Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
S2020-0097 - Calcs
pool engineering inc. 1201 N. Tustin Avenue Anaheim, CA 92,507 Fax: (7 / 4) 930-9 / / 4 Phone: (7 / 4) 930-C / 00 5 TRUCTURAL CAL CLJLA TIOA15 FOR Ron Lacher, 9. C.E. Cai550n 5upported 5wlmminq Pool * Spa AT Oceanview 3235 Ocean Blvd. Corona Del Mar, CA 92625 CITY OF NEWPORT BEACH CO"".-t!4I'TY DEVELOPMENT nEPAf. APPROVAL OF THESE PLANS DOE'- .=T AUTHORIZATION C-1:15TITUTE �iT'!a"`' IP11Pl!FD TO CONSTRUC' INCO !SISI-ENT WITH THE ORDIN.Ai:'. -D!IJG 111 f ;L NEWF ORT BEACH. THIS APPROV/\L ARE S, AND FCL'i; j r GUARAI 11;. IN ALL RESPECTS. IN COM;%,- Ohs IS AND POLICIEF l'H CITY, Lt:. C Q Ti FIGHT TO REIPi= i�'IYPERjlrIMP Y OF NEV. h ;i.A EICv1EFSI-0TPLAT fUJTFICRIZED BY VISE THE U:. 1. :IS F CC.::.IRUC'TI011 IF NFCF SSARY 10 P VVITH THE CRD1. V" :I �CiE6 OF l IiE CIT'( OF ;dEVtiPOf'T i_; :�� .�� PERMITTEE S ACKNOVVLEDGEIVIEN T DEPARTMENT_ sIATur (SIGNATURE) PU;t' IC YJCRKS — --- GENERAL aE _- ICES - ---- EIRE - --- - -- GRADING_FLAN'-NIP G M1 �( ��► - - FOE __ - --- - BUILDING:� APPROVAL TO ISSUE DA FE 01 By M.K DESIGN BASED ON CBC 2019 EDITION AND GEOFIRM SUPPLEMENTAL GEOTECHNICAL RECOMMENDATIONS FOR PROPOSED POOL (PROJECT No: 72370-01) DATED 4/29/20 & REVISED 6/19/20 REINFORCING- FY = 40,000 PSI (Grade 40) FY = 60,000 PSI (Grade 60) CONCRETE- f'C = 3,000 PSI HYDROSTATIC PRESSURE: 62.4 PCF SOIL EQUIVALENT FLUID PRESSURE- 60 PCF SKIN FRICTION- 300 PSF PASSIVE PRESSURE- 150 PCF (Beach Deposits), 400 PCF (Bedrock) \\pe-file\Pool\Projects\2020\0316-20 Caisson Pooffinal Report.pdf 10/05/2020 10:52:32 AM I Pool Engineering, Inc. 2020. Page 1 of 47 5wIMTln Pool v \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 2 of 47 'ool Engineering, Inc. Ca1550n Supported Designer: C.J.B Swimming Pool CONCRETE PROPERTIES: 6c := 150pcf unit weight of reinforced concrete (� f := 0.90 flexural reduction factor en := 0.003 crushing Strain of concrete elre := 3in reinforcing cast against earth Ec = 3122.019•ksi modulus of elasticity POOL PROPERTIES: DP := 5ft max. pool depth Db := 3ft max. basin depth wb := 1.5ft max. basin width DV := 12in max. vault depth wv := 6in max. vault width diar := 24in diameter of ca155on ACRYLIC PANEL PROPERTIES: tr := 5 in min. thickne55 of rabbet dr min 3in min. depth of rabbet dr max := 9in max, depth of rabbet f,:= 3000•psi compre551ve strength of concrete (�s := 0.75 shear * tor51on reduction factor 131=0.85 a.=0.72 e1rN, := 2in reinforcing exposed to weather b := 12in design 5tnp width tpw := 12in pool wall thickne55 tpf := 15in pool floor thickne55 tbW := 6in basin wall thickne55 tyW := 6in vault wall thickne55 t,f:= 6in vault floor thickne55 ^yW := 62.4pcf unit weight of water LL := 100psf live load hw := 18in Max. exposed height of acrylic window Vi := 751b impact load per acrylic manufacturer SOIL PROPERTIES: Geotechnical information provided by Geofirm (Project No: 72370-01 dated 4/29/20 * rev15ed G/ 19/20) 'ya := 60pef equivalent fluid pressure dmin := 5ft minimum depth into bedrock qa:= 8000psf allowable bearing capacity D2:= 15ft maximum depth to bedrock Fsk := 300psf Skin friction ^yp := 400pcf pa551ve earth pressure \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 3 of 47 Pool Engineering, Inc. Caisson Supported Designer: G.J.B. Swimming Pool Vault Wall - Concrete Flexural Design - U.S.D. Method Reinforcing Properties: clr := "earth" clearance type to steel x := I # of curtains of steel Vertical Steel: Horizontal Steel: Bar, := 4 size SPI := l2in spacing Bar, := 4 size GRi = 40 grade fyi = 40•ksi yield strength GRZ = 40 grade dbi = 0.5•in dia. A,, = 0.196•in2 steel area db2 = 0.5•in dia. Concrete Properties: SP2:= 12in spacing fy2 = 40•ksi yield strength As2 = 0.196•in2 steel area taw := tvw taw = 6-in thickness a := Ash fyt a = 0.257•in eduivilent rectangular stress block d = 2.75•in effective depth of reinforcing Et := e„• d — c Et = 0.024 net tensile strain c (�'f = 0.9 adjusted strength reduction factor Loading: 0.85•fc•b c := a c = 0.302•in distance to neutral axis R� check = "tension -controlled member" 2 2 'la'Dv .b iw'Dv b V„ := ma 1.6• 2 + 1.6LL•(wv + tpw)•b,1.4 2 rya D3•b (w +tP `2 D3b MU := ma 1.6• v + 1.6LL• v w •b,1.4• ryw v 6 2 6 V„ = 288 lb M❑ = 196 ft•lb factored shear factored moment \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 4 of 47 Pool Engineering, Inc. Caisson Supported Designer: C,J.13. Swimming Pool Strength Check: (�V, := (ps•2• b•d �V, = 2711.2lb VL, = 288 lb < c V, = 2711.2 lb ICheckv _ "OK" 4Mn:= �'f-A,141•I d - ' c Ma = 1544.3 ft•lb ` 2) Mn = 196 ft. lb < Wn = 1544.3 ft• lb Checkm _ "OK" Check Minimum/Maximum Steel Area: Pi := 0.0012 if Bar, <_ 5 A fy, >_ 60000psi 10.0015 otherwise Pt := 0.0020 if Bare <_ 5 A fy2 >_ 60000psi 0.0025 otherwise b p, = 0.0015 min. vertical steel ratio (ACI Table I I G. I ) pt = 0.0025 min. horizontal steel ratio (ACI Table I I . G. I ) Pl•teW• As_minl As mini = 0.108 in2 < Asi = 0.196 in2 Checicminl = "OK" x - Pt' • b As mint := As mint = 0.18• in2 < As2 = 0.196 • in2 Checicminl = "OK" x - As_max 0.85 • (3, • f � • �" b • d As max = 0.766 • in2 > As, = 0.196 • in2 Checkmax = "OK" fyl �L, + 0.004 - Final Results: CONCRETE = "6in. THICK WALL w/ REINFORCING 3in. CLR." REINFORCING = "#4 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C., (1) CURTAIN" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 5 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Vault Floor - Concrete Flexural DC51e3n - U.S.D. Method Reinforcing Properties: clr := "exposure" clearance type to Steel x := 1 # of curtains of steel Transverse Steel: Longitudinal Steel: Bart := 4 Size SPI := 12in spacing Bare := 4 size SP2:= 12in spacing GRI = 40 grade fyI = 40•ksi yield strength GR2 = 40 grade fy2 = 40•ksi yield strength dbl = 0.5•in dia. A,I = 0.196•in2 steel area db2 = 0.5•in dia. As2 = 0.196•in2 steel area Concrete Properties: f AsI yt tcs:= tvf tcs = 6-in thickness a := a = 0.257•in eauivilent rectangular stress block d = 3.75•in effective depth of reinforcing Et := Eu• d — c et = 0.034 net tensile Strain c ('f = 0.9 adJu5ted strength reduction factor Loading 0.85•fc•b e := a c = 0.302•in distance to neutral axis Rt check = "tension -controlled member" Pvw := 6c•tvw•(Dv + tvf)•b Pvw = 112.5 lb Pvf:= (8c'tvf + -i Dv)•wv•b Pvf = 68.7lb Vu := max 1.4•(Pvw + Pvf),1.2•(Pvw + Pvf) + 1.6•LL•(wv + tPw + tvw)•b] Vu = 537.44lb factored shear tvw )wv 'iw• Dv3 • b Mul := 1.4 Pvw•C 2 + wv+ Pvf. 2 + 6 Mut = 156.7 ft•lb tv rywv b Mug=1.2 Pvw 2+ wvJ +Pvf 2+ 1.2 t26.•••�wvPwvw�. + wv I Mi,, = 376.8 ft•lb Mu := max(Mul,Mu,) Mu = 376.8 ft•lb factored moment My := Mu \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 6 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Strenauth Check: (�Vc := �s•2 fc•u•b•d �Vc = 3697.1 lb V„ = 537.4 lb < (�Vc = 3697.1 Ib Checkv _ "OK" dMn := �'f'As,•fyr d - 2) c M,, = 2133.3 ft•lb M„ = 376.8 ft•lb ` < Win = 2133.3 ft•lb Check; _ "OK" Check Minimum/Maximum Steel Area: p, := 0.0020 if fy, < 60000psi p, = 0.0020 min. longitudinal steel ratio (ACI Table 7.6. 1. 1) max(108 , 0.0014) otherwise fy,•L P2 := 0.0020 if fy, < 60000psi P2 = 0.0020 min. transverse steel ratio (ACI Table 24.4.3.2) max(108 , 0.0014) otherwise fy, • i, As mine := P1'tcs'b As min, = 0.144•in2 < Asl = 0.196•in2 Check,ninl = "OK" As mint := P2 tcs •b As mine = 0.144 • in2 < As2 = 0.196 • in2 Checic,nin2 = "OK" - x - As max := 0.85 • (d, • Pc eu • b • d As max = 1.045 • in2 , - As, = 0.196 • in2 Checkn,aX = "OK" - fy, et, + 0.004 Final Results: CONCRETE = "6in. THICK SLAB w/ REINFORCING tin. CLR. FROM TOP" REINFORCING = "#4 TRANSVERSE BARS @ 12in. O.C. & #4 LONGITUDINAL BARS @ 12in. O.C., (1) CURTAIN" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM 0 Pool Engineering, Inc. 2020, Page 7 of 47 Pool Engineering, Inc. Cai55on Supported Designer: C.J.B. Swimming Pool Pool Wall - Concrete Flexural De51gn - U.S.D. Method Reinforcing Properties: clr := "earth" clearance type to steel x := 2 # of curtains of steel Vertical Steel: Horizontal Steel: Bar, := 4 size SP, := 12in spacing Bart := 4 size SP, := 12in spacing GR, = 40 grade fy, = 40•ksi yield strength GR, = 40 grade fy2 = 40•ksi yield strength dbl = 0.5•in dia. AS, = 0.196•in2 steel area db2 = 0.5•in dia. A52 = 0.196•in2 steel area Concrete Properties: tCW tpW tCW = 12•in thickness a := AS, fyI a = 0.257•in equivalent rectangular stress block 0.85•f,•b d = 8.75•in effective depth of reinforcing c := a c = 0.302•in distance to neutral axis 01 et := Eu• d — c Et = 0.084 net tensile strain check = "tension -controlled member" c (�'f = 0.9 WIJU5ted strength reduction factor Load i ne : 2 7W•D •b VW := p VW = 780 lb lateral from water pressure 'Ya- �Dp2' b VS. 2 Vu := max(I AN ,1.6• V5) Dp MW . VW.-3 Dp MS := VS.- 3 Mu := max(1.4•Mw + Mv,1.6•MS) VS = 750 lb lateral from 5011 pressure Vu = 1200lb max. factored shear Mw = 1300ft. lb flexure from water pressure M, = 1250ft. lb flexure from soil pressure Mu = 2197 ft. lb max. factored moment \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 8 of 47 Pool. Engineering, Inc. Cai55on Supported Designer: C.J.B, Swimming Pool Strength Check: �)Vc := �)s•2 fe t•b•d �Vc = 8626.6lb vu = 1200 lb < (�Vc = 8626.6 lb Checkv _ "OK" OM. := 0'f•Asl•fy1•d - 2) OM,,= 5078.6 ft•Ib ` MU = 2197 ft. lb < 0Mn = 5078.6 ft. lb ICheckm = "OK" Check Minimum/Maximum Steel Area: Pi := 0.0012 if Bar, < 5 A fy, >_ 60000.psi p, = 0.0015 min, vertical steel ratio (ACI Table I I G. I ) 10.0015 otherwise pt := 0.0020 if Bar2 < 5 A fy2 >_ 60000psi pt = 0.0025 min. horizontal steel ratio (ACI Table I I . G. I ) 0.0025 otherwise t •b As mini PI cW As mine = 0.108•in2 < Asl = 0.196•in2 x tcw •b As min2 - pt As min2 = 0.18 • in2 < As2 = 0.196 • in 2 x - As max 0.85•131• fc • �u •b•d As max = 2.438•in2 % As, = 0.196•in2 fy, r �, + 0.004 - Final Re5ult5: CONCRETE = "12in. THICK WALL w/ REINFORCING Sin. CLR." REINFORCING = "#4 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C." Cheekminl = "OK" Chec1cnin2 = "OK" Checkmax = "OK" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/06/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 9 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Basin Wall - Concrete Flexural Design - U.S.D. Method Reinforcing Properties: clr := "earth" clearance type to steel x := 1 # of curtains of steel Vertical Steel: Horizontal Steel: Bari := 4 size SPt := 6in spacing Bart := 4 size GRt = 40 grade fyi = 40•ksi yield strength GR, = 40 grade dbi = 0.5•in dia. As, = 0.393•in2 steel area db2 = 0.5•in aIa. Concrete Properties: SP, := 12in spacing fy, = 40•ksi yield strength As, = 0.196•in2 steel area t,W := tbw taw = 6•in thickness a := As fyI a = 0.513•in equivalent rectangular stress block d = 2.75•in effective depth of reinforcing Et E,- d — c Et = 0.011 net tensile Strain c (�'f = 0.9 adJu5ted strength reduction factor Loading: 0.85•f,•b a c :_ — c = 0.604•in distance to neutral axis 131 check = "tension -controlled member" Vg := 2001b guardrail (by others) hg := 3.5ft height of rail 2 V,, := max(1.4•^yN 1.6•-ya)• Db b + 1.6•V9 2 Db3•b Mu := max(1.4--%,1.6• ya)• 6 + 1.6•Vg•(hg + Db) V„ = 752 lb M❑ = 2512 ft• lb factored shear factored moment \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM 0 Pool Engineering, Inc. 2020, Page 10 of 47 Pool Engineering, Inc. Ca155on Supported Designer: C.J.B. Swimming Pool Strength Check: (�V, :_ �s•2 f. f b•d �Vc = 2711.21b Vu = 752 lb < (�Vc = 2711.2 lb lCheck, _ "OK" OMn :_ �'f'As14y1•I d - 2) �Mn = 2937.4ft. lb ` M11 = 2512 ft. Ib < OM,, = 2937.4 ft. lb Checkm _ "OK" Check Minimum/Maximum Steel Area: pl :_ 0.0012 if Bar, <_ 5 A fy, >_ 60000psi pi = 0.0015 min. vertical steel ratio (ACI Table I I G. I ) 0.0015 otherwise pt := 0.0020 if Bare <_ 5 A fy2 >_ 60000psi pt = 0.0025 min. horizontal steel ratio (ACI Table I I . G. I ) 0.0025 otherwise p t •b As minl = 1 cw As minl = 0.108•in2 < As, = 0.393•in2 Checknini = "OK" - x t •b As mint := Pt' cw As mint = 0.18 •in2 < As2 = 0.196 • in2 Checkmin2 - x - As max := 0.85 • (3, • fc • • b • d As max = 0.766 • in2 > As, = 0.393 • in2 Checic,nax = "OK" fy Final Re5ult5: CONCRETE _ "6in. THICK WALL w/ REINFORCING 3in. CLR." REINFORCING = "#4 VERTICAL @ 6in. O.C. & #4 HORIZONTAL @ 12in. O.C., (1) CURTAIN" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 11 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Rabbet Flexural Design (Check Rabbet Min. Depth) - U.S.D. Method Reinforcing Properties: Vertical Steel: Bar, := 4 size GR, := 40 grade SP, := 12in spacing dbl = 0.5•in diameter fy, = 40•ksi yield strength As, = 0.196•in2 steel area per design strip horizontal Steel: Bar,) := 4 size GR, := 40 grade SP2 := 12in spacing db2 = 0.5•in diameter fy2 = 40•ksi yield strength AS, = 0.196•in2 steel area per design strip Concrete Properties: d, := clr, + 0.5•dbl d, = 2.25•in effective depth (pool side) d2 := clr, + 0.5•dbl d2 = 3.25•in effective depth (soil Side) As f yl a a = 0.257•in ecluivilent rectangular stress block e := e = 0.302•in distance to neutral axis 0.85•f,•b 01 mind, , d2) — c et .— e„ Et = 0.019 net tensile strain check = "tension -controlled member" c (�'f = 0.9 adju5ted strength reduction factor Loading rY%v. h ��,2 • b VW := V,,. = 70.21b shear from water pressure 2 V„ 1 := max(l.4•V,,., 1.2-V,, + 1.6•Vi) V„, = 204.241b total factored Shear from loading 3 ryWhw .b MW := Mw = 35.1 ft•lb flexural from water pressure 6 Mi := Vi•hw Mi = 112.5 ft•lb flexural from impact load Mu, := max(1.4•Mw,1.2•Mw, + 1.6•Mi) Mul = 222.12 ft•lb total factored flexural from loading Mul d,-min Vu3 := Vu2 + Vul Mu := Vu3•dr min + Mul Vi2 = 888.48lb factored shear reaction at bottom of rabbet Vu3 = 1092.72lb factored shear reaction at top of rabbet Mu = 495.3 ft•lb max. factored moment in rabbet \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 12 of 47 Pool Encgmeermg, Inc. Ca155on Supported De51gncr: C.J.B. Swimming Pool Strength Check: (�Vct = (�s'2' fo'u'b•dl �Vcl 2218.31b allowable shear (pool Side) V,,2 = 888.5 lb < �Vc1 = 2218.3 lb 0.2: *;•2• fc•u•b•d2 OVo2 = 3204.2lb allowable shear (5011 Side) Vii3 = 1092.71b < Oc,2 = 3204.2lb Check? _ "OK" (�Mn := �'f'Asl'fyl'I d2 2 J �Mn = 1838.8 ft•lb Mn = 495.3 ft•lb < �Mn = 1838.8 ft•lb Checkm = "OK" Tens ile—Reinforcement = "is at least one-third greater than that required by analysis" Check Minimum/Maximum Steel Area: fc eu As_max:= 10.85•131. J b.d2 As_max= 0.906•in2 fy1 su + 0.004 As 1 = 0.196 • in2 < As max = 0.906 -in 2 LE, fc 200 2 As min:= max b d2 As min= 0.195•in _ fy1•� fy1•L _ As 1 = 0.196 • in2 > As min = "N/A" -in 2 Checkmax = "OK" Checkmin = "N/A per ACI 318 Section 10.5.1" Final Results: CONCRETE = "5in. MIN. RABBET THICKNESS, 3in. MIN. DEPTH" REINFORCING = "#4 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C." \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 13 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Rabbet Flexural De51gn (Check Rabbet Max. Depth) - U.S.D. Method Load i ng : Mul Vu2 dr max Vu3 := Vu2 + Vul Mu` Vu3'dr max + Mul Strength Check: (�Vcl = �s'2' fc'�'b'dl Vii2 = 296.2 lb < (K:2 = (�s'2' fc'u'b'd2 Vu3 = 500.4 lb < Vu2 = 296.16lb factored shear reaction at bottom of rabbet Vu3 = 500.4lb factored shear reaction at top of rabbet Mu = 597.42ft•lb max. factored moment in rabbet (�Vcl = 2218.3lb allowable shear (pool Bide) 0':1=2218.3lb 0,2 = 3204.2lb allowable shear (soil side) 0a = 3204.2 lb Checkv _ "OK" �Mn ��r'Asl'fyl •I d2 2 J �Mn = 1838.8 ft Ib Mu = 597.4 ft•lb < �Mn = 1838.8 ft•lb ICheckM = "OK" Tens ile_Reinforcement = "is at least one-third greater than that required by analysis" Check Minimum/Maximum Steel Area: As max := fc 0.85.01 • . Eu b' d2 As max 2 = 0.906 • in - fy l e„ + 0.004 - As 1 = 0.196 •in2 As max = 0.906 • in2 3 •E 200 2 As := max _ fyl.L ,—)-b-d, fyl.LAs— min Asmin= 0.195•in 1 = 0.196 • in2 > As min = "N/A" -in 2 Checkmax = "OK" Checkmin = "N/A per ACI 318 Section 10.5.1" Final Re51.11t5: CONCRETE _ "5in. MIN. RABBET THICKNESS, 9in. MAX. DEPTH" REINFORCING = "#4 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C." \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM 9 Pool Engineering, Inc. 2020, Page 14 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Weir Wall - Concrete Flexural Desialn - U.5.D. Method Reinforcing Properties: clr := "earth" clearance type to steel x := 2 # of curtains of steel Vertical Steel: Horizontal Steel: Bar, := 4 Size SP, := 12in spacing Bari := 4 size SP, := 12in spacing GR, = 40 grade fy, = 40•ksi yield strength GR, = 40 grade fyz = 40•ksi yield strength dbi = 0.5•in aIa. As, = 0.196•in2 steel area db, = 0.5•in dia. A,, = 0.196•in2 steel area Concrete Properties: AS, fyl tcW := tpw tcW = 12•in thickness a:= a= 0.257•in equivalent rectangular stress block 0.85•f,•b d = 8.75•in effective depth of reinforcing e := a c = 0.302•in distance to neutral axis 01 Et := e„• d — c et = 0.084 net tensile strain check = "tension -controlled member" c �)'f = 0.9 adJu5ted strength reduction factor Load i nct : DP2 • b V. := 1.4•-y,,, Vu = 1092lb factored shear 2 Dp3 b Mu := 1.4•-y,,, + 1.6•V;•Dp M„ = 2420ft. lb factored moment 6 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 15 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Strength Check: (�Vc:= (�s•2• fc•u b•d (�Vc = 8626.6lb Vt, = 10921b < c Vc = 8626.6 lb Check? _ "OK" Wn :_ �'f'Asl'fyl•I d - 2J �Mn = 5078.6 ft•lb ` M„ = 2420 ft• lb < OM, = 5078.6 ft• lb ChecicM = "OK" Check Minimum/Maximum Steel Area: Pt 0.0012 if Bart <_ 5 A fyt >_ 60000psi pl = 0.0015 min. vertical steel ratio (ACI Table I I G. 1 ) 0.0015 otherwise pt := 0.0020 if Bare :- 5 A fy2 >_ 60000psi pt = 0.0025 min. horizontal steel ratio (ACI Table I I . G. I ) 0.0025 otherwise t b As mini := pt cw As mini = 0.108•in2 < Asl = 0.196•in2 x - t b As mine := Pt' cw' As mine = 0.18 •in2 < As2 = 0.196 • in2 x As max = 0.85•131• fc E" •b•d As max= 2.438•in2 > Ast = 0.196•in2 fyt s,+0.004 - Final Re5ult5: CONCRETE _ "12in. THICK WALL w/ REINFORCING Sin. CLW' REINFORCING = "#4 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C." Checkminl = "OK" Checkmin2 = "OK" Checkmax = "OK" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 16 of 47 Pool Engineering, Inc. Ca155on Supported Designer: C.J.B. Swimming Pool Welciht5 for Floor Slab Loadln Wf := 6c'tpf W f = 187.5 •psf distributed weight of floor slab Ww := -yw•Dp Ww = 312•psf distributed weight of pool water Wd := Wf + W,,, Wd = 499.5•psf distributed design weight Wbn :_ (6, — lw)•(Dp — 18in) Wbn = 306.6•psf additional distributed weight on non-structural bench Wss :_ (8c — 7w)•(Dp — 6in) W55 = 394.2•psf additional distributed weight on non-structural shelf wwl := 6c•(Dp + tpf)•tp,,, wwl = 937.5•plf linear weight of pool wall Or — �yw) ww2 := •wwI ww, = 547.5•plf additional linear weight of weir wall 6 c ww3 := 6c'(Db + tpf)•tbw ww3 = 318.75•plf linear weight of basin wall Pvw + PVf w,, := w„ = 181.2•plf linear weight of vault b \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 17 of 47 Pool Engineering, Inc. Ca155on Supported Designer: C.J.B. Swimming Pool Floor Slab - Concrete Flexural De51gn - U.S.D. Method Reinforane Properties: clr := "earth" clearance type to steel x := 2 # of curtains of steel Transverse Steel: Longitudinal Steel: Bart := 5 size SPt := 6in Spacing Bare := 5 Size GRi = 60 grade fyt = 60•ksi yield strength GR2 = 60 grade dbl = 0.625•in dia. Ast = 0.614•in2 steel area db2 = 0.625•in dia. Concrete Properties: Asl•fyt SP2 := 6in Spacing fy2 = 60•ksi yield strength As2 = 0.614•in2 steel area tes tpf tes= 15•in thickness a:= 0.85•fc•b a= 1.203•in ecluivilent rectangular stress block cover = 3.625•in cone coverage to reinforcing c := a e = 1.415•in distance to neutral axis �t d := tcs — cover — dbt d = 11.063•in effective depth of reinforanc3 2 Et := Eu. d — c Et = 0.02 net tensile Strain check = "tension -controlled member" c (�'f = 0.9 adju5ted strength reduction factor Spans: lni := 10.5ft Max. design Span lct := 3.5ft max, longitudinal cantilever 1i2 := 6ft min. design span ic2:= 4.5ft max. transverse cantilever \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 18 of 47 Fool Engineering, Inc. Caisson Supported Designer: C.J.15, Swimming Pool Shear Loading: (Wd + Wss)'b'Inl V1 := 1.4 2 V1 = 65691b V2 := 1.41(Wd + Ws,) -(lc, — tpw) + w,n,l + w jb V2 = 46941b V3 := 1.4[Wd•(lc2 — tbw) + Ww2 + Ww3]•b V3 = 40101b (Wd + Wss) (lcl — tpw + 0.5•Inl) + Wwl + Wv Inl V := 4 1.4• b• 2 Icl + 0.5ln1 2 V4 = 67581b (Wd + Wss)•(lcl — tpw + 0.5•Ii2) + Wwl + Wv In] V := 5 lcl + 0.51n2 2 1.4• b• 2 V = 68231b 5 Wd•(1c2 — tbw + 0.5.1n1) + Ww2 + Ww3 Inl V := 1.4• b•— 6 1,2 +.0.51n1 2 V = 41361b 6 Wd•(1c2 — tbw + 0.5.1n2) + Ww2 + Ww3 Inl V := 1.4• •b•— 7 1,2 + 0.51n2 2 V = 42751b 7 Flexural Loadin (Wd + Wss)'b In12 M1 := 1.4 8 M1 = 17243 ft•lb 2 3 M2 := 1. (Wd + Wss)' tpw) + (WWI + wv) Icl — tpw + 7w'Dp •b + My M2 = 10805 ft•lb 2 ( 2) 6 2 1tbw1 3 M3 := 1. W (Ic2 2tbw) + W CI t W tP ) + w (1,2 J + 7w Dp •b M3 = 10844 ft•lb d w2' ` c2 — tbw — b — � w3' — (Wd +W )(1 t +0.5.1 )+w +w 1 2 ss ' cl — tpw nl wl v nl M := 1.4• b•— M = 17739 ft•lb 4 Icl + 0.51,1 8 4 (Wd +W )(l t +.5.1 )+w +w 1 2 ss ' cl — tpw 0n2 wl v nl M := 1.4• b•— M = 17911 ft•lb 5 Icl + 0.51n2 8 5 W •(1 t + 0.5.1 )+ W + w l 2 d c2 — bw nl w2 w3 n] M6 := 1.4• 1 + b• M6 = 10857ft•lb c2 0.51 nl 8 Wd •(1c2 — tbw +0.5.1n2 )+ww2 +ww3 lnl 2 7 M := 1.4 1,2 + 0.5In2 •b•— 7 8 M = 11223 ft•lb \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 19 of 47 'ool Engineering, Inc. Caisson Supported Designer: C.J.B Swimming Pool Strength Check: V„ := max(V) V„ = 6823 lb max. factored shear MU := max(M) M„ = 17911 ft•lb max, factored moment �)Vc := 0s•2 fc• t.b•d OVc = 10906.5 lb VL1 = 6823 lb < c Vc = 10906.5 lb Checic� _ "OK" (�M„ := (p'f•As1•fy1•d - 2) �Mn = 28884.4 ft•lb M„ = 17911 ft•lb < �M„ = 28884.4 ft•lb Check,, = "OK" Check Minimum/Maximum Steel Area: 131 := 0.0020 if fy1 < 60000psi max(108 , 0.0014) otherwise fyl•L P2 := 0.0020 if fy1 < 60000psi max(108 , 0.0014) otherwise fy1•b p1 = 0.0018 min. longitudinal steel ratio (ACI Table 7, G. 1. 1) P2 = 0.0018 min, transverse steel ratio (ACI Table 24,4.3.2) As minl pl'tcs'b As mint = 0.324•in2 < Asl = 0.614•in2 Check,ninl = "OK" tcs b As mint := p2 As mint = 0.162 • in2 < As2 = 0.614 • in 2 Checkm,72 x - As max 0.85•01• fc • Ott •b•d As max= 2.055•in2 ' As1 = 0.614•in2 Checicmax= °OK" fy1 eu + 0.004 - Final Results: IONCRETE = "15in. THICK SLAB w/ REINFORCING 2in. CLR. FROM TOP & 3in. CLR, FROM BOTTOM" REINFORCING = "#5 TRANSVERSE BARS @ 6in. O.C. & #5 LONGITUDINAL BARS @ 6in. O.C., (2) CURTAINS" 1 M„ (0.89diac+ 3•tcs) Mflr :_ — Mflr = 42448 ft•Ib Max. design flexure from floor slab 1 + 2 . J 1.4 b @ caisson dowels 3 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM 0 Pool Engineering, Inc. 2020, Page 20 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Cal55on Dg5i n dia, = 24•in diameter of cai55on Ag := 0.25-w-dia,2 Ag = 3.142 ft2 PC := 8C.A9•D2 PC = 7069 lb PR:= Ag•q — PC P = 18064lb Vertical Load Analv515: D1 P — Pa = Fsk•-a•dia, P DIV _ cai55on area cross-Sectlon additional weight of caisson above bedrock allowable end bearing capacity required embedment into competent bedrock to resist vertical loading T (Wd Wbn Wss Wwl Ww2 Ww3 wv Pa Fsk diaC) \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM 0 Pool Engineering, Inc. 2020, Page 21 of 47 Pool Engineering, Inc. Caisson 5upported Designer: C.J.B. Swimming Pool Lateral Load Analv5i5: Nop = 8 total number of caissons Lt := 38ft total max. length of pool hr := DIP + tpf hr = 6.25 ft max, retained height @ pool h2L VS 'Ya' r ' t 1 VS = 5566lb lateral sod load to caissons 2 Nop Vd := VS Vd = 5566.406 lb Max. design lateral load MS := VS•D2 MS = 83496 ft-lb flexure from soil load to caissons Md := MS + Mflr Md = 125944ft. 1b Max, design moment Flagpole Footing, Non -constrained at Ground Level for Isolated Caisson - Per I15C/C15C Section 1805,72 M h := d h = 22.626 ft effective height to resultant dt = 12.16 ft trial depth for iteration Vd d 1 Pp :_ Pp = 400•pef nominal passive pressure St := minPp t) St = 1621.556•psf 2.34• V `` 3 A := d dr := A 1 + 1 + 4.36 h dr = 12.16 ft required depth for iteration St•dia, 2 J A Dll := Ceil(dr, lft) Bill = 13 ft min. embedment depth to resist lateral loading Final Min. Cai55on Embedment Re5ult5: D1 := max(max(D1v)5D1l,dmin) D1 = 20ft \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 22 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Structural Design of Caissons: PU := 1.2 max(P) VU := 1.6VS MU := max(1.4•Mflr,1.2•Mflr + 1.6•MS) PU = 65.844•kip max. ultimate factored vertical load VU = 8.906•kip max. ultimate factored shear MU = 184.532•kip•ft max. ultimate factored moment Set Lateral Force ecival to Passive Resistance and solve for depth to max. moment in caisson 1.6Pp• diap• df2 2 • VU V" = 2 Lateral Force Equilibrium Sol\Ang for depth, we get df 1.6P dia p c df = 3.73 ft depth to point of max, moment in competent bedrock To obtain Max Bending Moment on caisson we sum moments about the above calculated point: Pp•dia� df3 M'u := MU + VU•df — 1.6 6 M'U = 206.681 •kip•ft Factored Ultimate Moment MU d := 1.4•Mfl,. Mud = 59.428•kip•ft Factored Ultimate Moment at dowels P«_d := 1.2(max(P) — P) Pu d = 57.362•kip Factored Ultimate vertical load at dowels See CSI Column Calculation Sheets (followin ) for Concrete Desi n of Caissons 71 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 23 of 47 Project Information Project Job No Company Designer Remarks Software File Name Working Units Design Code Column:Pile 3235 Ocean Blvd 20-0316 CJB flexural caisson design - pool CSICOL (Version: 8.0 (Rev. 0)) W:\Projects\2020\0316-20 Caisson Pool \flexural pile design - pool US (in, kip, k-ft, ksi) ACI-318-14 Basic Design Parameters Caption = Pile Default Concrete Strength, Fc = 3.00 ksi Default Concrete Modulus, Ec = 3200.00 ksi Maximum Concrete Strain = 0.003 in/in Rebar Set = ASTM Default Rebar Yeild Strength, Fy = 60.00 ksi Default Rebar Modulus, Es = 29000.00 ksi Default Cover to Rebars = 4.000 in Maximum Steel Strain = Infinity Transverse Rebar Type = Ties Total Shapes in Section = 1 Consider Slenderness = No \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 24 of 47 I I 1 i 24. � 12.0N 40w I I r• r, ,�.`, -ham'? YE: ., 1f�I v,: y �y },� _ - _. _. ._ _ _ —.-_ _ __ .+-.414.E � •� Q 3X 3 X+'{, i{:.x {%+.., '. X%<.•` �;t ,. f+,5 X•:'r'�''' ni �tY.�,{ti^{}} i I i I I I Section Diagram Cross-section Shapes Shape Width Height Conc Fc S/S Curve Rebars in in ksi Circle 24.000 24.000 3.000 ACI-Whitney Rectangular 848 Rebar Properties Sr.No Designation Area Cord-X Cord-Y Fy S/S Curve inA2 in in ksi 1 #8 0.79 20.000 12.000 60.00 Elasto-Plastic 2 #8 0.79 17.657 17.657 60.00 Elasto-Plastic 3 #8 0.79 12.000 20.000 60.00 Elasto-Plastic 4 #8 0.79 6.343 17.657 60.00 Elasto-Plastic 5 #8 0.79 4.000 12.000 60.00 Elasto-Plastic 6 #8 0.79 6.343 6.343 60.00 Elasto-Plastic 7 #8 0.79 12.000 4.000 60.00 Elasto-Plastic 8 #8 0.79 17.657 6.343 60.00 Elasto-Plastic 8-#8 Total Area = 6.32 inA2 Steel Ratio = 1.40 % Basic Section Properties: Total Width = 24.00 in Total Height = 24.00 in Center, Xo = 0.00 in Center, Yo = 0.00 in \\pe-fle\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM ©Pool Engineering, Inc. 2020, Page 25 of 47 X-bar (Right) = 12.00 in X-bar (Left) = 12.00 in Y-bar (Top) = 12.00 in Y-bar (Bot) = 12.00 in Area, A = 452.39 inA2 Inertia, Ixx = 1.63E+04 inA4 Inertia, Iyy = 1.63E+04 inA4 Inertia, Ixy = 0.00E+00 inA4 Radius, rx = 6.00 in Radius, ry = 6.00 in Simple Loads Final Design Loads Sr.No Combination Pu Mux-Bot Muy-Bot Mux-Top Muy-Top kip k-ft k-ft k-ft k-ft 1 Combination1 65.844 206.681 0.00 0.00 0.00 2 Combination2 65.844 0.00 206.681 0.00 0.00 Result Summary Sr.No Combination Pu (kip) Cap. Ratio-Bot Cap. Ratio- Remarks Top 1 Combination1 65.844 0.925 0.083 Capacity OK 2 Combination2 65.844 0.925 0.083 Capacity OK \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 26 of 47 Column:Dowel Check Basic Design Parameters Caption = Dowel Check Default Concrete Strength, Fc = 3.00 Default Concrete Modulus, Ec = 3200.00 Maximum Concrete Strain = 0.003 Rebar Set = ASTM Default Rebar Yeild Strength, Fy = 60.00 Default Rebar Modulus, Es = 29000.00 Default Cover to Rebars = 4.000 Maximum Steel Strain = Infinity Transverse Rebar Type = Spiral Total Shapes in Section = 1 Consider Slenderness = No 24. 12.000 12.000 ksi ksi in/in ksi ksi in 1)",r;`,. : rX is yC`'.r . :•. ` r' Section Diagram Cross-section Shapes Shape Width in Circle 24.000 Height Conc Fc S/S Curve in ksi 24.000 3.000 ACI-Whitney Rectangular Rebars 845 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 27 of 47 Rebar Properties. Sr.No Designation Area Cord-X Cord-Y Fy S/S Curve inA2 in in ksi 1 #5 0.31 20.000 12.000 60.00 Elasto-Plastic 2 #5 0.31 17.657 17.657 60.00 Elasto-Plastic 3 #5 0.31 12.000 20.000 60.00 Elasto-Plastic 4 #5 0.31 6.343 17.657 60.00 Elasto-Plastic 5 #5 0.31 4.000 12.000 60.00 Elasto-Plastic 6 #5 0.31 6.343 6.343 60.00 Elasto-Plastic 7 #5 0.31 12.000 4.000 60.00 Elasto-Plastic 8 #5 0.31 17.657 6.343 60.00 Elasto-Plastic 8-#5 Total Area = 2.47 inA2 Steel Ratio = 0.55 % Basic Section Properties: Total Width = 24.00 in Total Height = 24.00 in Center, Xo = 0.00 in Center, Yo = 0.00 in X-bar (Right) = 12.00 in X-bar (Left) = 12.00 in Y-bar (Top) = 12.00 in Y-bar (Bot) = 12.00 in Area, A = 452.39 inA2 Inertia, Ixx = 1.63E+04 inA4 Inertia, lyy = 1.63E+04 inA4 Inertia, Ixy = 0.00E+00 inA4 Radius, rx = 6.00 in Radius, ry = 6.00 in Simple Loads Final Design Loads Sr.No Combination Pu Mux-Bot Muy-Bot Mux-Top Muy-Top kip k-ft k-ft k-ft k-ft 1 Combination1 57.362 0.00 0.00 57,362 0.00 2 Combination2 57.362 0.00 0.00 0.00 57.362 Result Summary Sr.No Combination Pu (kip) Cap. Ratio-Bot Cap. Ratio- Remarks Top 1 Combination1 57.362 0,075 0.423 Capacity OK 2 Combination2 57.362 0.075 0.423 Capacity OK \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report,pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 28 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Reinforanq Properties: Bari := 8 size of vert bars GRv := 60 vert bar steel grade Nobars := 8 number of vertical bars db, = 1 -in dia, of vert bars fy = 60•ksi yield strength of vert bars ASS = 6.283•in2 area of vert .steel Bard := 5 size of vert dowels GRd := 60 dowel bar steel grade dbd = 0.625•in dia. of vert dowels fy d = 60•ksi yield strength of vert dowels Bari, = 4 size of horiz ties GRI, := 40 horiz tie steel grade dbh = 0.5•in dia. of horiz ties fyt = 40•ksi yield strength of horiz ties s := 6in spacing of transverse reinforcement Ag = 3.142 ft2 gross area of concrete Section SC = D site class Xh = 0.5 site class multiplier Check = "Pass" CONCRETE = "24in. DIA CAISSON, fc = 3000psi (DESIGN STRENGTH)" VERT BARS = "(8) #8 VERTICAL BARS ENTIRE LENGTH OF CAISSON w/ #5 DOWELS TO FLOOR SLAB" HORIZ TIES = "USE #4 TIES @ 6in. O.C. THROUGHOUT CAISSON' \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 29 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Check 2-Way Shear in Concrete Slab: AC13 18-14 Section 22.6.4 diac= 24•in caisson diameter le:= 0.89•diac le= 21.36•in equivalent square Section length fe = 3000•psi compressive strength of concrete � := 0.75 shear reduction factor (ACI Table 2 1 .2. 1 ) clr = 3-in concrete cover to reinforcing Bar := 5 reinforcing bar size in slab to = 15•in design concrete slab thickne55 db = 0.625•in reinforcing bar diameter imin = 16•in min. caisson center distance from slab edge Column_Location := corner location of caisson beneath slab (interior, edge, or corner) - corner case choosen for conservatism) US = 20 location constant (ACI Sect. 22,6.5.3) d := tc — clr — 0.5•db d = 11.688•in effective depth of concrete slab PL, := 1.4(max(P) — Pe) Pu = 66.922•kip ultimate factored vertical.loading VU := PU VU = 66.922•kip ultimate factored 2-way shear stress bo = 54.407•in perimeter of critical section (ACI Sect. 22.6,4,1) 0:= 1.0 ratio of long side to short hide of concentrated load or reaction area Vcl := 4-J.b.bc•d Vc2:= (2+ 4J fe•L•bo•d as•d Vc3 := 2 + b fc b"•d 0 VC := min(Vcl q Vc2, Vc3) (b•Vc = 104.487•kip > Vel = 139.316•kip (ACI Eq. 22.6.5.2a) Vc2 = 208.974•kip (ACI Eq. 22. G.5.2b) Vc3 = 219.293•kip (ACI Eq. 22.6.5.2c) Vc = 139.316•kip nominal shear strength of concrete VU = 66.922•kip Punching_Shear = "PASS" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 30 of 47 \\pe-file\Pool\Projects\2020\0316-20 Caisson PoolTinal Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 31 of 47 'ool Engineering, Inc. Caisson Supported Designer: C.J.B Spa CONCRETE PROPERTIES: 6C := 150pcf unit weight of reinforced concrete � f := 0.90 flexural reduction factor EL,:= 0.003 crushing strain of concrete clre := 3in reinforcing cast against earth Er = 3122.019•ksi modulus of elasticity f,:= 3000•psi compressive strength of concrete �s := 0.75 shear * torsion reduction factor 131=0.85 a=0.72 clrw := 2in reinforcing exposed to weather b := 12in design strip width SPA PROPERTIES: Ds := 5ft max. spa depth t,w := 12in spa wall thickness hrbb := 1ft max. raised bond beam height t,f := 15in spa floor thickness diar:= 24in diameter of caisson -y,:= 62.4pcf unit weight of water SOIL PROPERTIES: Geotechnical information provided by Geofirm (Project No: 72370-01 dated 4/29/20 * revised G/ 19/20) -y,:= 60pcf equivalent fluid pressure d,,,i„ := 5ft minimum depth into bedrock qa:= 8000psf allowable bearing capacity D2:= 15ft maximum depth to bedrock F,k := 300psf skin friction di := 4ft, soil ignored below spa bottom ,yP 1 := 150pcf passive earth pressure (beach deposits) for lateral resistance ryp2 := 400pcf passive earth pressure (bedrock) \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 32 of 47 Pool Engineering, Inc. Ca155on Supported Designer: G.J.B. Spa Spa Wail - Concrete Flexural De51�n - U.S.D. Method Reinforcing Properties: clr := "earth" clearance type to steel x := 2 # of curtains of steel Vertical Steel: Horizontal Steel: Bar, := 4 size SPA := 12in spacing Barz := 4 size SP, := 12in spacincj GRI = 40 grade fyi = 40•ksi yield strength GR, = 40 grade fy2 = 40•ksi yield strength dbl = 0.5•in dia. As, = 0.196•in2 steel area db2 = 0.5•in dia. As, = 0.196•in2 steel area Concrete Properties: tCW := tsw t,w = 12•in thickness a := AsF fyl a = 0.257•in equivalent rectangular stress block 0.85•f,:•b . d = 8.75•in effective depth of reinforcing e := a c = 0.302•in distance to neutral axis pi d -c 2, := E„• et = 0.084 net tensile strain check = "tension -controlled member" c Vf = 0.9 adJusted strength reduction factor Loading: 'Yw2'DS .b VW := 2 VW = 780 lb lateral from water pressure 2 'Ya'(Ds + hrbb) 'b VS := VS = 1080lb lateral from soil pressure 2 V,,:= max(1.4VW,1.6•VS) V„ = 1728lb max. factored shear Ds MW := VW.— Mw = 1300ft. lb flexure from water pressure Ds + hrbb MS := vs, MS = 2160ft. lb flexure from soil pressure 3 M„ := max(l.4•Mw,1.6•Ms) M„ = 3456ft. lb max. factored moment \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 33 of 47 Pool Engineering, Inc. Cai55on Supported Designer: C.J.B, Spa Streneth Check: �Vc := �s•2 fc b•b•d �Vc = 8626.6lb V„ = 1728 lb < (�Vc = 8626.6lb Checks _ "OK" (�Mn := �'f'Asl•fy,•I d - 2) (�M„ = 5078.6 ft•lb M„ = 3456 ft. lb `\ < (bMn = 5078.6 ft. lb CheckM = "OK" Check Minimum/Maximum Steel Area: pl := I 0.0012 if Bar, <_ 5 A fy, >- 60000psi 0.0015 otherwise pt := 0.0020 if Bare :- 5 A fy2 >- 60000psi 0,0025 otherwise p, = 0.0015 min. vertical steel ratio (ACI Table I I ,G, I ) pt = 0.0025 min. horizontal 5teel ratio (ACI Table I I . G. I ) t •b As mini := Pl' cw As mini = 0.108 •in2 < As, = 0.196 • in2 x - t •b As mint := Pt' cw As min2 = 0.18 • in2 < As2 = 0.196 • in2 x As max 0,85•(31• fc • E. 'b'd As max = 2.438•in2 1 As, = 0.196•in2 fyi €u + 0.004 Final Re5Ult5: CONCRETE _ "12in. THICK WALL w/ REINFORCING Sin. CLR" REINFORCING = "44 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C." Checkmin, = "OK" Checkmin2 = "OK" Check,nax = "OK" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 34 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Spa Floor Slab - Concrete Flexural DC51gn - U.S.D. Method Reinforcing lfrol?ertie5: clr := "earth" clearance type to steel x := 2 # of curtains of steel Transverse Steel: Longitudinal Steel: Bar, := 5 Size SP, := 6in Spacing Bar, := 5 51ze GR, = 60 grade fy, = 60•ksi yield strength GR, = 60 grade dbl = 0.625•in dia. As, = 0.614•in2 steel area db, = 0.625•in dia. Concrete Properties: SP, := 6in spacing fy, = 60•ksi yield strength As, = 0.614•in2 steel area tcs tsf tcs = 15•in thickness a := As, fyl a = 1.203•in equivilent rectangular stress block 0.85•f,.b cover = 3.625•in cone coverage to reinforcing e := a e = 1.415•in distance to neutral axis 131 d := t�s — cover — dbl d = 11.063•in effective depth of reinforcing 2 Et := EL,• d c Et = 0.02 net tensile Strain check = "tension -controlled member" c (* = 0.9 adjusted strength reduction factor ins : lnl := 11.25ft Max. design span ln, := aft min. design span Weights: Wf := 5c'tsf Ww = Yw,Ds Wd := W f + Ww Wbn :_ (6c — -iw)-(Ds — 18in) Wtf :_ (6, — 'Yw)-(18in) Wa := max(Wbn, Wtf) W, := 6c'(Ds + hrbb + tsf)-tsw lc := 2.75ft max. cantilever Wf= 187.5•psf Ww = 312•psf Wd = 499.5 • psf Wbn = 306.6•psf Wtf = 131.4•psf Wa = 306.6•psf ww = 1087.5•plf distributed weight of floor slab distributed weight of spa water distributed design weight additional d15tnbuted weight on non-structural bench additional 65tnbuted weight on non-structural shelf m15c. additional weight for floor slab design linear weight of spa wall \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 35 of 47 Pool Engineering, Inc. Caisson Supported Designer: C,J.B. Spa Shear Loading: �Wd + Wn�'b'Inl V1 := 1.4 V2 := 1.4[(Wd + Wn)•(Ic — tsw) + wjb V := 1.4 (Wd + Wn)•(lc — tsw + 0.5.1n2) + ww b InI 3 lc + 0.51n2 2 Flexural Loadm M1 1.4 (Wd + Wn)'b'1n12 := 8 )2 3 M:= 1. �Wd + Wa) (lo — tsw" + ww• lc — tsw + Yw'Ds b 2 2 ( 2) 6 (W + W a' Xic — tsw + 0.5.1n2 + w 1 2 M := 1.4. d w b nl 3 lc + 0.51n2 8 V1 = 6348lb V2 = 34971b V3 = 6869lb M1 = 17854 ft•lb M2 = 6974 ft• lb M3 = 19320 ft•lb \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 36 of 47 'ool Engmeermg, Inc. Caisson Supported Designer: C.J.B Spa Strength Check: V„ := max(V) V„ = 6869lb max. factored shear M„ := max(M) M„ = 19320 ft•lb max. factored moment OV, := Os-2- f� u•b•d OV, = 10906.5 lb V„ = 6869lb < OVc = 10906.5 lb ICheckv = "OK" �Mn �'f'Asl'fyl•d - 2) �Mn = 28884.4 ft•lb Mu = 19320 ft•lb < (�Mn = 28884.4 ft•Ib CheckT = "OK" Check Minimum/Maximum Steel Area: pl := 0.0020 if fyl < 60000psi max(108 , 0.0014) otherwise fyI•L P2 := 0.0020 if fyl < 60000psi max(108 , 0.0014) otherwise fyl•L pI = 0.0018 min. longitudinal steel ratio (ACI Table 7.6. I . 1) P2 = 0.0018 min, transverse steel ratio (ACI Table 24.4.3.2) As-minl = P I'tcs' b As_min l = 0.324 • in2 < As I = 0.614 • in2 Check,nin l = "OK" P2'tcs• b As_min2 As -min2 = 0.162 • in2 < As2 = 0.614 • in2 x Chec1'znin2 = "OK" _ fc Eu As rnax . 0 85 (31 fyI cu + 0.004 b•d As_mnx = 2.055•in > Asl = 0.614•in Checic,,,,,X). Final Results: (CONCRETE = "15in. THICK SLAB w/ REINFORCING 2in. CLR. FROM TOP & 3in. CLR FROM BOTTOM" REINFORCING = "#5 TRANSVERSE BARS @ 6in. O.C. & #5 LONGITUDINAL BARS @ 6in. O.C., (2) CURTAINS" I M„ (0.89diac+3•tcs) Mflr = — Mgr = 45789ft•lb Max, design flexure from floor slab I + -.V l 1.4 b @ caisson dowels 3 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 37 of 47 Pool Engineering, Inc. Ca155on Supported Designer: C.J.B. Spa Cal55on Dq n dia,; = 24•in diameter of caisson Ag := 0.25.w-dia2 �Ag = 3.142 ft2 P'� := 6C'A9•D2 Pc = 7069lb Pa := Ag, qa — P� Pa = 180641b Vertical Load Analv5i5: P — Pa D1 Fsk•gr•dia, P DIV Marls ca155on area cro55-5ection additional weicPub of ca155on above bedrock allowable end bearing capacity I embedment into competent bedrock to resist vertical loading Trib. Floor/ Spa Thick Total Req'd Spa Water Wall Bench floor Axial Embed. Area Load Load Load Load Load D1 (ft) (Ib) (lb) (lb) (Ib) (lb) (ft) D2 13.5 6743 9244 0 1774. 17761 5 E3 16.5 8242 13594 3679 591 26106 5 IF 18 8991 13322 3679 788 26780 5 l Wd Wbn Wtf w,, Pa Fsk diac dmin \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM 0 Pool Engineering, Inc. 2020, Page 38 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Spa Lateral Load Analvsis: Nop = 3 total number of caissons Lt := 15ft total max. length of spa hr := Ds + hrbb + tsf hr = 7.25 ft max, retained height @ pool 'Ya' h2L ' r t 1 VS _ VS = 7884lb lateral soil load to caissons 2 Nop Vd := VS Vd = 7884.375 lb Max. design lateral load MS := VS -di MS = 31537 ft-lb flexure from soil load to caissons Md := MS Md = 31537 ft- lb max. design moment at bedrock Flagpole Footing, Non -constrained at Ground Level for Isolated Caisson - Per IBC/CBC Section 1 805 7 2 M d h := h = 4 ft effective height to resultant dt = 15.39 ft trial depth for iteration Vd d 1 tl Pp := 'Ypt Pp = 150 pcf nominal passive pressure St := min( PP* St = 769.375 •psf 2.34• V d A 4.36 h1 3 A := dr := • 1 + 1 + dr = 15.39 ft required depth for iteration St•dia� 2 A J D3 := Ceil(dr, I F' + di D3 = 20 ft min. embedment depth to resist lateral loadmg Final Min. Caisson Embedment Results: D1 := max(max(D1 ,),dmin) D1 = 5 ft required min, embedment depth D3 = 20 ft required min. total embedment depth \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 39 of 47 Pool Engineering, Inc. Ca155on Supported De51cjner: C.J.B. Spa Structural Design of Ca155on5: PL, := 1.2 max(P) V„ := 1.6V5 M„ := max(1.4•MOr,1.6•MS) P„ = 32.137•kip V„ = 12.615 • kip M„ = 64.105•kip•ft max. ultimate factored vertical load max. ultimate factored shear max, ultimate factored moment Set Lateral Force equal to F a551Ve Resistance and solve for depth to max, moment in ca155on 1.6Pp•diap• df2 2• Vu V„ = 2 Lateral Force Equilibrium Solving for depth, we cJet df 1.6P •dia p c df = 7.25 ft depth to point of max. moment in competent bedrock To obtain Max Bending Moment on caisson we sum moments about the above calculated point: Pp•dia,. df3 M'„ := M„ + V„•df — 1.6 6 M'„ = 125.077•kip•ft Factored Ultimate Moment M„ d := 1.4•Mfir Mud = 64.105•kip •ft Factored Ultimate Moment at dowels PL,_d := 1.2(max(P) — P-) P„ d = 23.654•kip Factored Ultimate vertical load at dowels See CSI Column Calculation Sheets (followln ) for Concrete De51 n of C01155om \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 40 of 47 Project Information Project Job No Company Designer Remarks Software File Name Working Units Design Code Column:Pile 3235 Ocean Blvd 20-0316 CJB flexural caisson design - spa CSICOL (Version: 8.0 (Rev. 0)) W:\Projects\2020\0316-20 Caisson Pool \flexural pile design - spa US (in, kip, k-ft, ksi) ACI-318-14 Basic Design Parameters Caption = Pile Default Concrete Strength, Fc = 3.00 ksi Default Concrete Modulus, Ec = 3200.00 ksi Maximum Concrete Strain = 0.003 in/in Rebar Set = ASTM Default Rebar Yeil,d Strength, Fy = 60.00 ksi Default Rebar Modulus, Es = 29000.00 ksi Default Cover to Rebars = 4.000 in Maximum Steel Strain = Infinity Transverse Rebar Type = Ties Total Shapes in Section = 1 Consider Slenderness = No \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:62:32 AM © Pool Engineering, Inc. 2020, Page 41 of 47 — L -- 12.0 .0w :--24., •i, T"'+.r)..i�..{'}..'yCr}' fir'' '.; �[•'. r'}:,Y�. ,X O Q 3 3 kx:'S(rx, Y ` x . :{ • .•'Y. , rYC :•..<x , k •:4 : Y•.. , nh i,, Section Diagram Cross-section Shapes Shape Width Height in in Circle 24.000 24.000 Rebar Properties Sr.No Designation Area in^2 1 #8 0.79 2 #8 0.79 3 #8 0.79 4 #8 0.79 5 #8 0.79 6 #8 0.79 7 #8 0.79 8 #8 0.79 8-#8 Total Area = 6.32 Steel Ratio = 1.40 Basic Section Properties: Total Width = 24.00 Total Height = 24.00 Center, Xo = 0.00 Center, Yo = 0.00 Conc Fc S/S Curve Rebars ksi 3.000 ACI-Whitney Rectangular 848 Cord-X Cord-Y Fy S/S Curve in in ksi 20.000 12.000 60.00 Elasto-Plastic 17.657 17.657 60.00 Elasto-Plastic 12.000 20.000 60.00 Elasto-Plastic 6.343 17.657 60.00 Elasto-Plastic 4.000 12.000 60.00 Elasto-Plastic 6.343 6.343 60.00 Elasto-Plastic 12.000 4.000 60.00 Elasto-Plastic 17.657 6.343 60.00 Elasto-Plastic in^2 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM ©Pool Engineering, Inc. 2020, Page 42 of 47 X-bar (Right) = 12.00 in X-bar (Left) = 12.00 in Y-bar (Top) = 12.00 in Y-bar (Bot) = 12.00 in Area, A = 452.39 inA2 Inertia, Ixx = 1.63E+04 inA4 Inertia, Iyy = 1.63E+04 inA4 Inertia, Ixy = 0.00E+00 inA4 Radius, rx = 6.00 in Radius, ry = 6.00 in Simple Loads Final Design Loads Sr.No Combination Pu Mux-Bot Muy-Bot Mux-Top Muy-Top kip k-ft k-ft k-ft k-ft 1 Combination1 32.137 125.077 0.00 0.00 0.00 2 Combination2 32.137 0.00 125.077 0.00 0.00 Result Summary Sr.No Combination Pu (kip) Cap. Ratio-Bot Cap. Ratio- Remarks Top 1 Combination1 32.137 0.578 0.041 Capacity OK 2 Combination2 32.137 0.578 0.041 Capacity OK \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 43 of 47 Column:Dowel Check Basic Design Parameters Caption = Dowel Check Default Concrete Strength, Fc = 3.00 ksi Default Concrete Modulus, Ec = 3200.00 ksi Maximum Concrete Strain = 0.003 in/in Rebar Set = ASTM Default Rebar Yeild Strength, Fy = 60.00 ksi Default Rebar Modulus, Es = 29000.00 ksi Default Cover to Rebars = 4.000 in Maximum Steel Strain = Infinity Transverse Rebar Type = Spiral Total Shapes in Section = 1 Consider Slenderness = No Section Diagram Cross-section Shapes Shape Width Height in in Circle 24.000 24.000 Conc Fc S/S Curve Rebars ksi 3.000 ACI-Whitney Rectangular 845 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM 0Pool Engineering, Inc. 2020, Page 44 of 47 f� Rebar Properties Sr.No Designation Area Cord-X Cord-Y Fy S/S Curve inA2 in in ksi 1 #5 0.31 20.000 12.000 60.00 Elasto-Plastic 2 #5 0.31 17.657 17.657 60.00 Elasto-Plastic 3 #5 0.31 12.000 20.000 60.00 Elasto-Plastic 4 #5 0.31 6.343 17.657 60.00 Elasto-Plastic 5 #5 0.31 4.000 12.000 60.00 Elasto-Plastic 6 #5 0.31 6.343 6.343 60.00 Elasto-Plastic 7 #5 0.31 12.000 4.000 60.00 Elasto-Plastic 8 #5 0.31 17.657 6.343 60.00 Elasto-Plastic 8-#5 Total Area = 2.47 in^2 Steel Ratio = 0.55 % Basic Section Properties: Total Width = 24.00 in Total Height = 24.00 in Center, Xo = 0.00 in Center, Yo = 0.00 in X-bar (Right) = 12.00 in X-bar (Left) = 12.00 in Y-bar (Top) = 12.00 in Y-bar (Bot) = 12.00 in Area, A = 452.39 inA2 Inertia, Ixx = 1.63E+04 inA4 Inertia, lyy = 1.63E+04 inA4 Inertia, Ixy = 0.00E+00 inA4 Radius, rx = 6.00 in Radius, ry = 6..00 in Simple Loads Final Design Loads Sr.No Combination Pu Mux-Bot Muy-Bot Mux-Top Muy-Top kip k-ft k-ft k-ft k-ft 1 Combinationl 23.654 0.00 0.00 64.105 0.00 2 Combination2 23.654 0.00 0.00 0.00 64.105 Result Summary Sr.No Combination Pu (kip) Cap. Ratio-Bot Cap. Ratio- Remarks Top 1 Combinationl 23.654 0.031 0.553 Capacity OK 2 Combination2 23.654 0.031 0.553 Capacity OK \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 45 of 47 Pool Engineering, Inc. Ca155on Supported Designer: C.J.B. Spa Reinforan!3 Properties: Bari := 8 Size of vert bars GR, := 60 vert bar steel grade Nbb,, := 8 number of vertical bars db, = I -in dia. of vert bars fy = 60•ksi yield strength of vert bars ASS = 6.283 in2 area of vert steel Bard := 5 Size of vert dowels GRd := 60 dowel bar steel grade dbd = 0.625•in dia, of vert dowels fy d = 60•ksi yield strength of vert dowels Barb = 4 size of horiz ties GRI, := 40 horiz tie steel grade dbh = 0.5•in dia. of horiz ties fyt = 40•ksi yield strength of horiz ties s := 6in spacing of transverse reinforcement Ag = 3.142 ft2 gross area of concrete section SC = D site class xh = 0.5 site class multiplier Check = "Pass" CONCRETE _ "24in. DIA CAISSON, Pc = 3000psi (DESIGN STRENGTH)" VERT BARS = "(8) #8 VERTICAL BARS ENTIRE LENGTH OF CAISSON w/ #5 DOWELS TO FLOOR SLAB" HORIZ TIES = "USE #4 TIES @ 6in. O.C. THROUGHOUT CAISSON" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 46 of 47 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Spa Check 2-Way Shear in Concrete Slab: AC13 18-14 Section 22.6.4 diac = 24•in caisson diameter le:= 0.89•diac 1, = 21.36•in equivalent square section length fc = 3000•psi compressive strength of concrete 0.75 shear reduction factor (ACI Table 2 1 .2. 1) clr = 3-in concrete cover to reinforcing Bar := 5 reinforcing bar size in slab tc = 15•in design concrete slab thickness db = 0.625•in reinforcing bar diameter 1,,,i„ = 16•in min. caisson center distance from slab edge Column —Location := corner location of caisson beneath slab (interior, edge, or corner) - corner case Ghoosen for conservatism) as = 20 location constant (ACI Sect, 22.6.5,3) d := tc — clr — 0.5•db d = 11.688•in effective depth of concrete slab P,, := 1.4(max(P) — Pc) P,, = 27.597•kip ultimate factored vertical loading Vu Pu V, = 27.597•kip ultimate factored 2-way shear stress bo = 54.407•in perimeter of critical section (ACI Sect. 22.6,4. 1) 0 := 1.0 ratio of long side to short side of concentrated load or reaction area Vcl := 4• fc.T•bo•d )v—fc-c-bo-d Vo2:= 2 + as•d Vc3 2 + b fc.b•bo•d 0 Vc := min(Vcl , Vc2, Vc3) (�•Vc = 104.487•kip Vcl = 139.316•kip (ACI Eq. 22.6,5.2a) Vc2 = 208.974 • kip (ACI Eq, 22. G. 5.2b) Vc3 = 219.293•kip (ACI Eq. 22.G.5.2c) Vc = 139.316•kip nominal shear strength of concrete V. = 27.597-kip Punching_Shear = "PASS" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report.pdf 10/05/2020 10:52:32 AM © Pool Engineering, Inc. 2020, Page 47 of 47 % i' pool 120/ A/. Tustin Avenue Ron Lacher, R.C.E. engineering Anaheim, CA 52607 Fax: (7/4) 630-6/ l4 Phone: (7 / 4) 630-6 / 00 5 TRUCTURAL CALCULA T/ON5 FOR Ca155on 5upported 5w1mm1ng Pool *Spa AT Oceanvrew 3235 Ocean Blvd. Q?,OFESS No. 74003 Exp. 6/30/21 Corona De/ Mar, CA 92625 9T� OF CA` CITY OF NEWPORT BEACH COf:1.dI1JNITY DEVELOPMENI DEPAR H.4171,1T APPROVAL OF THESE PLANS DO!—k:jI ''.IflSTITUTE EXi-i-'E' IidPLIFD AUTHORIZATION TO CONSTRL'i:T :',>.!r .—DING IN `;;C,i, '?R INCONSISTENT WITH THE ORDINXJ .b- ;,;,;S, AhID POL!"'I! PF NEWPORT BEACH. THIS APPROVAL !. Ur GUAR/JNTEE ARE, IN ALL RESPECTS, IN COMPL TH CITY, BUILT' ORDINANCES, PLA11S AND POLICIES rr`", ,ITY OF NEVv 01,1 - THE RIGHT TO RF_OUIRE ANY PERMIT I2FVISE THE PUiLi IMPROVENIFNT AUTHORIZED BY ll -:-: ,NS BEFOI-'E' [U..'.' COHSfRUCI ON. IF NECESSARY TO Cr ''. r' 'WITH THE ORDINAI I(- P(.A-ICIES OF I HE CITY OF NEW FORT fiL!:C_;i PERMITTEE'S ACKNOWLEDGEMENT (SIGNATURE) PUBLIC WOR — SIGNATURE PUBLIC WORKS___ — GEAIERAL SERVICES -- EIRE __ _---- — GRADIN — -- — — PLAIVIJI ,Q — v, APPRG'iAL TO BUILDING: DATE DESIGN BASED ON CBC 2019 EDITION AND GEOFIRM SUPPLEMENTAL GEOTECHNICAL RECOMMENDATIONS FOR PROPOSED POOL (PROJECT No: 72370-01) DATED 4/29/20 & REVISED 6/19/20 REINFORCING: Fr = 40,000 PSI (Grade 40) Fv = 60,000 PSI (Grade 60) CONCRETE: f e = 3,000 PSI HYDROSTATIC PRESSURE: 62.4 PCF SOIL EQUIVALENT FLUID PRESSURE: 60 PCF SKIN FRICTION: 300 PSF PASSIVE PRESSURE: 150 PCF (Beach Deposits), 400 PCF (Bedrock) \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1j.pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 1 of49 AWI \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final. Report [REV,1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc, 2020, Page 2 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool CONCRETE PROPERTIES: 6, := 150pcf unit weight of reinforced concrete (�f := 0.90 flexural reduction factor e,,:= 0.003 crushing strain of concrete elre := 3in reinforcing cast against earth EC = 3122.019•ksi modulus of elasticity POOL PROPERTIES: Dp := 5ft max. pool depth Db := 3ft Max. basin depth wb := 1.5ft max. basin width Dv := 12in max. vault depth wv := 6in max. vault width dia, := 24in diameter of caisson ACRYUC PANEL PROPERTIES: tr:= 5in min. thickness of rabbet dr min := 3in min. depth of rabbet dr max gin max. depth of rabbet f, := 3000•psi compressive strength of concrete (�5 := 0.75 shear * torsion reduction factor 131=0.85 a.=0.72 clr,v:= 2in reinforcing exposed to weather b := 12in design strip width tpw := 12in pool wall thickness tpf := 15in pool floor thickness tbw:= 6in basin wall thickness tVW := 6in vault wall thickness t,f:= 6in vault floor thickness ryw := 62.4pcf unit weight of water LL := 100psf live load hw := 18in Max. exposed height of acrylic window Vi := 751b impact load per acrylic manufacturer 501L PROPERTIES: Geotechnical information provided by Geofirm (Project No: 72370-01 dated 4/29/20 � revised 6/ 1 9/20) 1,,:= 60pef ec[uivalent fluid pressure d,nin := 5ft minimum depth into bedrock 9a 8000psf allowable bearing capacity D2 := 15ft maximum depth to bedrock FA := 300psf skin friction 'yp := 400pcf passive earth pressure \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 3 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Vault Wall - Concrete Flexural.Dcsli n - U.5.D. Method Reinforcing Properties: clr := "earth" clearance type to steel x := 1 # of curtains of steel Vertical Steel: Horizontal Steel: Bart := 4 Size SPt := 12in spacing Bart := 4 size GRt = 40 grade fyt = 40•ksi yield strength GR2 = 40 grade dbt = 0.5•in dia. As1 = 0.196•in2 steel area db2 = 0.5•in dia. Concrete Properties: SP2:= 12in Spacing fyz = 40•ksi yield strength A,2 = 0.196-in 2 steel area tew := taw t, , = 6-in thickness a := A�t•fyta = 0.257•in ecluivilent rectangular stress block d = 2.75•in effective depth of reinforcing Et := E„• d — c Et = 0.024 net tensile Strain c ('f = 0.9 adJusted strength reduction factor Load i ng : 0.85•f,. b c := a c = 0.302•in distance to neutral axis �t check = "tension -controlled member" D2b D2b Vu := ma 1.6• rya 2 + 1.6LL•(wv + tpw)•b,1.4• ^ia Dv 3•b (w + tPw `2 D 3 b Mu := ma 1.6• + 1.6LL• •b,1.4• yw 6 2 6 Vu = 288 lb Mu = 196 ft• lb factored shear factored moment \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11 /18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 4 of 49 Pool Encgineermg, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Strength Check: �Vc :_ (�s 2 fc t b•d �Vc = 2711.21b Vt, = 288 lb < OVc = 2711.2lb Checicv = "OK" t Mn := �'f-A.,,•fy,•(d — 2) OM, = 1544.3 ft•Ib M„ ft = 196 lb `\ < Wn = 1544.3 ft•lb Check,�,1 = "OK" Check Minimum/Maximum Steel Area: Pi := 10.0012 if Bar, <_ 5 A fy, >_ 60000psi 0.0015 otherwise Pt := 0.0020 if Bare <_ 5 A fy2 >_ 60000psi 0.0025 otherwise pi = 0.0015 min. vertical steel ratio (ACI Table I I G. I ) pt = 0.0025 min. horizontal steel ratio (ACI Table I I . G. I ) t •b As minl Pi cw As mine = 0.108 • in2 < As, = 0.196 • in2 Checic=miul °OK' x t •b As mint := Pt' cw As mint = 0.18 in2 < As2 = 0.196•in2 Chec1cmin2 = °OK" x As max = 0.85•0.1 fc Eu )-b-d As max = 0.766•in2 ' As, = 0.196•in2 a Cheelc,nx = "OK" fyt En + 0.004 - final Results: CONCRETE = "6in. THICK WALL w/ REINFORCING 3in. CLR." REINFORCING = "#4 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C., (1) CURTAIN" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 5 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Vault Floor - Concrete Flexural Design - U.S.D. Method Reinforcing Properties: elr := "exposure" clearance type to steel x := 1 # of curtains of steel Transverse Steel: Longitudinal Steel: Bar, := 4 size SP, := 12in spacing Bare := 4 size SP2 := 12in spacing GR, = 40 grade fy, = 40•ksi yield strength GR2 = 40 grade fy2 = 40•ksi yield strength dbt = 0.5•in dia. As, = 0.196_in 2 steel area db2 = 0.5•in dia. AS2 = 0.196•in2 steel area Concrete Properties: A3i•fyi tcs:= tvf tcs = 6•in thickness a := a = 0.257•in ec]uivilent rectancjular stress block d = 3.75•in effective depth of reinforcing Et := E,A• d — c et = 0.034 net tensile strain c Vf= 0.9 aclg5ted strength reduction factor 0.85•fc- b e := a c = 0.302•in distance to neutral axis 01 check = "tension -controlled member" Loading: Pvw := 6c•tvw•(Dv + tvf)•b Pvw = 112.5 lb Pvf := (6c•tvf + ^yv Dv)•wv•b Pvf = 68.7lb V„ := max 1.4•(Pvµ, + Pvf),1.2•(Pvw + Pvf) + 1.6•LL•(wv + t,,, + tvw)•b] V„ = 537.44lb factored shear t2 v ryW 3 b M,,, := 1.4 Pvw. + WV) + Pvf• + Mu, = 156.7 ft•lb ` 2Vw 6v . t2 3 ryW b vv t2 Mi2 := 1.2 Pvw. + wvJ + Pvf•2v + 1.2• + 1.6•LL•b•(wv + tPw + tv,)•I + wvJ M,,, = 376.8 ft.lb 6v M„ := max(M,,,,Mi2) M. = 376.8 ft•lb factored moment My := M„ \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 6 of 49 'ool Engineering, Inc. Caisson Supported Designer: C,J.B Swimming Pool Strength Check: �Vc := (�s•2• fc -b•d (�Vc = 3697.1 lb V„ = 537.4 lb < -bVc = 3697.1 lb Checkv = "OK" �Mn := (�'f•As1•fyl•d — ' (�M„ = 2133.3 ft•lb 2) Mu = 376.8 ft•lb `` < (�M„ = 2133.3 ft•lb CheekM = "OK" Check Minimum/Maximum Steel Area: pl := 0.0020 if fy1 < 60000psi p1 = 0.0020 min, longitudinal steel ratio (ACI Table 7. G. I . I) max(108 , 0.0014� otherwise fy1•i P2 := 0.0020 if fy1 < 60000psi P2 = 0.0020 min. transverse steel ratio (ACI Table 24,4.3.2) 108 max , 0.0014 otherwise C fyl � As mini = P1'tcs•b As mi,t = 0.144•in2 < As, = 0.196 in Checkminl t •b As mint := p2 cs As min2 = 0.144 • in2 < As2 = 0.196-in 2 Checkmin2 = "OK" x - As_ nax := 0.85.01 • f c •b • d As max = 1.045 -in 2 > - As1 = 0.196 in Checkmax = "OK" fyi Eu + 0.004 Final Results: CONCRETE = Min. THICK SLAB w/ REINFORCING 2in. CLR. FROM TOP" REINFORCING = "#4 TRANSVERSE BARS @ 12in. O.C. & #4 LONGITUDINAL BARS @ 12in. O.C., (1) CURTAIN" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report (REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 7 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Pool Wall -Concrete Flexural Deslgn - U.S.D. Method Reinforcing Properties: elr := "earth" clearance type to steel x := 2 # of curtains of steel Vertical Steel: Horizontal Steel: Bar, := 4 size SPt := 12in spacing Bare := 4 size GRI = 40 grade fyt = 40•ksi yield strength GR2 = 40 grade dbi = 0.5•in dia. As, = 0,196_in 2 steel area db2 = 0.5•in dia. Concrete Properties: SP2:= 12in spacing fy2 = 40•ksi yield strength As2 = 0.196 in steel area tCW := tpW tCW = 12•in thickness a Asl.fyl a = 0.257•in equivalent rectangular stress block 0.85•fc- b d = 8.75•in effective depth of reinforcing e := a c = 0.302•in distance to neutral axis 131 et := e„ • d - c et = 0.084 net tensile strain check = "tension -controlled member" c O,f = 0.9 adJusted strength reduction factor Load i ne : 2 -y..Dp .b Vw. 2 _-la'(Dp)2-b Vs. 2 VU := max 1.4• Vw,1.6• Vsl D 3p D Ms := Vs 3p MU := max(1.4•Mw + Mv,1.6•Ms) Vw = 780 lb lateral from water pressure Vs = 750lb lateral from soil pressure V. = 1200lb max. factored shear Mw= 1300ft•lb flexure from water pressure Ms = 1250ft•lb flexure from soil pressure M„ = 2197 ft•lb max. factored moment \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 8 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Strencith Check: �Vc := (�s•2 fe �•b•d (�V, = 8626.61b Vn = 1200lb < c�Vc = 8626.6 lb ChecicV = "OK" �Mn:= O'f•Asl•fyl•I d- OMn= 5078.6ft. lb \ 2J Mn = 2197 ft. lb < OM„ = 5078.6 ft• lb ChecicM = "OK" Check Minimum/Maximum Steel Area: pi := 0.0012 if Bar, <_ 5 A fy, >_ 60000psi pi = 0.0015 min, vertical steel ratio (ACI Table I I G. 1) 0.0015 otherwise pt := 0.0020 if Bare <_ 5 A fy2 >_ 60000psi pt = 0.0025 min, horizontal steel ratio (ACI Table I I . G. I ) 0.0025 otherwise t •b As mini = Pl cw As mini = 0.108 •in2 < Ai = 0.196 • in2 x t •b As mint pt cW As mint = 0.18•in2 < As2 = 0.196•in2 x - As_max 0.85•131• fc • •b•d As max = 2.43.8•in2 i As, = 0.196•in2 fy1 - Final Results: CONCRETE _ "12in. THICK WALL w/ REINFORCING Sin. CLR." REINFORCING = "#4 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C." Checkminl = "OK" Chec1cn,in2 = "OK" Checkmax = "OK" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report (REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 9 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Basin Wall - Concrete Flexural Design - U.S.D. Method Keinforcina Properties: elr := "earth" clearance type to steel x := 1 # of curtains of steel Vertical Steel: Horizontal Steel: Bart := 4 size SPt := 6in spacing Bar2:= 4 size GRt = 40 grade fyt = 40•ksi yield strength GR2 = 40 grade dbt = 0.5•in dia. A,, = 0.393 in steel area db2 = 0.5•in dia. Concrete Properties: SP2:= 12in spacing fy2 = 40•ksi yield strength As2 = 0.196•in2 steel area tcW := tbN, t,,,, = 6•in thickness a := A�t•fyta = 0.513•in equivalent rectangular stress block d = 2.75•in effective depth of reinforcing Et := e„ • d — c et = 0.011 net tensile strain c Of = 0.9 adJusted strength reduction factor Load ine: 0.85•f,. b c := a c = 0.604•in distance to neutral axis (31 check = "tension -controlled member" Vg := 2001b guardrail (by others) hg := 3.5ft height of rail Db2•b V„ := max(1.4•ry,,,,1.6•rya)+ 1.6•V9 2 Db3 b ML, := max(1.4•-y,,,,1.6•-ya)• 6 + 1.6•Vg•(hg + Db) V„ = 752 lb M„ = 2512 ft• lb factored shear factored moment \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 10 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool StrencJth Check: �Vc, := �)s•2• F•b•d (�V, = 2711.2lb V« = 7521b < cbVc = 2711.21U Cheeky = "OK" Wn:= (�'f'Ast'fy,•d - 2) (�Mn = 2937.4 ft.lb Mu = 2512 ft. lb \\ < omn = 2937.4 ft• lb CheckM = "OK" Check Minimum/Maximum Steel Area: pl := 0.0012 if Bar, <- 5 A fy, >_ 60000psi 10.0015 otherwise pt := 0.0020 if Bar2 <_ 5 A fy2 >_ 60000psi 0.0025 otherwise p, = 0.0015 min. vertical steel ratio (ACI Table I. I G. 1) pt = 0.0025 min. horizontal steel ratio (ACI Table I I .G. I ) t •b As mint := P1 cw As mini = 0.108•in2 < Ast = 0.393'in 2 Checkmint = "OK" x t •b As mm2 •— Pt' cw As min2 = 0.18•in2 < As2 = 0.196•in2 Checkmii2 = "OK" x _ As max = 0.85•01' Fc , E. .b•d As max= 0.766•in2 % As, = 0.393•in2 Checkmax= "OK" fy, r u + 0.004 - Final Results: CONCRETE = "6in. THICK WALL w/ REINFORCING 3in. CLR." REINFORCING = "#4 VERTICAL @ 6in. O.C. & #4 HORIZONTAL @ 12in. O.C., (1) CURTAIN" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report (REV.1j.pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 11 of 49 Pool Engineering, Inc. Ca155on Supported Designer: C.J.B. Swimming Pool Rabbet Flexural Design (Check Rabbet Min. Depth) - U.S.D. Method Reinforcing Properties: Vertical Steel: Bar, := 4 size GR, := 40 grade SP, := 12in Spacing dbl = 0.5•in diameter fy, = 40•ksi yield Strength A51 = 0.196•in2 steel area per design strip horizontal Steel: Bare := 4 Size GR2 := 40 grade SP2 := 12in spacing db2 = 0.5•in diameter fy2 = 40•ksi yield Strength A52 = 0.196 in steel area per design Strip Concrete Properties: d, := c1r,n,+ 0.5•dbl d, = 2.25•in effective depth (pool Side) d2 := clre+ 0.5•dbl d2 = 3.25•in effective depth (soil bide) As f yl a a = 0.257•in eduivilent rectangular stress block e := c = 0.302-in distance to neutral axis 0.85•f,:•b 131 mind, , d2) - c Et := e„ Et = 0.019 net tensile strain check = "tension -controlled member" c ('f = 0.9 adjusted strength reduction factor Loading: 2 'yw•hW .b VW := Vµ, = 70.2lb shear from water pressure 2 V,,, := max( 1.4•Vw,1.2•Vw + 1.6•Vi) V,,, = 204.241b total factored shear from loading 3 'yw•hW •b MW := Mw = 35.1 ft•lb flexural from water pressure 6 Mi := Vi•hW Mi = 112.5 ft•lb flexural from impact load M„, := max(1.4•Mw,1.2•Mw+ 1.6•Mi) M,,, = 222.12ft. lb total factored flexural from loading V,,2 := M., Vn2 = 888.48lb factored shear reaction at bottom of rabbet d,-Min Vi3 := Vu2 + Vi1 Vi3 = 1092.72 lb factored shear reaction at top of rabbet M,,:= J-dr min + Mul M„ = 495.3 ft• lb max. factored moment in rabbet \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 12 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Strength Check: �Vc1 :_ �s 2 fc b•d1 (�Vc1 = 2218.3lb allowable shear (pool side) Vu2 = 888.5 lb < Oct = 2218.3 lb 0c2 := (�s'2 fe i,•b•d2 0,2 = 3204.2lb allowable shear (soil side) Vii3 = 1092.7 lb < Oc2 = 3204.2 lb Checicv = "OK" Wn,:= �)If'AsI-fyI I d2 2 I Wn = 1838.8 ft•lb Mn = 495.3 ft•lb < (�Mn = 1838.8 ft•lb Checkm = "OK" Tensile -Reinforcement = "is at least one-third greater than that required by analysis" Check MinimunWaximum Steel Area: E. 2 As -max 10.85.01 • rc 1 b • d2 As_max = 0.906 • in fy1 r✓u+ 0.004/) As1 = 0.196 • in2 < As max = 0.906 • in Checicniax = "OK" 3 • 1.• rc 200 2 As min := max , —)-b-d2 As min = 0.19.5 in fy1•L fy1•L _ As1 = 0.196 in > As in = "N/A" •in2 Checkmin = "N/A per ACI 318 Section 10.5.1" Final Results: CONCRETE = "5in. MIN. RABBET THICKNESS, 3in. MIN. DEPTH" REINFORCING = "#4 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C." \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 13 of 49 'ool Engineering, Inc. Caisson Supported Designer: C.J.13 Swimming Pool Rabbet Flexural Design (Check Rabbet Max. Depth) - U.S.D. Method Lo_LO_ adine: Mul Vu2 :_ dr max Vu3 Vu2 + Vul Mu Vu3•dr max + Mul Strength Check: Val 05.2- fu•L•b-dl Vu2 = 296.2 lb Vu2 = 296.16lb factored shear reaction at bottom of rabbet Vu3 = 500.4lb factored shear reaction at top of rabbet Mu = 597.42 ft•lb max. factored moment in rabbet �)Vcl = 2218.3lb allowable shear (pool side) 0,:1 = 2218.3 lb b•d2 Or2 = 3204.2lb allowable shear (soil side) Vu3 = 500.41b OVc2 = 3204.2lb Checkv = "OK" OMn O'f•Asl'fyl'I d2 2� OMn = 1838.8 ft•lb Mu = 597.4 ft• lb < (�M„ = 1838.8 ft. lb Checkm = "OK" Tensile Reinforcement = "is at least one-third greater than that required by analysis" Check Minimum/Maximum Steel Area: fu 2 As_max 0.85.01• ' Eu b-d2 As max = 0.906•in fyi Eu + 0.004 As max 1 = 0.196 • in2 < AS max = 0.906 • in2 As min max 3 f� 200 ).b.d2 As min = 0.195 • in2 fyl.L fyl.L — A,, = 0.196 • in2 > As min = "N/A" -in 2 Checkma, = "OK" Checkmin = "N/A per ACI 318 Section 10.5.1" Final Results: CONCRETE = "5in. MIN. RABBET THICKNESS, 9in. MAX. DEPTH" REINFORCING = "#4 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C." \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 14 of49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Weir Wall - Concrete Flexural Design - U.S.D. Method Reinforcing Properties: clr := "earth" clearance type to steel x := 2 # of curtains of steel Vertical Steel: horizontal Steel: Bart := 4 Size SPt := 12in spacing Bare := 4 Size GRt = 40 grade fyt = 40•ksi yield strength GR2 = 40 grade dbt = 0.5•in aIa. Alit = 0.196•in2 steel area db2 = 0.5•in dia. Concrete Properties: SP2:= 12in spacing fy2 = 40•ksi yield strength As2 = 0.196 in steel area tcW := tPW tcW = 12•in thickness a := A!;t•fyta = 0.257•in equivalent rectangular stress block d = 8.75•in effective depth of reinforcing Et := Eu• d — c Et = 0.084 net tensile Strain c (�'f = 0.9 adJu5ted strength reduction factor Loading: DP Vt, := 1.4•�y�, P V„ = 1092lb 2 Dip 3•b Mu := 1.4•-yµr 6 + 1.6• Vi•DP Mu = 2420 ft• lb 0.85•fC•b c := a a c = 0.302•in distance to neutral axis check = "tension -controlled member" factored shear factored moment \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report (REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 15 of 49 Pool Engineering, Inc. Caisson Supported Designer: C:J.B. Swimming Pool Strength Check: -b•d OVA = 8626.61b V„ = 10921b < OV, = 8626.61b Checkv, = "OK" OM.(�'f•Ast•fyl•I d - 2J OM, = 5078.6 ft•lb Mu = 2420 ft• lb \ < OM,, = 5 07 8.6 ft. lb I Checkm _ "OK" Check Minimum/Maximum Steel Area: if Bar, <- 5 A fy, >_ 60000psi I0.0012 0.0015 otherwise Pt := 0.0020 if Bar2 S 5 A fy2 >_ 60000psi 0.0025 otherwise p, = 0.0015 min. vertical steel ratio (ACI Table I I G. I ) pt = 0.0025 min. horizontal steel ratio (ACI Table I I .6. I ) As mint PIt cW•b As mini = 0.108•in2 < Asl = 0.196 in x - tcw •b As mint pt As min2 = 0.18 • in2 < As2 = 0.196 • in2 - x - Amax 0.85•j31• Fc • E" •b•d As max = 2.438•in2 > Ast = 0.196•in2 s fy1 €l, + 0.004 - Final Results: CONCRETE = "12in. THICK WALL w/ REINFORCING 3in. CLR." REINFORCING = "#4 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C." Checkmin i = "OK" Checkmin2 = "OK" Checicmax = F"71 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 16 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Welalht5 for Floor Slab Loadln W f := 6,. tpf Wf = 187.5 • psf Ww := yw•Dp Ww = 312•psf Wd := Wf + Ww Wd = 499.5 • psf Wbn :_ (6c — -yV,)•(Dp — 18in) Wbn = 306.6•psf Wss :_ (6, —-Iw)'(Dp — 6in) Wss = 394.2•psf WWI := 6,.(Dp + tpf)•tPW WWI = 937.5•plf (sc - 'yw) Ww2 '— ' WWI be Ww2 = 547.5 •plf Ww3 := 6c•(Db + tpf)'tbw ww3 = 318.75•pl Pvw + Pvf WV := b wV = 181.2•plf distributed weight of floor slab distributed weight of pool water distributed design weight additional distributed weight on non-structural bench additional distributed weight on non-structural shelf linear weight of pool wall additional linear weight of weir wall f linear weight of basin wall linear weight of vault \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM 0 Pool Engineering, Inc. 2020, Page 17 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Floor Slab - Concrete Flexural Desi n - U.S.D. Method Reinforcing Prol?erties: elr := "earth" clearance type to steel x := 2 # of curtains of steel Transverse Steel: Longitudinal Steel: Bar, := 5 size SP, := 6in spacing Bart := 5 size GR, = 60 grade fy, = 60•ksi yield strength GR2 = 60 grade db, = 0.625•in dia. ASS = 0.614•in2 steel area db2 = 0.625•in 'dia. Concrete Properties: �i•f i SP, := 6in spacing fy2 = 60•ksi yield strength As2 = 0.6144•in2 steel area tcs tpf tcs = 15•in thickness a := y 0.85•fc- b a = 1.203•in equivalent rectangular stress block cover = 3.625•in conc coverage to reinforcing e := a c = 1.415•in distance to neutral axis �I d := tcs — cover — dbt d = 11.063•in effective depth of reinforcing 2 Et = E,; d — c Et = 0.02 net tensile strain check = "tension -controlled member" c ('f = 0.9 adjusted strength reduction factor 1,,, := 10.5ft max. design span lc, := 3.5ft 1r2 := 6ft min. design span lc2:= 4.5ft max. longitudinal cantilever max. transverse cantilever \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 18 of 49 'ool Engineering, Inc. Caisson Supported Designer: C.J.3 Swimming Pool . Shear Loading: Vt (Wd + Wss)'b•lni := 1.4 Vl = 65691b 2 V2 := 1.41(Wd + Wss)•(lcl — tpw) + wwl + wv]•b V2 = 46941b V3 := 1.41Wd• (1c2 — tbw) + Ww2 + ww3] •.b V3 = 4010 lb (Wd + Wss)•(lcl — tpw + 0.5•ll,l) + Wwl + Wv lnl 4 lcl + 0.51i1 2 IV:= 1.4• b• 2 V4 = 6758lb (Wd + Wss).0a — tpw + 0.5•1n2) + Wwl + Wv lnl V := 1.4• . b•— V = 6823lb 5 1c1 + 0.51n2 2 5 Wd• (lc2 — tbw + 0.5.1„l) + Ww2 + Ww3 lnl V := 1.4• b•— V = 41361b 6 1c2 + 0.51i1 2 6 Wd•(lc2 — tbw + 0.5.1n2) + Ww2 + Ww3 lnl V7 := 1.4 b• 1 + 0.51 •2 V� = 42751b c2 n2 Flexural Loading: (Wd + Wss)'b'1n12 M 1 := 1.4 M 1 = 17243 ft• lb 8 M2 := 2 3 1. (Wd + Wss)• (lcl — tpw) + (Wwl + wv)• lcl - .tpw + �Iw Dp •b + My ( M2 = 10805 ft•lb 2 2) 6 2 r 1tbw1 3 (lc2 ryw6 p tP M3 := 2tbw) + W I 1 t W •b 1. W , d w2' \ c2 — tbw ` b — — w3' \ c2 — — J + w �1 J + M3 = 10844 ft•lb (Wd +W )(1 t +0.5.1 )+w +w 1 2 ss ' cl — pw nl w1 v ul M := 4 1.4• b 1c1 + 0.51i1 8 M = 4 17739 ft•lb (Wd + Wss)•(lcl — tpw + 0.5.1n2) + Wwl + Wv 1u12 M := 5 1.4• •b•— lcl + 0.51n2 8 M = 5 17911 ft•lb W •(1c2 — tbw + 0.5•Inl )+ Ww2 + w 1 2 a w3 nl M := 6 1.4• b• lc2 + 0.51n1 8 M = 6 10857 ft•lb Wd' (Ic2 — tbw +0.5.1n2 )+ww2 +ww3 1 ill 2 M := 7 — 1c2 + 0.51n2 1.4• b • 8 M = 11223 ft• lb � \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 19 of 49 'ool Engmeering, Inc. Ca155on Supported Designer: C.J.B Swimming Pool Strength Check: Vl, := max(V) V„ = 6823lb max. factored shear Mu := max(M) M„ = 17911 ft•lb max. factored moment �Vc:= (�s•2•Ju•b•d (�Vc= 10906.5lb Vn = 6823 lb < �Vc = 109O6.5 lb ICheckv = "OK" 0Mn �'f•Asl•fyl•I d - 2J, 0Mn = 28884.4 ft•lb M„ = 17911 ft•lb \ < 0Mn = 28884.4 ft•lb Cheelcm = "OK" Check Minimum/Maximum Steel Area: pi := 0.0020 if fyt < 60000psi C 108 max , 0.0014 otherwise fy1•� p2 := 0.0020 if fyt < 60000psi max(108 , 0.0014) otherwise fyt•L Pt = 0.0018 min. longitudinal steel ratio (ACI Table 7,6. 1. 1) p2 = 0.0018 min, transverse steel ratio (ACI Table 24.4.3.2) As -mint p l'tcs• b As minl = 0.324 •in2 < As 1 = 0.614 • in2 Checkmini = "OK" t •b As min2 := P2 cs As mine = 0.162 • in2 < As2 = 0.614 • in2 Checkmin2 = "OK" x - As maX := 0.85•131• fc • •b•d As max = 2.055•in2 ? Asl = 0.614•in2 Checkmnx = "OK" fy1 €n + 0.004 - Final Ke5ult5: (CONCRETE = "15in. THICK SLAB w/ REINFORCING tin. CLR. FROM TOP & 3in. CLR. FROM BOTTOM" REINFORCING = "#5 TRANSVERSE BARS @ 6in. O.C. & #5 LONGITUDINAL BARS @ 6in. O.C., (2) CURTAINS" 1 Mn(0.89diac+ 3•tcs) Mflr :_ — Mflr = 42448 ft•lb max. design flexure from floor slab 1 + 2 .,F1 1.4 b @ caisson dowels 3 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool.\Final Report [REV,1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 20 of 49 Pool EncJineerinq, Inc. C3155on Supported Designer: C.J.B. Swimming Pool Caisson Deslen dia, = 24•in diameter of caisson A, := 0.25.7r•dia, AJ = 3.142 ft 2 P, := 6,• A02 Pc = 70691b P,, := Ag rl, — P, P, = 18064 lb Vertical Load Analysis: P — Pi, D1 = Fsk'7. dia, P D1, caisson area cross-section additional weight of caisson above bedrock allowable end bearing capacity required embedment into competent bedrock to resist vertical loading T Wd Wbn Wss Ww1 Ww? Ww3 w, P,, Fsk dia,) \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1j.pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020. Page 21 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Lateral Load Analvsis: Nop = 8 total number of caissons Lt := 38ft total max. length of pool h,:= Dp + tpf hr = 6,25 ft max, retained height @ pool h2L VS 1'a' r • t 1 VS = 5566lb lateral soil load to caissons 2 Nop Vd := VS Vd = 5566.406lb Max. design lateral load MS := VS•D2 MS = 83496 ft. lb flexure from soil load to caissons Md:= MS+ Mflr Md= 125944ft. lb max. design moment FlacJpole Footing, Non -constrained at Ground Level for Isolated Caisson - Per IBC/CBC Section 1 805.7.2 M h := a h = 22.626 ft effective height to resultant dt = 12.16 ft trial depth for iteration Vd ( d 1 Pp :_ Pp = 400•pcf nominal passive pressure S1 min Pp 3t) S1 = 1621.556•psf 2.34 V A := d dr A 1 + 1 + 4,36 h dr = 12,16 ft recluired depth for iteration S1•dia, 2 A Dli := Ceil(dr, Ift) D11 = 13 ft mina embedment depth to resist lateral loading Final Min. Caisson Embedment Results: D1 := max(max(D1,),D11)dmin) D1 = 20ft r, \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 22 of 49 Pool Engmeermqj, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Structural Design of Cai55on5: P„ := 1.2 max(P) V,, := 1.6V5 MU := max(1.4•Mfl,.,1.2•Mfl,. + 1.6•M0 P„ = 65.844•kip max. ultimate factored vertical load V„ = 8.906•kip max. ultimate factored shear M„ = 184.532•kip•ft max, ultimate factored moment Set Lateral Force ecival to Passive Resistance and solve for depth to max. moment in caisson 1.6Pp• diap• df2 2 - Vu V„ = 2 Lateral Force Equilibrium Solving for depth, we get df 1.6P •dia p c df = 3.73 ft depth to point of max. moment in competent bedrock To obtain Max Dending Moment on caisson we sum moments about the above calculated point: •dia� df3 M'„ := M„ + V„P•df — 1.6 p 6 M'„ = 206.681- kip •ft Factored Ultimate Moment M„ d := 1.4•Mfl, Mud = 59.428•kip•ft Factored Ultimate Moment at.dowe15 P„_d:= 1.2(max(P) — Pr) P„_d = 57.362•kip Factored Ultimate vertical load at dowels See CSI Column Calculation Sheets (followln ) for Concrete De5icin of Cal55on5 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 23 of 49 Project Information Project Job No Company Designer Remarks Software File Name Working Units Design Code Column:Pile 3235 Ocean Blvd 20-0316 CJB flexural caisson design - pool CSICOL (Version: 8.0 (Rev. 0)) W:\Projects\2020\0316-20 Caisson Pool \flexural pile design - pool US (in, kip, k-ft, ksi) ACI-318-14 Basic Design Parameters Caption = Pile Default Concrete Strength, Fc = 3.00 'ksi Default Concrete Modulus, Ec = 3200.00 ksi Maximum Concrete Strain = 0.003 in/in Rebar Set = ASTM Default Rebar Yeild Strength, Fy = 60.00 ksi Default Rebar Modulus, Es = 29000.00 ksi Default Cover to Rebars = 4.000 in Maximum Steel Strain = Infinity Transverse Rebar Type = Ties Total Shapes in Section = 1 Consider Slenderness = No \\pe-file\Po.ol\Projects\2020\0316-20 Caisson Pool\Final Report (REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 24 of 49 24.(00 12. 1 .000 •; Y'`:... . X'`: tip•' 0 3 3 '. X..i }! . X n,•,Cix;. ��K• � i x ,K ,y 1 x A /•y, i. +'� ./f%{ l 7 ? x �;��r?':'C Y• Section Diagram Cross-section Shapes Shape Width Height in in Circle 24.000 24.000 Rebar Properties Sr.No Designation Area in^2 1 #8 0.79 2 #8 0.79 3 #8 0.79 4 #8 0.79 5 #8 0.79 6 #8 0.79 7 #8 0.79 8 #8 0.79 8-#8 Total Area = 6.32 Steel Ratio = 1.40 Basic Section Properties: Total Width = 24.00 Total Height = 24.00 Center, Xo = 0.00 Center, Yo = 0.00 Conc Fc S/S Curve Rebars ksi 3.000 ACI-Whitney Rectangular 848 Cord-X Cord-Y Fy S/S Curve in in ksi 20.000 12.000 60.00 Elasto-Plastic 17.657 17.657 60.00 Elasto-Plastic 12.000 20.000 60.00 Elasto-Plastic 6.343 17.657 60.00 Elasto-Plastic 4.000 12.000 60.00 Elasto-Plastic 6.343 6.343 60.00 Elasto-Plastic 12.000 4.000 60.00 Elasto-Plastic 17.657 6.343 60.00 Elasto-Plastic in^2 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM ©Pool Engineering, Inc. 2020, Page 25 of 49 X-bar (Right) = 12.00 in X-bar (Left) = 12.00 in Y-bar (Top) = 12.00 in Y-bar (Bot) = 12.00 in Area, A = 452.39 inA2 Inertia, Ixx = 1.63E+04 in^4 Inertia, Iyy = 1.63E+04 inA4 Inertia, Ixy = 0.00E+00 inA4 Radius, rx = 6.00 in Radius, ry = 6.00 in Simple Loads Final Design Loads Sr.No Combination Pu Mux-Bot Muy-Bot Mux-Top Muy-Top kip k-ft k-ft k-ft k-ft 1 Combination1 65.844 206,681 0.00 0.00 0,00 2 Combination2 65.844 0.00 206,681 0.00 0.00 Result Summary SrAo. Combination Pu (kip) Cap. Ratio-Bot Cap, Ratio- Remarks Top 1 Combination1 65.844 0.926 0.083 Capacity OK 2 Combination2 65.844 0.925 0.083 Capacity OK \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 26 of 49 Column:Dowel Check Basic Design Parameters Caption Default Concrete Strength, Fc Default Concrete Modulus, Ec Maximum Concrete Strain Rebar Set Default Rebar Yeild Strength, Fy Default Rebar Modulus, Es Default Cover to Rebars Maximum Steel Strain Transverse Rebar Type Total Shapes in Section Consider Slenderness = Dowel Check = 3.00 = 3200.00 = 0.003 = ASTM = 60.00 = 29000.00 = 4.000 = Infinity = Spiral =1 = No ksi ksi in/in ksi ksi in 24.(00 .0w 12.000 1 r.: 4. CA 14, X� It it Section Diagram Cross-section Shapes Shape Width Height Conc Fc S/S Curve Rebars in in ksi Circle 24.000 24.000 3.000 ACI-Whitney Rectangular 845 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 27 of 49 Rebar Properties Sr.No Designation Area Cord-X Cord-Y Fy S/S Curve inA2 in in ksi 1 #5 0.31 20.000 12.000 60.00 Elasto-Plastic 2 #5 0.31 17.657 17.657 60.00 Elasto-Plastic 3 #5 0.31 12.000 20,000 .60.00 Elasto-Plastic 4 #5 0.31 6.343 17.657 60.00 Elasto-Plastic 5 #5 0.31 4,000 12.000 60.00 Elasto-Plastic 6 #5 0.31 6.343 6.343 60.00 Elasto-Plastic 7 #5 0.31 12.000 4.000 60.00 Elasto-Plastic 8 #5 0.31 17.657 6.343 60.00 Elasto-Plastic 8-#5 Total Area = 2.47 inA2 Steel Ratio = 0.55 % Basic Section Properties: Total Width = 24.00 in Total Height = 24.00 in Center, Xo = 0.00 in Center, Yo = 0.00 in X-bar (Right) = 12.00 in X-bar (Left) = 12.00 in Y-bar (Top) = 12.00 in Y-bar (Bot) = 12.00 in Area, A = 452.39 inA2 Inertia, Ixx = 1.63E+04 inA4 Inertia, lyy = 1.63E+04 inA4 Inertia, Ixy = 0.00E+00 inA4 Radius, rx = 6.00 in Radius, ry = 6.00 in Simple Loads Final Design Loads Sr.No Combination Pu Mux-Bot Muy-Bot Mux-Top Muy-Top kip k-ft k-ft k-ft k-ft 1 Combinationl 57.362 0.00 0.00 57.362 0.00 2 Combination2 57.362 0.00 0.00 0.00 57.362 Result Summary Sr.No Combination Pu (kip) Cap. Ratio-Bot Cap. Ratio- Remarks Top 1 Combinationl 57.362 0.075 0.423 Capacity OK 2 Comb1nation2 57.362 0.075 0.423 Capacity OK \\pe=file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report (REV.1j.pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 28 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Swimming Pool Reinforcing Properties: Baru := 8 size of vert bars GRv := 60 vert bar steel grade Nobars := 8 number of vertical bars dg,, = 1 -in dia. of vert bars fy = 60.ksi yield strength of vert bars Asp, = 6.283 in area of vert steel Bard := 5 size of vert dowels GRd := 60 dowel bar steel grade dbd = 0.625•in dia. of vert dowels fy d = 60•ksi yield strength of vert dowels Barg = 4 size of horiz ties GRh := 40 horiz tie steel cJrade dbh = 0.5•in dia. of horiz ties fyt = 40•ksi yield strength of horiz ties s := 6in spacing of transverse reinforcement Ag = 3.142 ft2 gross area of concrete section SC = D site class xh = 0.5 site class multiplier Check = "Pass" CONCRETE = "24in. DIA CAISSON, fc = 3000psi (DESIGN STRENGTH)" VERT BARS = "(8) #8 VERTICAL BARS ENTIRE LENGTH OF CAISSON w/ #5 DOWELS TO FLOOR SLAB" HORIZ TIES = "USE #4 TIES @ 6in. O.C. THROUGHOUT CAISSON" I . \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 29 of 49 Pool Engineering, Inc. Caisson Supported Designer; C.J.B. 5wimming Pool. Check 2-Way Shear In Concrete Slab: AC13 18-14 5ectlon-22.6.4 diae = 24•in caisson diameter le: 0.89•diac le = 21.36•in equivalent square section length fe = 3000•psi compressive strength of concrete 0,75 shear reduction factor (ACI Table 2 1 .2. 1 ) clr = 3-in concrete cover to reinforcing Bar := 5 reinforcing bar size in slab to = 15•in design concrete slab thickness db = 0.625•in reinforcing bar diameter lmin = 16•in min, caisson center distance from slab edge Column_Location := corner location of caisson beneath slab (interior, edge, or corner) - corner case choosen for conservatism) US = 20 location constant (ACI Sect. 22.6.5.3) d := to — clr — 0.5•db d = 11.688•in effective depth of concrete slab P„ := 1.4(max(P) — P.) P„ = 66.922•kip ultimate factored vertical loading V" := Pt, VL, = 66.922•kip ultimate factored 2-way shear stress bo = 54.407•in perimeter of critical section (ACI Sect. 22.6.4. 1) := 1.0 ratio of long side to short side of concentrated load or reaction area Vc1 := 4 feL•bo•d Vc2 := C2 + 4)• f� tbo•d Vc3 := cxs • d 2 + fe ba d b 0 Vo := min(Vct, Vc2, Vc3) �-Ve= 104.487•kip Vc1 = 139.316•kip (ACI Eq. 22.6.5.2a) Vc2 = 208.974•kip (ACI Eq. 22. G.5.2b) Vc3 = 219.293-kip (ACI Eq. 22.G.5.2c) V,� = 139.316•kip nominal shear strength of concrete V„ = 66.922•kip Punching_Shear = "PASS" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report (REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 30 of 49 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 31. of 49 'ool Engineering, Inc. Caisson Supported Designer: C.J.B. Spa CONCRETE PROPERTIES: 6, := 150pcf unit weight of reinforced concrete Of:= 0.90 flexural reduction factor SU := 0.003 crushing strain of concrete clre := 3in reinforcing cast against earth EC = 3122.019.ksi modulus of elasticity SPA PROPERTIES: DS := 5ft max. spa depth hrbb 4ft max. raised bond beam height h ,t 6ft max. retained height ^li := 125pcf impact loading at debris wall fr:= 3000•psi compressive strength of concrete 0, := 0.75 shear * torsion reduction factor 31=0.85 a=0.72 clrw := 2in reinforcing exposed to weather b := 12in design strip width tsw := 12in spa wall thickness tsf 15in spa floor thickness 62.4pcf unit weight of water diac := 24in diameter of caisson 501L PROPERTIES: Geotechnical information provided by Geofirm (Project No: 72370-01 dated 4/29/20 * revised G/19/20) 60pcf equivalent fluid pressure di-ni„ := 5ft minimum depth into bedrock qa:= 8000psf allowable bearing capacity D2 := 15ft maximum depth to bedrock Fsk := 300psf skin friction di := 4ft soil ignored below spa bottom p 1 := 150pcf passive earth pressure (beach deposits) for lateral resistance ryp2 400pcf passive earth pressure (bedrock) \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final. Report (REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 32 of 49 Pool Engineering, Inc. Caisson Supported Desicgner: C.J.B. Spa Spa Wall - Concrete Flexural Dc5icn - U.S.D. Method Reinforcing Properties: clr := "earth" clearance type to steel x := 2 # of curtains of steel Vertical Steel: Horizontal Steel: Bart := 4 size SPt := 12in spacing Bare := 4 size SP2 := 12in spacing GRt = 40 grade fyt = 40•ksi yield strength GR2 = 40 grade fy2 = 40•ksi yield strength dbt = 0.5•in dia. Asl = 0.196•in2 steel area db2 = 0.5•in dig. As2 = 0.196_in 2 steel area Concrete Properties: A�;t'fyta tCW := tsw tc,n, = 12•in thickness a := = 0.257•in equivalent rectangular stress block 0.854,-b d = 8.75•in effective depth of reinforcing c := a e = 0.302•in distance to neutral axis 01 Et .— e„ d — c Et = 0.084 net tensile strain check = "tension -controlled member" c ('f = 0.9 adJusted strength reduction factor Loading: 2 `iw'Ds .b VW. 2 2 Ya,hret 'b Vs. 2 V,, := max(I ANW ,1.6• Vs) Ds MW . VW.-3 hret Ms := Vs•- 3 M„ := max(1.4•Mw,1.6•Ms) Vw = 780 lb lateral from water pressure Vs = 1080lb lateral from soil pressure V„ = 1728lb max. factored shear Mw = 1300lb. ft flexure from water pressure Ms = 2160lb- ft flexure from soil pressure M„ = 3456lb ft max. factored moment \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 33 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Spa 5trenoth Check: (�V, := cps 2 f� , b•d (�V, = 8626.6 lb V„ = 17281b < (�V, = 8626.6 lb Checku = "OK" (�Mn = (�'f'Asl'fyl•I d — 2) (pM,, = 5078.6lb•ft Mu = 3456 lb- ft \ < OMn = 5078.61b• ft CheckM = "OK" Check Minimum/Maximum5tee_I Area: pi := if Bari < 5 A fyl >_ 60000psi 10.0012 0.0015 otherwise Pt := 0.0020 10.0025 if Bare < 5 A fy2 >_ 60000psi otherwise p, = 0,0015 min, vertical steel ratio (ACI Table I I G. I ) pt = 0.0025 min. horizontal steel ratio (ACI Table I I . G. I ) t •b As min, := P,' cw As min, = 0.108 •in2 < As, = 0.196 • in2 x — t •b As mint := Pt' cw As mint = 0.18•in2 < As2 = 0.196•in2 x As max 0.85• 131. fc ' G. .b•d As max = 2,438•in2 > As, = 0.196•in2 fy, E , + 0.004 Final Re5ult5: CONCRETE _ "12in. THICK WALL w/ REINFORCING Sin. CLR." REINFORCING = "#4 VERTICAL @ 12in. O.C. & #4 HORIZONTAL @ 12in. O.C." Checkmin, _ "OK" Checkn,i„2 = "OK" Checkmax = "OK" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 34 of 49 Pool Engineering, Inc. Ca155on Supported Designer: C.J.B. 5pa Spa Wall @ Slope - Concrete Flexural De51con - U.S.D. Method Reinforcing Pronertie5: elr := "earth" clearance type to steel x := 2 # of curtains of steel Vertical Steel: [lorizontal 5teel: Bar, := 5 51ze SP, := 6in Spacing Bart := 4 Size GR, = 60 grade fy, = 60-ksi yield strength GR2 = 40 grade db1 = 0.625•in dia. As, = 0.614-in2 steel area db2 = 0.5•in dia. Concrete Propertie5: SP2:= 12in 5pacing fy2 = 40.ksi yield strength As2 = 0.196-in2 steel area tcw := tsw t,w = 12-in thickne55 a := AF1'fy1a = 1.203-in equivalent rectangular stress block 0.85-fc-b d = 8.688-in effective depth of reinforcing c := a c = 1.415-in distance to neutral axis 31 Et := e„- d - c et = 0.015 net tensile 5tra in check = "tension -controlled member" c Vf = 0.9 adju5ted strength reduction factor Loading: 2 (Ds + hrbb — hret'b v' 2 CDs + hrbb — hret M„ := 1.6•(MS + M;) V; = 281 lb lateral impact load at debris wall V„ = 2177lb max. factored shear Mi = 1966lb. ft flexure from impact load at debr15 wall M„ = 6601 lb-ft max. factored moment \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 35 of 49 Pool Engineering, Inc. Caisson Supported Deslgner: C,J.B. Spa Strength Check: OVc:= 0s•2• T u•b•d OVc= 856511b V„ = 2177lb < OVc = 8565 lb IChecicv = "OK" ,�Mn = O'r'Ast'fyt•d — 2) q)M„ = 22326.61b•ft MU = 6601 lb•ft < OM„ = 22326.6 lb•ft Checkm = "OK" Check Minimum/Maximum Steel Area: Pi := 0.0012 if Bart :5 5 A fyt >! 60000psi 10.0015 otherwise pt := 0.0020 if Bar2 <_ 5 n fy2 >_ 60000psi 0.0025 otherwise pt = 0.0012 min.. vertical steel ratio (ACI Table I I G. I ) pt = 0.0025 min. horizontal steel ratio (ACI Table I I . G. I ) t •b As mint = Pi cw As mint = 0.086•in2 < Ast = 0.614•in2 Checkmint = "OK" - x t •b As mint = pt' cw As min2 = 0.18 • in2 < As2 = 0.196 • in2 Chccicmin2 = "OK" — x As max:= 0.85• 15t' fc E. •b•d As max = 1.614•in2 % Aat = 0.614•in2 Check,nax = "OK" f � + 0 004 - y1 u Final Results: CONCRETE _ "12in. THICK WALL w/ REINFORCING 3in, CLR." REINFORCING "#5 VERTICAL @ 6in. O.C. & #4 HORIZONTAL @ 12in. O.C." \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report (REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 36 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Spa Floor Slab - Concrete Flexural Design - U.S.D. Method Keinforcma Properties: elr := "earth" clearance type to steel x := 2 # of curtains of steel Transverse Steel: Longitudinal Steel: Bari := 5 size SP1 := 6in spacing Bart := 5 size GR1 = 60 grade fy1 = 60•ksi yield strength GR2 = 60 grade dbl = 0.625-in dia. As1 = 0.614•in2 steel area db2 = 0.625-in dia. Concrete Properties: A!;14y 1 SP2 := 6in spacing fy2 = 60•ksi yield strength As2 = 0.614•in2 steel area tcs:= tsf tcs= 15•in thickness a:= 0.85•fc•b a — 1.203-in ecluivilent rectangular stress block cover = 3.625•in conic coverage to reinforcing c := a c = 1.415 in distance to neutral axis �1 d := tcs — cover — dbt d = 11.063•in effective depth of reinforcing 2 Et := E„ - d — c Et = 0.02 net tensile 5tram check = "tension -controlled member" c Of = 0.9 adJu5ted strength reduction factor Spans : 1r1 := 11.25ft Max. design span 1n2 := 3ft min. design span Weig ht5: Wf := 8c. tsf Ww := yw,Ds Wd := Wf + Ww Wbn :_ (8c — 1,,)-(D, — 18in) Wtf (8c--yw).(18in) Wa := max(Wbn° W f) Ww := 6c.(Ds + hrbb + tsf)-tsw 1, := 2.75ft max, cantilever Wf = 187.5 •psf W,,, = 312 • psf Wd = 499.5 • psf Wbn = 306.6•psf Wtf = 131.4•psf Wa= 306.6•psf ww = 1537.5•plf distributed weight of floor slab distributed weight of spa water distributed design weight additional distributed weight on non-structural bench additional distributed weight on non-structural shelf mist. additional weight for floor slab design linear weight of spa wall \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1j.pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 37 of49 Pool Engineering, Inc. Caisson Supported Designer; C.J.B. Spa Shear Loaciino,: Vl := 1.4 (Wd + Wa)'b'lnl 2 V2 1.4[(W(j + Wa)•i(l, — tsw) + ww]•b (Wd + Wa) • (1c — tsw + 0.5• ln2) + Ww 1.1 V3 := 1.4 1 + 0.51 b 2 c n2 Flexural Loadin M1 := 1.4 (Wd+ Wa)•b•In12 8 2 3 M2 := 1. (Wd + Wa) 2 tsw) + ww. (IC — tsw 2) + w 6DS .b (Wd +W)(l t +0.5.1 )+w 1 2 a ' c — sw n2 w nl M3 := 1.4• I + 0.51 .b: 8 c n2 Vl = 6348lb V2 = 4127lb V3 = 7703lb M1 = 17854lb•ft M2 = 8391 lb•ft M3 = 21665lb•ft \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report (REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc, 2020, Page 38 of 49 'ool Engineering, Inc. Caisson Supported Designer: C.J.B Spa Strenoth Check: VL, := max(V) VL, = 7703 lb max. factored shear MU := max(M) ML1= 21665 lb•ft max. factored moment f i b• d (�Vc = 10906.5 lb V„ = 7703 lb < (�Vc = 10906.5 lb Checicv = "OK" Wn := c 'g'As1'fyl•I d - a I Wn = 28884.41b•ft ML, = 21665lb•ft ` < J omn = 28884.4 lb•ft Checic,, _ "OK" Check Minimum/Maximum Steel Area: 131 :_ 0.0020 if fyl < 60000psi max 108 , 0.00141 otherwise P2 := 0.0020 if fyl < 60000psi max(108 , 0.0014) otherwise fy1• � pl = 0.0018 min. longituchnal'steel ratio (ACI Table 7.6. I. 1) P2 = 0.0018 min. transverse steel ratio (ACI Table 24,4.3.2) As mml P1'tcs'b As minl = 0.324•in2 < As1 = 0.614•in2 Checicminl = .'OK" t •b As min2 ;= P2 cs As min2 = 0.162 • in2 < As2 = 0.614 • in2 Checicmin2 = " OK" x - As max 0.85•01• fc ' �11 'b'd As max= 2.055•in2 > As1 = 0.614•in2 IChecicmax= "OK" fy1 Ea + 0.004 - Final Results: CONCRETE = "15in. THICK SLAB w/ REINFORCING tin. CLR. FROM TOP & 3in. CLR. FROM BOTTOM" REINFORCING = "#5 TRANSVERSE BARS @ 6in. O.C. & #5 LONGITUDINAL BARS @ 6in. O.C., (2) CURTAINS" 1 Mn (0.89diac+ 3•tcs) . Mfl,.:_ — Mflr = 51347lb•ft max. design flexure from floor 51ab 1 + 2 •� 1.4 b @ caisson dowels 3 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 39 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Spa Ca155on DC51 jn dia, = 24-in diameter of caisson Ag := 0.25-7r dia,2 Ag — 3.142 ft P, := 6,-Ag,D2 P, = 7069Ib Pn := Ag q, — Pe P�, = 18064 Ib Vertical Load Analysis: P — P, D1 = F, mdia, P D1, caisson area cross-section additional weight of caisson above bedrock allowable end bearing capacity required embedment into competent bedrock to resist vertical loading T l Wd Wbn Wtf w, Pa FA diac dmin \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1 ].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 40 of 49 Pool Engineering, Inc. Caisson Supported Designer: C.J.B. Spa Lateral Load Analvsis: Nop = 3 total number of caissons Lt := 15ft total max. length of spa h,•:= hret+ tsf hr= 7.25ft max, retained height @ pool h2L ' VS := 7i r t 1 VS = 78841b lateral sod load to caissons 2 Nop Vim := Vi Vim = 1404lb lateral impact load to caissons bt No P Vadd:= 2300plf•Lt•No V1dd= 115001b additional lateral load per soils engineer P Vd := VS + Vi + Vadd Vd = 19665.175 lb max. design lateral load Md := Vd-di Md = 78661 lb-ft Max. design moment at bedrock Flagpole Footing, Non -constrained at Ground Level for Isolated Caisson - Per IBC/CBC Section 1 505.7.2 M a h := h = 4 ft effective height to resultant dt = 23.37 ft trial depth for iteration Vd d 1 Pp:= ^fpl Pp = 150 pcf nominal passive pressure Si := min(PP' 3t I S1 = 1168.375 psf 2.34• V 4. h J A : dr := 2 1 + 1 + A dr = 23.37 ft required depth for iteration S •dial 1 c D3 := Ceil(dr, lft) + di D3 = 28 ft min. embedment depth to resist lateral loading Final Min. Caisson Embedment Results: D1 := max(max(D1,),dmin) D1 = 8ft required min, embedment depth D3 = 28ft required min. total embedment depth \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 41 of 49 Pool Encgineermg, Inc. Caisson Supported Designer: C.J.B. Spa Structural Design of Caissons: P,,:= 1.2max(P) PU 38.752•kip max. ultimate factored vertical load V„ := 1.6Vd V„ = 31.464•kip max, ultimate factored shear MU := max(1.4•Mgr,1.6•Md) Mu = 125.857•kip•ft max, ultimate factored moment Set Lateral Force ealual to Passive Resistance and solve for depth to max, moment in caisson 1.6Pp• diap- d f2 2 - V„ V. s 2 Lateral Force Ecluihbrium Solving for depth, we get df 1.6P •dia p c df = 11.45 ft depth to point of max, moment in competent bedrock To obtain Max Bending Moment on caisson we sum moments about the above calculated point: Pp-diaC'df3 ' M1U:=M11+V1,•df— 1.6 6 M'u=366.033•kip-ft Factored Ultimate Moment ML, d := 1,4•Mflr M„ d = 71.886•kip•ft Factored Ultimate Moment at dowels P„ d := 1.2(max(P) — P�) PL, d = 30.269•kip Factored Ultimate vertical load at dowels See CSI Column Calculation Sheets (followln ) for Concrete Desl n of Ca155on5 \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 1,1/18/2020 04:06:16 PM © Pool Engineering, Inc. 2020, Page 42 of 49 Project Information Project Job No Company Designer Remarks Software File Name Working Units Design Code Column:Pile 3235 Ocean Blvd 20-0316 CJB flexural caisson design - spa CSICOL (Version: 8.0 (Rev. 0)) W:\Projects\2020\0316-20 Caisson Pool \flexural pile design - spa - REV US (in, kip, k-ft, ksi) ACI-318-14 Basic Design Parameters Caption = Pile Default Concrete Strength, Fc = 3.00 ksi Default Concrete Modulus, Ec = 3200.00 ksi Maximum Concrete Strain = 0.003 in/in Rebar Set = ASTM Default Rebar Yeild Strength, Fy = 60.00 ksi Default Rebar Modulus, Es = 29000.00 ksi Default Cover to Rebars = 4.000 in Maximum Steel Strain = Infinity Transverse Rebar Type = Spiral Total Shapes in Section = 1 Consider Slenderness = No \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:16 PM © Pool Engineering, Inc, 2020, Page 43 of 49 -- -- -- — 24. 0 12.13 1 .40D 0 f ,. { X. 3 C 3 i Y` ..}f.+�,y' Y'f.,. •'KX+''•:;�c}: .....klvYX.' �• •T!r.�;:{''�•—.___—. .—_.__ N. .. {t �( ''[„ •;�(x x ;}fix ;•: k ••'!, \'•;ti T.`• + •: .� } '( '• . ii .•. ' •tit s�„•`:� ��` .1tv K � . k'•' .1 � •.'" .t?'k'�`�!'h,•,. ..jj ` '•`rrf vY" rxt - X f `' rX :ak Section Diagram Cross-section Shapes Shape Width Height Conc Fc S/S Curve Rebars in in ksi Circle 24.000 24.000 3.000 ACI-Whitney Rectangular 11410 Rebar Properties Sr.No Designation Area Cord-X Cord-Y Fy S/S Curve inA2 in in ksi 1 #10 1.27 20.000 12.000 60.00 Elasto-Plastic 2 #10 1.27 18.730 16.325 60.00 Elasto-Plastic 3 #10 1.27 15.323 19.277 60.00 Elasto-Plastic 4 #10 1.27. 10.861 19.919 60.00 Elasto-Plastic 5 #10 1.27 6.761 18.046 60.00 Elasto-Plastic 6 #10 1.27 4.324 14.254 60.00 Elasto-Plastic 7 #10 1.27 4.324 9.746 60.00 Elasto-Plastic 8 #10 1.27 6.761 5.954 60.00 Elasto-Plastic 9 #10 1.27 10.861 4.081 60.00 Elasto-Plastic 10 #10 1.27 15.323 4.723 60.00 Elasto-Plastic 11 #10 1.27 18.730 7.675 60.00 Elasto-Plastic +11-#10 Total Area = 13.96 inA2 Steel Ratio = 3.09 % Basic Section Properties: Total Width = 24.00 in \\pe-filelPool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:17 PM ©Pool Engineering, Inc. 2020, Page 44 of 49 Total Height = 24.00 in Center, Xo = 0.00 in Center, Yo = 0.00 in X-bar (Right) = 12.00 in X-bar (Left) = 12.00 in Y-bar (Top) = 12.00 in Y-bar (Bot) = 12.00 in Area, A = 452.39 inA2 Inertia, Ixx = 1.63E+04 inA4 Inertia, lyy = 1.63E+04 inA4 Inertia, Ixy = 0.00E+00 inA4 Radius, rx = 6.00 in Radius, ry = 6.00 in Simple Loads Final Design Loads Sr.No. Combination Pu Mux-Bot Muy-Bot Mux-Top Muy-Top kip k-ft k-ft k-ft k-ft. 1 Combination1 38.75 366.00 0.00 0.00 0.00 2 Combination2 38.75 0.00 366.00 0.00 0.00 Result Summary Sr.No Combination Pu (kip) Cap. Ratio-Bot Cap. Ratio- Remarks Top 1 Combination1 38.75 0.983 0.033 Capacity OK 2 Combination2 38.75 0.986 0.033 Capacity OK \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:17 PM C Pool Engineering, Inc. 2020, Page 45 of 49 Column:Dowel Check Basic Design Parameters Caption = Dowel Check Default Concrete Strength, Fc = 3.00 ksi Default Concrete Modulus, Ec = 3200.00 ksi Maximum Concrete Strain = 0.003 in/in Rebar Set = ASTM Default Rebar Yeild Strength, Fy = 60.00 ksi Default Rebar Modulus, Es = 29000.00 ksi Default Cover to Rebars = 4.000 in Maximum Steel Strain = Infinity Transverse Rebar Type = Spiral Total Shapes in Section = 1 Consider Slenderness = No Section Diagram Cross-section Shapes Shape Width Height in in Circle 24.000 24.000 Conc Fc S/S Curve ksi 3.000 ACI-Whitney Rectangular Rebars 1145 \\pe-file\PoollProjects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:17 PM ©Pool Engineering, Inc. 2020, Page 46 of 49 Rebar Properties Sr.No Designation Area in^2 1 #5 0.31 2 #5 0.31 3 #5 0.31 4 #5 0.31 5 #5 0.31 6 #5 0.31 7 #5 0.31 8 #5 0.31 9 #5 0.31 10 #5 0.31 11 #5 0.31 +11-#5 Total Area = 3.39 Steel Ratio = 0.75 Basic Section Properties: Cord-X Cord-Y Fy S/S Curve in in ksi 20.000 12.000 60.00 Elasto-Plastic 18.730 16.325 60.00 Elasto-Plastic 15.323 19.277 60.00 Elasto-Plastic 10.861 19.919 60.00 Elasto-Plastic 6.761 18.046. 60.00 Elasto-Plastic 4.324 14.254 60.00 Elasto-Plastic 4,324 9.746 60.00 Elasto-Plastic 6.761 5.954 60.00 Elasto-Plastic 10.861 4.081 60.00 Elasto-Plastic 15.323 4.723 60.00 Elasto-Plastic 18.730 7.675 60.00 Elasto-Plastic inA2 ova Total Width = 24.00 in Total Height = 24.00 in Center, Xo = 0.00 in Center, Yo = 0.00 in X-bar (Right) = 12.00 in X-bar (Left) = 12.00 in Y-bar (Top) = 12.00 in Y-bar (Bot) = 12.00 in Area, A = 452.39 inA2 Inertia, Ixx = 1.63E+04 inA4 Inertia, Iyy = 1.63E+04 inA4 Inertia, Ixy = 0.00E+00 inA4 Radius, rx = 6.00 in Radius, ry = 6.00 in Simple Loads Final Design Loads Sr.No Combination Pu Mux-Bot Muy-Bot Mux-Top Muy-Top kip k-ft k-ft k-ft k-ft 1 Combination1 30.269 0.00 0.00 125.857 0.00 2 Combination2 30.269 0.00 0.00 0.00 125.857 Result Summary Sr.No Combination Pu (kip) Cap. Ratio-Bot Cap. Ratio- Remarks Top 1 Combination1 30.269 0.038 0.845 Capacity OK 2 Combination2 30.269 0.038 0.845 Capacity OK \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report (REV.1].pdf 11/18/2020 04:06:17 PM © Pool Engineering, Inc. 2020, Page 47 of 49 Pool Engineering, Inc. Caisson Supported Designer:_ C.J.B. Spa Reinforano Properties: Bary := 10 Size of vert bars GRv := 60 vert bar steel grade Nobars := 11 number of vertical bars dbv = 1.25•in clia. of vert bars fy = 60•ksi yield strength of vert bars ASS, = 13.499•in2 area of vert steel Bard := 5 size of vert dowels GRd := 60 dowel bar steel grade dbd = 0.625•in dia, of vert dowels fy d = 60•ksi yield strength of vert dowels Barh = 4 size of horiz ties GRI, := 40 horiz tie steel grade dbh = 0.5•in dia, of horiz ties fyt = 40•ksi yield strength of honz ties s := 6in spacing of transverse reinforcement Ag = 3.142 R2 gross area of concrete section SC = D site class xh = 0.5 site class multiplier Check = "Pass" CONCRETE = "24in. DIA CAISSON, fc = 3000psi (DESIGN STRENGTH)" VERT BARS = "(11) #10 VERTICAL BARS ENTIRE LENGTH OF CAISSON w/ #5 DOWELS TO FLOOR SLAB" HORIZ TIES = "USE #4 TIES @ 6in. O.C. THROUGHOUT CAISSON" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:17 PM © Pool Engineering, Inc, 2020, Page 48 of 49 Pool EncJineering, Inc. Caisson Supported Designer: C.J.B. Spa Check 2-Way Shear in Concrete Slab: AC13 18-14 Section 22.6.4 iliac = 24•in caisson diameter le := 0.89•diac le = 21.36•in equivalent square section length fc = 3000•psi compressive strength of concrete := 0.75 shear reduction factor (ACI Table 2 1.2. 1 ) clr = 3-in concrete cover to reinforcing Bar := 5 reinforcing bar size in slab tc = 15•in design concrete slab thickness db = 0.625•in reinforcing bar diameter Ii„= 16•in min. caisson center distance from slab edge Column_Location := corner location of caisson beneath slab (interior, edge, or corner) - corner case choosen for conservatism) as = 20 location constant (ACI Sect. 22.6.5.3) d := tc — clr — 0.5•db d = 11.688•in effective depth of concrete slab P„ := 1.4(max(P) — Pe) P„ = 35.314•lcip ultimate factored vertical loading V,, := P„ VL, = 35.314•kip ultimate factored 2-way shear stress ' bn = 54.407•in perimeter of critical section (ACI Sect. 22.6.4. I ) (3 := 1.0 ratio of long side to short side of concentrated load or reaction area Vot := 4 fe L•bo•d Vc2 := C2 + 4) • fe• b bo• d a as• d Vc3 := 2 + — f� e bo•d bn Vc := min(Vci, Vet, Vc3) �•Vc= 104.487.kip > Vci = 139.316•kip (ACI Eq. 22.6.5.2a) Vc2 = 208.974•kip (ACI Ed. 22. G.5.2b) Vc3 = 219.293•kip (ACI Eck. 22.G.5.2c) Vc = 139.316.1cip nominal shear strength of concrete VL, = 35.314•kip Punching_Shear = "PASS" \\pe-file\Pool\Projects\2020\0316-20 Caisson Pool\Final Report [REV.1].pdf 11/18/2020 04:06:17 PM © Pool Engineering, Inc. 2020, Page 49 of 49 J