', (0.5 for concrete cracked)
A, = Pu,Fdction f (d fy µ) = 0.0 in', Required Area of Shear Studs or Welded Reinforcement
where += 0.75 ,(ACI 31821.2)
p = 0.70 (ACI 31822.9.4.2)
fy = 60 ks
�y53die �
�lZtri,t� C�11 ` nsi'
6 V>
Bearing Capacity of Post Footing