Loading...
HomeMy WebLinkAboutXR2024-6488 - Calcs (2)NGINEERING AND DESIGN INC. 303 Broadway St. Ste. 209 Laguna Beach, Ca. 92651 phn. 949.715.9990 fax: 949.715.9991 civil - structural - architectural PATE: Monday, December 23, 2024 STRUCTURAL CALCULATIONS (CB❑ 201 9) ECP, Gharibvand Residence. PROJECT: Sndural plan SITE ADDRESS: 4 Pinnacle Point, Newport Beach, CA 92663 EUtLDINGA D,l� �V!-'1u Li� 8Y: Z.Z. Mansour M, Ahmadi, F �, O. J�� �9y aY m c� o -14 s clVtt. S' \� of co Page 1 ENGINEERING AND DESIGN INC. Sheet Index: Index: Page Number Beam Calc: 3 —16 Wind & Seismic Design: 17 — 38 Lateral Strip: 39 Wind & Lateral load calculation: 40-43 Shear wall Design: 44-45 Foundation Design: 46-48 Anchor Design: 49 — 50 Hold-down Check 51- 55 505 6roaolway Solt_-206 Lacpana Beach, CA92691 office 949.1416.2661 civil - structural - architectural - Inspection Pans 2 of 55 Project Title: Engineer: Project ID: Project Descr: Wood Beam Project File: 4 Pinnacle Point.ec6 DESCRIPTION: BEAM 1: HEADER AT BEDROOM EXTENSION CODE REFERENCES Calculations per NDS 2018, IBC 2021, SDPWS 2021 Load Combination Set: ASCE 7-22 / IBC 2024 (L<=100psf) Material Properties Analysis Method : Allowable Stress Design Fb + 2,900.0 psi E: Modulus of Elasticity Load Combination ASCE 7-22 / IBC 2024 (L<=100psf) Fla - 2,900.0 psi Ebend- xx 2,200.Oksi Fc -Prll 2,900.0 psi Eminbend -xx 1, 118.19 ksi Wood Species ii-evel Truss Joist Fc - Perp 750.0 psi Wood Grade Parallam PSL 2.2E Fv 290.0 psi Ft 2,025.0 psi Density 45.070pcf Beam Bracing Beam is Fully Braced against lateral -torsional buckling 0 5.25xl 1.875 Span = 11.0 it 2 Applied Loads Servire loads entered. Load Factor will be applied for calculations. Beam self weight calculated and added to loading Uniform Load : D = 0.020, L = 0,020 ksf, Tributary Width = 23.0 ft, (ROOF) Uniform Load : D = 0.0150 ksf, Tributary Width = 2.0 ft, (WALL) DESIGN SUMMARY Maximum Bending Stress Ratio = 0.491: 1 Maximum Shear Stress Ratio = 0.365 : 1 Section used for this span 5.25x11.875 Section used for this span 5.25x11.875 fb: Actual = 1,426.12psi fv: Actual = 105.82 psi Plo = 2,903.37psi F'v = 290.00psi Load Combination Load Combination +D+L +D+L Location of maximum on span = 5.500ft Location of maximum on span = 10.036 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward Transient Deflection 0.095 in Ratio = 1395>=360 Span: 1 : L Only Max Upward Transient Deflection 0 in Ratio = 0 <360 n/a Max Downward Total Deflection 0.199 in Ratio = 662>=180 Span: 1 :+D+L Max Upward Total Deflection 0 in Ratio = 0<180 n/a Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios MomentValues ear a�-_ Segment Length Span # M V CD CM Ct CLx CF Cfu Cl Cr M fb F'b v fv F'v D only 0.0 0.00 0.0 0.0 Length = 11.o It 1 0.287 0.213 0.90 1.00 1.00 1.00 1.001 1.00 1.00 1.00 7.71 749.5 2,613.0 2.31 55.6 261.0 ,OIL 1.00 1.00 1.00 1.001 1.00 1.00 1.00 0.0 0.00 0.0 0.0 Length = 11.0 ft 1 0.491 0.365 1.00 1.00 1.00 1.00 1.001 1.00 1.00 1,00 14.66 1,426.1 2,903.4 4.40 105.8 290.0 +D+0.750L 1.00 1.00 1.00 1.001 1.00 1.00 1.00 0.0 0.00 0.0 0.0 Length = 11.0 ft 1 0.346 0.257 1.25 1.00 1.00 1.00 1.001 1.00 1.00 1.00 12,92 1,257.0 3,629.2 3.88 93.3 362.5 +0.600 1.00 1.00 1.00 1.001 1.00 1.00 1.00 0.0 0.00 0.0 0.0 Length = 11.0 it 1 0.097 0.072 1.60 1.00 1.00 1.00 1.001 1.00 1.00 1.00 4.62 449.7 4,645.4 1.39 33.4 464.0 3 Project Title: Engineer: Project ID: Project Descr: Wood Beam LIC#: KW-06015573, Build:20.24.12.02 CalPro Engineering & Design DESCRIPTION: BEAM 1: HEADER AT BEDROOM EXTENSION Overall Maximum Deflections Span Load Combination 1 +D+L Maximum Deflections for Load Combinations Max. Location Load Combination ', Der to Span 0.1993 5.540 Project File: 4 Pinnacle Point.ec6 (c) ENERCALC, LLC 1982-2024 "+" Deft in Span 0.0000 0.000 Load Combination Span Max. Downward Defl Location in Span Max. Upward Dell Locaflon in Span D Only 1 0.1047 in 5.540 ft 0.0000 in 0.000 ft +D+L 1 0.1993 in 5.540 ft 0.0000 in 0.000 ft +D+0.750L 1 0.1757 in 5.540 ft 0.0000 in 0.000 ft +0.60D 1 0.0628 in 5.540 ft 0.0000 in 0.000 ft L only 1 0.0946 in 5.540 ft 0.0000 in 0.000 ft Vertical Reactions Load Combination Support 1 Max Upward fromn all road -Conditions 5,332 Max Upward from Load Combinations 5.332 Max Upward from Load Cases 2.802 D Only 2.802 +D+L 5.332 +0+0.7501- 4.700 +0,60D 1.681 L Only 2.530 Support notation : Far left is #1 Values in KIPS Support 2 5.332 5,332 2.802 2.802 5.332 4.700 1 -681 2.530 q Project Title: Engineer: Project ID: Project Descr: Steel Beam Project File: 4 Pinnacle Point.ec6 DESCRIPTION: BEAM 2: steel FL BM AT REAR OF THE NEW DECK UNDER BEDROOM CODE REFERENCES Calculations per AISC 360-16, IBC 2021 Load Combination Set: ASCE 7-22 / IBC 2024 (L-100psf) Material Properties Analysis Method Allowable Strength Design Fy : Steel Yield: 50.0 ksi Beam Bracing : Beam is Fully Braced against lateral -torsional buckling E: Modulus: 29,000.0 ksi Bending Axis : Major Axis Bending Loads Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.020, L = 0.020 ksf, Extent = 0.0 --» 2.0 ft, Tributary Width = 25.0 ft, (ROOF) Uniform Load : D = 0,0150 ksf, Tributary Width = 9.0 ft, (WALL) Uniform Load : D = 0.0250, L = 0.040 ksf, Tributary Width = 5.0 ft, (FLOOR) Uniform Load : D = 0.020, L = 0.020 ksf, Extent = 12.0 -->> 18.50 ft, Tributary Width = 23.0 ft, (ROOF) Point Load : D = 2.80, L = 2.530 k @ 2.0 ft, (BEAM 1) Point Load : D = 2.80, L = 2.530 k @ 12.0 ft, (BEAM 1) Uniform Load : D = 0.0250, L = 0.060 ksf, Tributary Width = 6.0 ft, (DECK) DESIGN SUMMARY Maximum Bending Stress Ratio = 0.377: 1 Maximum Shear Stress Ratio = 0.196 : 1 Section used for this span WlOx68 Section used for this span W10x68 Me : Applied 80.192 k-ft Va : Applied 19.170 k Mn / Omega : Allowable 212.824 k-ft Vn/Omega : Allowable 97.760 k Load Combination Load Combination -D+L +D+L Location of maximum on span 0.000 It Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward Transient Deflection 0.223 in Ratio = 995 >=360 Span: 1 : L Only Max Upward Transient Deflection 0 in Ratio = 0 <360 n/a Max Downward Total Deflection 0.433 in Ratio = 512 >=180 span: 1 :+D+L Max Upward Total Deflection 0 in Ratio = 0 <180 n/a aximum Forces & Stresses for Load Combinations Span # ..._.M ..--- V-- Mmax+ Mmax- Me D Only Dsgn. L = 18.50 ft 1 0.184 0.096 39.10 39.10 355.42 212.82 1.00 1.00 9.37 146.64 97.76 +D+L Dsgn. L = 18.50 ft 1 0.377 0.196 80.19 80.19 355.42 212.82 1.00 1.00 19.17 146.64 97.76 +D+0.750L Dsgn. L = 18.50 ft 1 0.329 0.171 69.91 69.91 355.42 212.82 1.00 1.00 16.72 146.64 97.76 +0.60D Dsgn. L = 18.50 ft 1 0.110 0.058 23.46 23.46 355.42 212.82 1.00 1.00 5.62 146.64 97.76 Vertical Reactions Support notation : Far left is #' Values in KIPS Load Combination Support 1 Support 2 Max Upward from ail LoadCon dilions 19.170 18.673 Max Upward from Load Combinations 19.170 18.673 Max Upward from Load Cases 9.797 9.613 D Only 9.374 9.059 7 +D+L 19.170 18.673 Project Title: Engineer: Project ID: Project Descr: Steel Beam Project File: 4 Pinnacle Point.ec6 ups : nvv-uou mo ro, auiw:<u.<v. i<.ut i,airio oyu iamiy n vmiyi i ��� o.�n..nw, �w m DESCRIPTION: BEAM 2: steel FL BM AT REAR OF THE NEW DECK UNDER BEDROOM Vertical Reactions Support notation : Far left is # Values in KIPS Load Combination Support 1 Support 2 +D+0.7501- 1 fi.721 16.2fi9 -0.60D 5,624 5.436 L Only 9.797 9.613 Steel Section Properties W10x68 Depth 10.400 in I xx � 394.00 in^4 J = 3.560 inA4 Web Thick = 0.470 in S xx 75.70 inA3 Cw = 3,100.00 inA6 Flange Width = 10.100 in Rxx = 4.440 in Flange Thick = 0.770 in Zx = 85.300 in^3 Area = 19.900 inA2 1 yy = 134.000 in^4 Weight = 68,000 plf S yy = 26.400 in^3 Wnc = 24.300 in12 Kdesign = 1.270 in R yy = 2.590 in Sw = 47.300 in^4 Ki = 0.875 in Zy = 40.100 in13 Qf = 17.900 in^3 rts = 2.920 in Qw = 42.100 in13 Ycg = 5.200 in M W J 0 U Q a O LL O LL O v f- v LL W N J N Q U N CO O N � m U N LL m W N Q W M a � W am Zu)co Elmo Sao m m R iN H a Lu ,1, m C O m 4 E mr� W U �0 d Y W J p O U N V 1m Y N N N C 0 7 U U o J O Y Y � N O o n � M o mti 00 ou p N 2 O N 6 U U 0 o 0 0 0 N! Q E E m T N m Uo'n0 O '� �� - J Oo LL O O I°d¢ E n Em J O .. 0# E c n n c .-.O U N U (0 U1 C V1 Em a a W O O O 11 M 11 >t A V A V p >> # n O M 0 V �p>N �< OOi m W II j m II II II II V pip 0 0 0 0 N N m!0 IY CK� O N Y C C CS OO -Q M'C N�� DO 11 � N ro II DJOO N O N N J C o N — N c O O O p @ O O O MIrU j II II II m m U o ry ry C O c 0 UOODII �N a 0 j'Um j a�i0p� ¢ Ec�aci ma J J J N ¢ -M 0 ~ N 2E EEC 9 0 N E N~ mN�l- O -~ o 0 o mm aE 0 n 3 m c m c u�.E.E.E .o m N< y 0 .. E t 3 3 3 3 E» > a 2' o 2i: # D 0� 0 7 N m 0E U N c (0 E x X X x NM:57E2:E WAN O 2 N E O O O O M M M M N N N N O O O O 0 p m m m rn m m n a r of � co vi a Y G O O O O m O O O O j N O O O O > 0 0 0 0 V V V rn m rn M m N N N N M M M M m m w m y v a v v a�i LL N N N m M I- u6 C v ° ao O N M m 0 C C a N m o n n N N N D 0 N M n r m m o m m n n m m O O O O O Ci UJ m m v r N V m M N V M O O O O 0 0 a c in E C a 0 U r K t Q 0 J m m O p O O Ci (p ry J 0 N N N N d O E E n n II n K E 2 .a v J J J J O J c rnm d c 16 U m m 0 0 O O O O o 0 N 0 X X i 0+ . C 0 + + + > i i o 0 0 0+ o I 1 Q LL LL 0 LL LL W J F Q m J LL Q W m Z 0 a_ L) U N W 0 1 a D N d M O O O O O O M O 0 0 0 0 nM uiv vim M N (O N M V 0 �U �U)08 V M M G M M C C C C C C C C 0 0 0 0 0 0 0 0 o �nv000Mo d:��0oom�o Mmvci Oiv ni c+i N C C cc C Q C C C C 0 0 o rn o o m M M M o %1 (p m 0 0 V D7 V L y U y >p L > ~ C O> IL ll Q> Y Y r} sE � N U ry � N C p�j Y Y O O O O r0 LL U V C 4 U a � Z W � W O 0 a D C C g a E N m ww o W w co Q a nano n w O O O O O O O o N m m N U m m 0I N N N r N O N z O I Q c O _ n as �0 LL + LL LL LL LL LL� v w c 0 O c W w m Z p N U% o y X N m w N o 0 N II C N m V c� m Y U W N mo d S N N �U yN N Nm 'oN m No '.N M w U rn w J >. a W (n NN ` LL Q o¢ nr rE m w tq U OU) 0 Ali m IDm im Z W Z a¢ N Q a N a c 0 0 .. Ana 0- 0 m m�a to W o E 2E Nm 0 m0 r m O rn G7 m O': U) Ott W W O o.o `—'m °i _C) 'oa E 0O � J M co 0 m �i V U Q m vL�l co Q m a E U m J 0 0 0 o O o In o 0 > o - o � o � 0 � ELN N M V O In O N O O O M (O V N M O N O O O V O O Nii — O O IN ; O O (O O 1q O N C N U O O O N 0 0 L u u O 10 W C U) o c N 0 i N V C V 0.0 N U N U C w 10 N U O N O V o co E O cps od m 'y d_`m c E E c m m0 u) n 7 R cm c o_ y m E N O H 1- ` m E i»�a� O cr. E `m 3 3 0 L" c o�pcac� Ec� co_u Eo xon E E u 10Emg mm XCaE 0 C In 'X� a ry 0 n � J O O O V O N o V (O O O) N V t0 0 N N M •f v m r r v m o v r � N a0 OD N N m 1n m 16 m m 06 O] OJ N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OOi O N (00 o N O r N N In O 0 0 ci 0 0 m m m m M O M r In o O O o 0 11 II J II �1 5 0 5 n > a m r c o rn U O 0 0 U N N _ N -C) U N U U ❑ Soo O C 0 O a`WCLD- a o m o 0 w x x C p�j J C 0 0 0 0 0 d Ci 00 00 U o p J O N O 0 C Q U a } W C C C C C Y O W O C 0 0 0 0 0 V 0 0 0 0 0 m O = 0 0 0 0 0 i a u NI v v v v m O O O O 0 0 C_ C_ _C C C O r m o a 1ClNrm � o o Ci o r o r r r m 0 N m m O N c�mrn10Nrm r o r r r m o Nm mrnN ll� In m m N r M r vNr�6 .=v N C E w 0 m U U m a 0 0 J J 00 a v � � J > > r ❑ a C J O O X X 0 0 + O ❑ ❑ 0 C) Y L 6 o m o oco r o m o U N m 'w x � � c m a c c w wE aci W W 0 W .N .N .N .N .N .N n n n n n n 0 0 0 0 0 0 o00 oo Sri 0 0 0 �O W N m m m r N O N N N N Y U W � n IL a W + Z O D U 7 LL LL LL LL LL LL W m C U LL O � a to a 0 LU r o ON V N O � W N V c O] n m CJ m a - m m uj N O O o N m o 01 N N m N N N U n m m O N m Q W N J T 2 W U) mN �a LL Q r0Q ar I... E N W U) N m w m m W cn M m a N >� ,� d U O w a¢ -Aa m Z W Z p __ c .. .. .. Q Q N@ Q U O W m o« C m m m a W o E a g E U cr mU m .Q U a mU' m W = m d T m o o E N O O N i m J as m 00 O 0 N OD W W O � N N � n % m n II II II 11 II N m c U W c W Q EEm 4:FZ O z x n J II Q .c p p % N m� uMiw �- °' a a n CF 16 m N O Y � O J m u � J N Y d p Q O O m a u0M C�N MIE� Q N m mm O O EEC pIN Ow Z 0 d 'Q Ems`= Ep » "z N Wig Qo.m r- N 0 J + O N V ❑ + 0 o II II II II J 00 O o o O C U m o w w of� U n c c c c G 0 o 0. O_ U L Ole c N m > O C O C N N U O N L O D m ❑c 4j' E E c'm mpp U! m x c m c o N n o m m V m m E E m Y� E~ Y F a� m v m O LL. c t o a 0 0 0 0 o Lq o O O O O O N O O m m cp cO N N M V O V O m O 10 O 00 0 o v o o M C] O r O V O O m O V o n o . o m O o a- a 0 o m a .- O O O V O N O V O m a m a m o 0 co O m N O cp m N N M R N UO U1 N v v of v r m M Vl m N r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O 0 O 0 0 O O 0 0 O O 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O o 0 0 0 0 0 0 0 0 o O o 0 0 0 0 O O O O O O O m O N (p O M r m m v N O O O O a N M (O r N i0 M O 0 0 0 0 m c m 3 W 0 � 0 m J o m a m o co 0 m c o n ou Eo xoU E » E n u n 0 Emgmm 'cxciE J Li J fn 0 J J W+ N O N ro C C J O ❑ J J J o G ❑ + cm r r = = v 0 n 0 0 0 0 0 G 0 0 0 0 0 0 o o 0 0 0 o 0 0 0 0 O O N a - E ; c c c y 00000 - 0 �00000 O O O O O a0000a; C O U O 1� O m e x N o � N G C mMI ❑ C O w c a Ol n ry W N U c o m ❑ v O m E 9 m c E Z 0 N o O Cm O E - CDo H x ❑ C m m d N o E .3 J 0 __ + M 0 o O U O a W m O U O o o O#+# J u S U❑ > N f C J C m O m mm—O N m m N m m m I MMO)M V �-M i ui ci .=uiv.=ri m o m m m o N m m N m m m M M m M V' - M w I� N � m N N U C p Y Y 6 p O m O LL U o I` O O J i Om N N � C Q U a w v w z LU x w o 1T m y, LL n E 0 WW O W 0 N N N w N 0 0 0 0 0 0 000 0010 o n m N m mCD rNo N N N N C rn O p `- O m J nn 0 LL LL LL 0 > LL LL LL c Q LL u w LL O a O m n N a C U Q O O W o O O V Q d 2 m >n > N O m O N V c w m m m c J W N N N N m p C) mm a O W S J m n > ao � m� 2LL li W uJ U U a E m o (/1 J m N g O CO N a m mZ Zzo'C3a .. � fl.m a So W Q£ oo m m m a W N c m d 0 E o U y .. N W .o c N >. -0 a E O u W O o m .y. M- 00 0Co 0 0 n �n O i L m m v W U) c E U m C7 E n n O z x x x Z •- J M � Q N i II r � O� Ofo @m W O] m � o X N � ~ m w I O Y m m O p Y ? � C Y J ❑ m000 � m 0 0 0 C N n U II II II mo } rno -ypla 0 0 0 �p � J J ? m y m o E E E E y �000 Z,00_ N E 'E -E E 'a C9 E 0 'x h N am o� O O O O O m O > O O m 0 m 0 ❑ � W N N M N N O d m O V O V O r 0 W m M N O (A > O m O N O M 0 O m 0 m O m 0 n o m o n o o ILL I v r o II II II II N N m CO .- m C (p U O U N � N Q � r r m U= 2 r N M E E U v o o E m E Q> c m E + o p o 0 0 0 0 0 w i,_ m E J # � O O O O O O zi `o E o 0 0 0 0 0 U o n m n m U o 0 0 0 '- 0 0 0 U a 0 0 0 0 0 0 0 m O O 0 0 -— 0 0 0 0 M Mm-m 5 . — — —— II M 11 A V A V m m m m m m r O r O m In U m m m 0� m m } r v y o 0 0 0 0 0 'y 'y + O O O 0 0 O O 0 0 O O 0 0 II 11 II II i+ r O .- J �-. M m 2000 C U rn x(r 0 0 o00000 0 0 0 0 Nn of E U N N y C c C c O mo7o U g O O o 0 O O 0 0 O O 0 0 cN�l M m U O O O O rn O N J N o U o II II II 11 0 w C y m > N m C O C O O O � O y m N U S W m m r U p m M m 1(l 6 U m 0 Q d D C U y O O O 0 C E E c m mC, y m ^ c cy m C N C _ d d y ❑ C 0 E m o F m i X Ei>v �"oF m.O O cy n c E w t� LL n O L m C 3 C m m N o 0 0 oc>' �o� o n 3a-o J vi to ,n U o u E❑ x O 7 E E it II n m 5 J 0 0 n E m m m X U n _ J Jm x���� ma m ❑ C g o m Q G 0 ❑ 0 O ill a n J i Q n w w O Q W Q Q w m a O Of C) i 2i ;Q W i In a. � Q F C.1 cn W 2 + C E 'x 2 N a � C 0 0 0 0 0 - P 00000 0 0 0 0 0 �] N 0 0 ci 0 0 0 0 0 06 > X m ik uJ I1) In Itl IA c In u] l0 In In U O C J o jai c �CCCCC � 21 0 a mvNi m M M M N D C M M O N N 3 �00000 r d W w d N M m 1 a � i � J d Q N CD � N m N VI U Oo Y Y d � ry 6 U p d J O N O m U � rim v a z W Q C C N a a E m W W ❑ ui VI 1/1I/N UI N a a a n n n 0 0 0 0 0 0 doo oovi G O O N !n N D7 m 0) n N 0 N N N N m n to a LL LLLLLL LL wIL a � m D J ry rn LL O LL C a o a a O m U < O o W O u O V C N v m Q jU N > N OO N O W a N II C m U) 0 c= rn m rn m ON -� .Vl N 'O V n• Vl m O N m o Cif w p g o� <n m ry 2 a LL t\! Q Q d n F N w f7 N W m E a m U o U) w Q Q a m E m Z W Z ot .. c .... .. m N O a m C o o N oF W m as W 3 E a15 E o "O 3 V m V 16 " U U) C7 m 0 # W - (6 ) N > a0 A I� U V U J G Q J >> R] k N y J ❑ M Gj N m • 0 co O N # o m � t tD u 0 0 L = II 11 II II II rJ tG C j U J a w O _ E E E m J 'ac o Q '�� E U +p LL E J + r _ U m EEo 3 o LL O t c c U w O (n c U- U o f n n Q E U -Q U N U N ZEO J J fn o nwo MW-O Z O @ 1 M 11 W J N OOMO II L + O+ N M yI > •. 11 11 11 II O p%) CS 10 MN O�- N x M(0 # O? 0 0 C j II a N N ON 7� a'of m0a N O m U C c c C U p Z N N M N p Y O O O p o II II It II II w V Y J C Ul N U C 0 0 0 0 0 D �000 N N WO C O c C (A U II II II w ) C E EE ❑— 0 i�000 ��.'-' m c` C N Qm5 0 o Em or EHn 0 vl00 oo �Da as � EmO � ,o ti M 3 J J J = SO LL E �0 L w C 3 c N 0 E J E E E Co 0 c 3 3: o o. a N �O O O Ec Z 0 v of E X❑� J a C J❑ X A X X 0 7 0 [1 m N J m 2, 2:R Q m c O G c G L O 10 O N O N O O N O f0 0 0 0 r (O r O) N n N N M C� IU a r m m N 1U N fV m o co N of m O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I � mcn n n n L p N I T rn rn n rn U Q ❑ O O O Project Title: Engineer: Project ID: Project Descr: Wood Beam Project File: 4 Pinnacle Pointec6 DESCRIPTION: BEAM 7: DROP BEAM AT REAR OF FAMILY Maximum Forces & Stresses for Load Combinations Load Combination ax ressSt�af�os omen— _ ear values Seqment Length Span # M V Co CM Ct CLx CF Cfu C i Cr M fb P'b V fu F'v Length = 9.0 ft 1 0.154 0.115 1.60 1.00 1.00 1.00 1.026 1.00 1.00 1.00 4.83 734.5 4,761.9 1.77 53.3 464.0 Overall Maximum Deflections Span Load Combination Max. Location Load Combination Max. Location ", Defl in Span "+^ Defl in Span 0.3447 4.533 Maximum Deflections for Load Combinations 0,0000 0.000 Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span D Only 1 0.1432 in 4.533 ft 0.0000 in 0.00a ft +D+L 1 0.3447 in 4.533 ft 0.0000 in 0.000 ft +0+0.750L 1 0.2943 in 4.533 ft 0.0000 in 0.000 It +0.60D 1 0.0859 in 4.533 ft 0.0000 in 0.000 ft L Only 1 0.2015 in 4.533 ft 0.0000 in 0.000 ft Vertical Reactions Supportnotation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Max Upward From arl Loa on itions 8.620 8.620 Max Upward from Load Combinations 8.620 8.620 Max Upward from Load Cases 5,040 5.040 D Only 3,580 3.580 +D+L 8.620 8.620 +D+0.7501- 7,360 7.360 +0.60D 2.148 2.148 L Only 5.040 5.040 CalPro engineering JOB TITLE 4 Pinnacle Point 303 Broadway laguna Beach, Ca JOB No. 240820 949-715-9990 CALCULATED BY Mans CHECKED BY CS2021 Ver 2023-01-21 STRUCTURAL CALCULATIONS FOR 4 Pinnacle Point Newport Beach, CA 92663 SHEET NO. DATE DATE w .struware.com 17 CalPro engineering JOB TITLE 4 Pinnacle Point 303 Broadway laguna Beach, Ca JOB NO. 240820 SHEET NO. 949-715-9990 CALCULATED BY Mans DATE CHECKED BY DATE www.struware.com Code Search Code: California Building Code 2022 Occupancy: Occupancy Group = R Residential Risk Category & Importance Factors: Risk Category = II Wind factor = 1.00 Snow factor = 1.00 Seismic factor = 1.00 Type of Construction: Fire Rating: Roof= 1.0hr Floor= 1.0 hr Building Geometry Roof angle (0) 4.00 / 12 18.4 deg Building length 70.0 ft Least width 53.0 ft Mean Roof Ht (h) 25.0 ft Parapet ht above god 0.0 ft Minimum parapet ht 0.0 ft Live Loads: Roof 0 to 200 sf: 20 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12 psf Attics with storage 20 psf Floor Typical Floor 40 psf Partitions 15 psf Catwalks 40 psf Decks (1.5 times live load) 60 psf Fire escape: Multi- or single family re 40 psf Storage areas above ceilings 20 psf is CalPro engineering 303 Broadway laguna Beach, Ca 949-715-9990 Wind Loads: ASCE 7- 16 Ultimate Wind Speed 95 mph Nominal Wind Speed 73.6 mph Risk Category II Exposure Category D Enclosure Classif, Enclosed Building Internal pressure +/-0.18 Directionality (Kd) 0.85 Kh case 1 1.126 Kh case 2 1.126 Type of roof Monoslope T000craohic Factor (Kzt Topography Flat Hill Height (H) 80.0 ft Half Hill Length (Lh) 100.0 ft Actual H/Lh = 0.80 Use H/Lh = 0.50 Modified Lh = 160.0 ft From top of crest: x = 50.0 ft Bldg up/down wind? downwind H/Lh= 0.50 Kt = 0,000 x/Lh = 0.31 KZ = 0.792 z/Lh = 0.16 K3 = 1.000 At Mean Roof Ht: Kzt=(1+KjKzK3)^2= 1.00 Gust Effect Factor h = 25.0 ft B = 53.0 ft /z (0.6h) = 15.0 ft Rigid Structure e = 0.13 t = 650 ft Zmin - 7 ft c= 0.15 9o, 9� = 3.4 Lz = 589.0 ft Q = 0.92 I� = 0.17 G= 0.89 use G=0.85 JOB TITLE 4 Pinnacle Point JOB NO. 240820 SHEET NO. CALCULATED BY Mans DATE CHECKED BY DATE ESCARPMENT 4'(z z Speed-up VW x(upwind) z x(dcv;nwind) H 2D RIDGE or 30 AXISYMMETRICAL HILL Flexible structure if natural frequency < 1 Hz IT> 1 second). If building h/B>4 then may be flexible and should be investigated. h/B = 0.47 Rigid structure (low rise bldg) G = 0.85 Using rigid structure formula Flexible or Dynamically Sensitive Structure Natural Frequency (qt) = 0.0 Hz Damping ratio (R) = 0 /b = 0.80 /D = 0.11 Vz = 102.1 Nt = 0.00 Rn = 0.000 Rh = 28,282 q = 0.000 Ra = 28.282 q = 0.000 RL = 28.282 q = 0.000 9R = 0.000 R = 0.000 Gf = 0.000 h = 25.0 ft CalPro engineering 303 Broadway laguna Beach, Ca 949-715-9990 Enclosure Classification JOB TITLE 4 Pinnacle Point JOB NO. 240820 SHEET NO. CALCULATED BY Mans DATE CHECKED BY DATE Test for Enclosed Building: AD < 0.01Ag or 4 sf, whichever is smaller Test for Open Building: All walls are at least 80% open. AD >_ 0.8Ag Test for Partially Enclosed Building: Predominately open on one side only Input Test AD 500.0 sf AD > 1.1Aoi NO Ag 600.0 sf Ao > 4' or 0.01Ag YES AD! 1000.0 sf Aoi / Agi 50.20 YES Building is NOT Agi 10000.0 sf Partially Enclosed Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following: Ao? 1.1Aoi AD> smaller of4'or0.01Ag An! / Agi <_ 0.20 Where: AD = the total area of openings in a wall that receives positive external pressure. Ag = the gross area of that wall in which AD is identified. Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including AD. Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag. Test for Partially Open Building: A building that does not qualify as open, enclosed or partially enclosed. (This type building will have same wind pressures as an enclosed building. Reduction Factor for large volume partially enclosed buildings (Ri) : If the partially enclosed building contains a single room that is unpartitioned , the internal pressure coefficient may be multiplied by the reduction factor Ri. Total area of all wall & roof openings (Aog): Unpartitioned internal volume (Vi) : Ground Elevation Factor (Ke) Grd level above sea level = 0.0 ft Constant = 0.00256 0 sf 0 cf Ri = 1.00 Adj Constant = 0.00256 Ke = 1.0000 2 C. CalPro engineering JOB TITLE 4 Pinnacle Point 303 Broadway laguna Beach, Ca JOB NO. 240820 SHEET NO. 949-715-9990 CALCULATED BY Mans DATE CHECKED BY DATE Wind Loads - MWFRS all h (Except for Open Buildings KIT (case 2) = 1.13 GCpi = +/-0.18 Base pressure (qh) = 22.1 psf Bldg dim parallel to ridge = 70.0 ft G = 0.85 Roof Angle (9) = 18.4 deg Bldg dim normal to ridge = 53.0 ft qi = on Roof tributary area: h = 25.0 ft Wind normal to ridge=(h/2)'L: 875 sf ridge ht = 29.4 ft Wind parallel to ridge=(h/2)`L 663 sf I lltimato Wind 5nrfare Pressures lnsfl Surface Wind Normal to Ridge L/B = 0.76 h/L = 0.47 Wind Parallel to Ridge US = 1.32 h/L = 0.36 Cp ghGCp w/+q;GCp, w/-ghGCPi Dist.` CID ghGCp w/+q,GCp, w/-ghGCp, Windward Wall (W W) 0.80 15.0 see table below 0.80 15.0 see table below Leeward Wall (LW) -0.50 -9.4 -13.4 -5.4 -0.44 -8.2 -12.2 -4.2 Side Wall (SW) -0.70 -13.2 -17.1 -9.2 -0.70 -13.2 -17A -9.2 Leeward Roof (LR) -0.57 -10.7 -14.7 -6.7 Included in windward roof Neg Windward Roof pressure -0.48 -9.0 -13.0 -5.0 0 to h/2' -0.90 -16.9 -20.9 -12.9 Pos/min Windward Roof press. -0.03 -0.6 -4.6 3.3 h/2 to h' -0.90 -16.9 -20.9 -12.9 IT to 2h' -0,50 -9.4 -13.4 -5.4 > 2h' -0.30 -5.6 46 -1.7 Min press. -0.18 -3.4 -7.4 0.6 'Horizontal distance from windward sage For monoslope roofs, entire roof surface is either windward or leeward surface. !Parapet zI Kz Kzt qp (psf) 0.0 ft 1,03 1.00 0.0 Windward parapet: 0.0 psf (GCpn =+1.5) Leeward parapet: 0.0 psf (GCpn = -1.0) Windward roof overhangs : 15.0 psf (upward - add to windward roof pressure) Windward Wall Pressures at' ' (psf) Combined WW+LW Windward Wall Wind Normal Wind Paral z Kz Kzt I q,GCp w/+q,GCp, w/-ghGCp; to Ridge to Ridge 0 to 15' 1.03 1.00 13.8 9.8 17.7 23.2 21.9 20.0 It 1.08 1,00 14.5 10.5 18.4 23.9 22.7 h= 25.0 ft 1.13 1.00 15.0 11.1 19.0 24.4 23.2 ridge = 29.4 ft 1.16 1.00 15.5 11.5 19.4 24.9 23.7 V.nm IroPb.GU. TO PZIE V Em PT tLLII TO PID O. }ITY.nt 1.11 rCn 11i � G' NOTE: ASCE 7 requires the application of full and partial loading of the wind pressures per the 4 cases below. JI.i h- .PLY CASE 1 � f ! 0.fiPn-: 7751 I LI_L7-L1J =-01c B. e..==0.1B I I t 1 i 1 0 7;P. -: CASE 3 Br 0553P_. CASE ? CASE 4 Wind Forces at Floors Building dimension (parallel milh ridge)= 70.0 it e= IMo ft Total Floors= 1 Buildin. dimension(nonnal to ridge)= 53.0 ft e= 7.95 1t PI dn (dul bells trade) = 2.0 ft L is the building dimension parallel to the :vind direction Elc,ation Ilcightuf Wind Normal to Ridge Wind Parallel to Ridge Ahme C'entroid Applied Story Overturning Applied Start/ Overturning Leccl Grace (tt) to Fdn (11) L B Area (s'I) Force (k) Shear (k) Moment Ck) Area Force W Shear (k) Moment ('k) Equip,Ce 0,M) ,vind on equip, screem,'ails, etc= 0.0 Parapet 0.00 0,00 0.0 0.0 030 1'/Ridge 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 Roof IMo 17.00 53.0 70.0 525.0 12.2 12.2 0.0 3975 8.7 8.7 0.0 1 0.00 100 53.0 70A 525.0 12.2 24.3 IS2.3 397.5 S.7 174 130.9 FDN 0.10 231.n 165.8 22 CalPro engineering 303 Broadway laguna Beach, Ca 949-715-9990 JOB TITLE 4 Pinnacle Point JOB NO. 240820 SHEET NO. CALCULATED BY Mans DATE CHECKED BY DATE Wind Loads - MWFRS h560' (Low-rise Buildings) except For open buildines Kz = Kh (case 1) = 1.13 Hase pressure (qn) =22.1 psi vcpi= +/-U.Id Wind Pressure Coefficients Edge Strip (a)- 5.3 it End cone (2a) = 1 U.b tt zone 2 length = 2U.b tt CASE A CASE B a = 18,4 deg Surface GCpf w/-GCpi w/+GCpi GCpf w/-GCpi w/+GCpi 1 0,5 0.70 0.34 70.45 -0.27 -0.63 2 -0.69 -0.51 -0.87 -0.69 -0.51 -0.87 3 -0,47 -0.29 -0.65 -0.37 -0.19 -0.55 4 -0.42 -0.24 -0.60 -0.45 -0.27 -0.63 5 0.40 0.58 0.22 6 -0.29 -0.11 -0.47 1 E 0.78 0.96 0.60 -0.48 -0.30 -0.66 2E -1.07 -0.89 -1.25 -1.07 -0.89 -1.25 3E -0.67 -0.49 -0.85 -0.53 -0.35 -0.71 4E -0.62 -0.44 -0.80 -0.48 -0.30 -0,66 5E 0.61 0.79 0.43 6E -0.43 -0.25 -0.61 Ultimate Wind Surface Pressures (psf) 1 15.4 7.4 -6.0 -13.9 2 -11.3 -19.2 -11.3 -19.2 3 -6.4 -14.3 -4.2 -12.2 4 -5.2 -13.2 -6.0 -13.9 5 12.8 4.9 6 -2.4 -10.4 1 E 21.2 13.3 -6.6 -14.6 2E -19.7 -27.6 -19.7 -2T6 3E -10.9 -18.9 -7.7 -15.7 4E -9.7 -17.6 -6.6 -14.6 5E 17.5 9.5 6E -5.5 -13.5 Parapet Windward parapet= 0.0 psf (GCpn=+1.5) Leeward parapet = 0.0 psf (GCpn = -1.0) Horizontal MWFRS Simple Diaphragm Pressures (ps Transverse direction (normal to L) Interior Zone: Wall 20.6 psf Roof -4.9 psf '* End Zone: Wall 30.9 psf Roof -8.8 psf ** Longitudinal direction (parallel to L) Interior Zone: Wall 15.3 psf End Zone: Wall 23.0 psf ** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames), The code requires the MW FRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof. Windward roof overhangs = 15.5 psf (upward) add to windward roof pressure W]11Cr4V)iPD 00 EP}L•. [JO � W]NDWAPD P.00F (�j� LEEWAPJJ A.roF V EPTICAL TR.PSTSIER.SE ELE`IATIOH {-{� W[NG:VAR35 PY �JF f f � L£EVJ?,FL PCOF 11I 1!! 1111 f VERTICAL 2� L0TGITULSTAL ELEVF-TLOIJ CalPro engineering JOB TITLE 4 Pinnacle Point 303 Broadway laguna Beach, Ca JOB NO. 240820 949-715-9990 CALCULATED BY Mans CHECKED BY Wind Loads - h<60' Longitudinal Direction MWFRS On Open or Partially Enclosed Buildings with Transverse Frames and Pitched Roofs Base pressure (qh) = 22.1 psf GCpf = +/-0.18 Enclosed bldg, procdure doesn't apply Roof Angle (6) = 18.4 deg SHEET NO. DATE DATE ASCE 7-16 procedure B= 53.0 ft' # of frames (n) = 5 Solid are of end wall including fascia (As) = 1,500.0 sf Roof ridge height = 29.4 ft Roof eave height = 20.6 ft Total end wall area if soild (As) = 1,325.0 sf Longidinal Directional Force (F) = pAe p= qh [(GCpf)windward-(GCpf)leeward] KB Ks Solidarity ratio (10) = 1.132 n= 5 KB= 1.27 KS = 2.309 Zones 5 & 6 area = 1,204 sf 5E & 6E area = 121 sf (GCpf) windward - (GCpf) leeward] = 0.722 p = 46.8 psf Total force to be resisted by MW FRS (F) = 62.0 kips applied at the centroid of the end wall area Ae Note: The longidudinal force acts in combination with roof loads calculated elsewhere for an open or partially enclosed building. Cal engineering 303 Broadway laguna Beach, Ca 949-715-9990 4 13 ZONE _' le>wrcr Bor_2 �h 7E 3E'' CASE A l�'VDDDDltiCroN RANG_ JOB TITLE 4 Pinnacle Point JOB NO. 240820 SHEET NO. CALCULATED BY Mans DATE CHECKED BY DATE ✓C, C?.SE B 4 i\D Di LCTI( A,\C= NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light -frame construction or with flexible diaphragms need not be designed forthe torsional load case. ASCE 7-98 & ASCE 7-10 (& later) - MWFRS wind pressure zones e- .:` ; zo�Z , ` .... Trance erse Direction Longitudinal Direction NOTE: Torsional loads are 25% of zones 1 - 4. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light -frame construction or with flexible diaphragms need not be designed for the torsional load case. ASCE 7-02 and ASCE 7-05 - MWFRS wind pressure zones CalPro engineering JOB TITLE 4 Pinnacle Point 303 Broadway- laguna Beach, Ca JOB NO. 240820 SHEET NO. 949-715-9990 CALCULATED BY Mans DATE CHECKED BY DATE Wind Loads - Components & Claddinq : h <_ 60' Kh (case 2) = 1.13 In = 25.0 it Base pressure (qh) = 22.1 psf a = 5.3 ft Minimum parapet ht = 0.0 it GCpi = +)-0.18 Roof Angle (0) = 18.4 deg qi = or = 22.1 psf Type of roof = Monoslope Roof Area Negative Zone 1 Negative Zone 2 Negative Zone 3 Positive All Zones Parapet qp = 0.0 psf Walls Area Negative Zone 4 Negative Zone 5 Positive Zone 4 & 5 Ultimate Wind Pressures p +- Gcpi urrace Fressure (psf) 10 sf 20 sf 50 sf 100 sf 10 sf 20 sf 50 sf 100 sf -1.48 -1.4 -1.34 -128 -32.7 31.4 -29. -28.3 -1.78 -1.66 -1.5 -1.38 -39.4 -36.7 -33.2 -30.5 -3.08 -2.81 -2.45 -2.18 -68.1 -62.1 -54.2 -48.2 0.58 0.55 0.51 0.48 16.0 16.0 16.0 16.0 Solid Parapet Pressure u ace Pressure ps ) 10 sfj 20 sfj 50 s Sfj 200 s $ Zone Zone 3 : 0.0 0.0 0.0 0.0 0.0 0.0 :ASE e: Interior zone : Corner zone: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 GCp+f-GCpi Surface Pressure at h ST I I ULI ST ZUU s ST 10 SI, 1 100 sf 1 200 s 500 s -1.58 1.18 -1.23 1.00 -1.12 0.95 -0.98 0,88 -34.9 26.1 -27.1 22.2 -24.8 21.0 -21.7 19.5 User input 10 sf 150 Sf 32.7 - .3 -39.4 -30.5 -68.1 -48.2 16.0 16.0 User input ZU St I bb s -27 1 32.6 24.9 29.2 23.2 J �' CalPro engineering JOB TITLE 4 Pinnacle Point 303 Broadway laguna Beach, Ca JOB No, 240820 SHEET NO. 949-715-9990 CALCULATED BY Mans DATE CHECKED BY DATE Location of C&C Wind Pressure Zones - ASCE 7-16 Roofs w/ 8 5 10' Walls In 5 60' and all walls & alt design h<90' In > 60' I I I I I I I I I I I I I I I I I I I LJ 1,01 �J I(1 I -I 1 D 01 Monoslope roofs Multispan Gable & 10'<0630' Gable 7'<0<-45' h <— 60' & sit design h<90' 0— 0. 1 0. 11 O r r--- , I I 2 I I I I' I I I L J Gable, Sawtooth and Multispan Gable 0 <- 7 degrees & Monoslope <— 3 degrees to 5 60' & all design h<90' Hip 7' < 0 527' s- - U b V, W2 W_ `V I_ O CI I J I � C' I la r 1O r I I I G I !� Monoslope roofs 3'<8510' h <— 60' & sit design ti , \B C D Sawtooth 1 W < 8 <_ 45' h <— 60' & Bit design h<90' 1 _v Note: The stepped roof zones above are as shown in ASCE 7-16 (except he upper roof zones 1 and 2 are shown attire inside edge per the notes). Prior editions didn't show zones, but he notes Berl to Stepped roofs e 5 3' the lowslope gable figure. The note In ASCE 7.16 still sends you to the low slope gablefigure, but for h 5 60' & sit design h<90' some reasons the zones shown, are per editions prior to ASCE 7-16, Therefore. the above zones may be a code mistake and the correct zone locations may be per the law slope gable hoof shown at the top of this page. L-7 Call engineering JOB TITLE 4 Pinnacle Point 303 Broadway laguna Beach, Ca JOB No. 240620 SHEET NO, 949-715-9990 CALCULATED BY Mans DATE CHECKED BY DATE Roofs w/ 6 < 10' and all walls h>60' —'I I I I I I. I /✓ 1 Is; Monoslope roofs 10'<6530' h 5 60' & sit design h<90' Location of C&C Wind Pressure Zones - ASCE 7-10 & earlier LL C Walls h 5 60' & all design h<90' Multispan Gable & Gable 7' <65 45' Stepped roofs 6 < 3' In <_ 60' & alt design h<90' I I I I I I I I I 1 I I I I I Gable, Sawtooth and Multispan Gable 6 < 7 degrees & Monoslope <- 3 degrees h < 60' & alt design h<90' n J I. IJ r �I Hip 7' < 6 <_ 27 b1 I Monoslope roofs 3"<6s10' h 5 60' & sit design h<90' a ;1 ;1 :1 _ I _ Lrl , W1 I WV' I W3 I Sawtooth 10' <6 < 45' h <_ 60' & sit design h<90' ASCE ASCE Hazards Report MIERIG N SOGIEN OF GML ENGINEERS Address: Standard: ASCE/SEI7-16 Latitude: 33.597223 4 Pinnacle Pt Risk Category: IV Longitude: -117.832557 Newport Coast, California Sail Class: D - Default (see Elevation: 755.2592201328612 ft 92657 Section 11.4.3) (NAVD 88) N-:3-rI: E httosalascehazardtool.ora/ Page 1 of 3. Sat Dec 21 2024 2c-1 ASCE MAEiICSN SOCIEN OF MIL ENGINEERS Seismic Site Soil Class: D - Default (see Section 11.4.3) Results: SS 1.304 Sol N/A Sr 0.463 TL 8 Fa 1.2 PGA: 0.565 F, N/A PGA M : 0.678 SMS 1.564 FPCA 1.2 SM1 N/A le 1.5 Sos 1.043 C 1.361 Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8. Data Accessed: Sat Dec 21 2024 Date Source: USGS Seismic Design Maos httos I/ascehazardtool.org/ Page 2 of 3 Sat Dec 21 2024 ,3 0 ASCE MAERICAN SCUM OF CML ENGINEERS The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third -party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third -party content by or from ASCE. ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard. In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, Incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool. httosi/ascehazardtool.org/ Page 3 of 3 Sat Dec 21 2024 ,�' JOSTITLE 4 Pinnacle Point CalPro engineering 303 Broadway laguna Beach, Ca 949-715-9990 Seismic Loads: CBC 2022 Risk Category : II Importance Factor (le) : 1.00 Site Class: D JOB NO. 240820 SHEET NO. CALCULATED BY Mans DATE CHECKED BY DATE Strength Level Forces Ss (0.2 sec) = 130.40 %g S1 (1.0 sec) = 46.30 %g Site specific ground motion analysis performed: Fa = 1.200 Sms = 1.565 SDs = 1.043 Design Category = D Fv = 1.837 Sm1 = 0.851 Sol = 0.567 Design Category = D Enter Fa and Fv above from site specific geotechnical investigation Seismic Design Category = D Redundancy Coefficient p = 1.30 Number of Stories: 2 Structure type: Light Frame Horizontal Struct Irregularities: No plan Irregularity Vertical Structural Irregularities: No vertical Irregularity Flexible Diaphragms: Yes Building System: Bearing Wall Systems Seismic resisting system: Light frame (wood) walls with structural wood shear panels System Structural Height Limit: 65 ft Actual Structural Height (hn) = 25.0 ft See ASCE7 Section 12,2.5 for exceptions and other system limitations DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) = 6.5 Over -Strength Factor (0o) = 2.5 Deflection Amplification Factor (Cd) = 4 SDs= 1.043 5Di = 0.567 Seismic Load Effect (E) = Eh +/-EV = p Os +/- 0.2Sos D = 1.3Qe +i 0.209D QE = horizontal seismic force Special Seismic Load Effect (Em) = Emh +/- Ev = (20 Qs +/- J.25os U = 2.5Qe +10.2091) D = dead load PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysis Equivalent Lateral -Force Analysis - Permitted Building period coeL (CT) = 0.020 Cu = 1.40 Approx fundamental period (Ta) = CTh„'= 0.224 sec x= 0.75 Tmax = CuTa = 0.313 sec User calculated fundamental period = T = 0.224 sec Long Period Transition Period (TL) = ASCE7 map = 8 sec Seismic response coef. (Cs) = Sdsl/R = 0.160 need not exceed Cs = Shc I /RT = 0,390 but not less than Cs = 0.044Sdsl = 0.046 USE Cs = 0.160 Design Base Shear V = 0.160W Model & Seismic Response Analysis - Permitted (see code for procedure) ALLOWABLE STORY DRIFT Structure Type: All other structures Allowable story drift As = 0.020hsx where hsx is the story height below level x i2 Total Stories = 2 Floor Dead Load = 25.0 psf Roof Dead Load = 20.0 psf Building length L = 70.0 ft Floor LL to include = 0.0 psf Roof Snow Load = 0.0 psf Building width W = 53.0 ft Floor Equip wt = 0.0 kips Roof Equip wt = 0.0 kips hn = 25.0 ft Partition weight = 10.0 psf Parapet weight= 0.0 psf k = 1.000 Ext Wall Weight = 15.0 psf Parapet height = 0.0 ft V = 0.160W Bottom Floor is a slab on grade Diaphragm shall be designed for level force Fx, but not less than Fax = (E Fi I 1 wi) wpx, but Fpx min = 0.2Sos Is wpx = 0.209 wpx Seismic Forces Normal to Building Length Fpx max = 0.4Sos le wpx = 0.417 wpx EL above Level Cvx= V=38.1k Seismic Base Weight Wx hx" Wx hx" Base Shear Distribution Diaphragm Force Fax Level (x) hx (ft) Wx (kips) (ft-kips) 7 Wi hi" Fx=CvxV E Fx (k) Story M E Wi (k) Fpx Design Fpx Roof 11.00 85 1,790 0.529 20.12 20.1 0 85 20.1 20.1 ? 10.50 152 1,595 0,471 17.93 38.1 211 237 24.4 31.7 I 0.00 0 0 0.000 0.00 0.0 0 0 0.0 0.0 Base 0.00 237 1.000 38.1 400 611 = Base M Seismic Forces Parallel to Building Length V = 36.8k Base Shear Distribution Diaphragm Force Fax Level (x) hx (ft) Wx (kips) Wx hx" Cvx = Fx=CvxV E Fx (k) Story M F W i (k) Fpx Design Fpx Roof 11.00 83 1,733 0,530 19.48 19.5 0 83 19.5 19.5 1 IO.50 147 1,539 0.470 17.29 36.8 205 229 23.5 30.6 1 0.00 0 0 0.000 0.00 0.0 0 0 0.0 0.0 Base O.nO 229 1.000 36.8 386 591 = Base M CalPro engineering JOB TITLE 4 Pinnacle Point 303 Broadway laguna Beach, Ca JOB No. 240820 SHEET NO. 949-715-9990. CALCULATED BY Mans DATE CHECKED BY DATE Roof Design Loads Items IDescription Multiple I psf (max) psf (min) Roofing 3 ply felt & gravel 5.5 5.0 Decking 3/4" plywood/OSB 2.7 2.3 Framing Wood 2x @12" 3.8 1.5 Insulation Rigid insulation, per 1" x 1.3 2.0 0.9 Ceiling 518" gypsum 2.8 2.5 x 1.0 0.0 0.0 Mech & Elec Mech. & Elec. x 1.0 2.0 0.0 Sprinklers Sprinklers x 0.6 12 0.0 Actual Dead Load O 20.0 co 12.2 Use this DL instead C: 20.0 C 9.0 Live Load 20.0 0.0 Snow Load 16.8 0.0 Ultimate Wind (zone 2 - 100sf) 16.0 -30.5 ASD Loading D+Lr 40.0 - D + 0.75(0.6*W + Lr) 42.2 - 0.6*D+0.6*W - -11.0 LRFD Loading 1.2D+1.6 Lr +0.5W 64.0 - 1.2D+1.OW+0.5Lr 50.0 - 0.9D+1.OW - -19.5 Roof Live Load Reduction Roof angle 4.00 / 12 18.4 deg 0 to 200 sf: 20.0 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf: 12.0 psf 300 sf 18.0 psf 400 sf 16.0 psf 500 sf 14.0 psf User Input: 450 sf 15.0 psf 3 CalPro engineering 303 Broadway laguna Beach, Ca 949-715-9990 JOB TITLE 4 Pinnacle Point JOB No. 240820 CALCULATED BY Mans CHECKED BY Floor Design Loads SHEET NO. DATE DATE Items IDescription Multiple Ipsf (max) psf(min) Flooring Carpet & pad 1.0 1.0 Decking 3/4" plywood/OSB x 1.0 2.7 2.3 Insulation R-19 Fiberglass insul. 0.6 0.6 Framing TJI @ 12" x 2.0 4.0 2.0 Flooring Thin Set Tile x 2.5 10.0 7.5 Ceiling 5/8" gypsum 2.8 2.5 Sprinklers Sprinklers 2.0 0.0 Mach & Elec Mach. & Elec. x 1.0 1.9 0.0 0.0 0.0 Actual Dead LoaP 25.0 15.9 Use this DL instead 80.0 65.0 15.0 0.0 Partitions Live Load 40.0 0.0 Total Live Load .................................................... 55.0 0.0 80.0 15.9 Total Load FLOOR LIVE LOAD REDUCTION (not including partitions) NOTE: Not allowed for assembly occupancy or LL>100psf or passenger car garages, except may reduce members supporting 2 or more floors & non -assembly 20%. L=Lo(0.25+15/d KLLAT) Unreduced design live load: Lo = 40 psf Floor member & 1 floor cols KLL = Tributary Area AT = Reduced live load: L = Columns (2 or more floors) KLL = Tributary Area AT= Reduced live load: L = 2 300 sf 34.5 psf 4 500 sf 23.4 psf IBC alternate procedure Smallest of: l .08%(SF-150) R= 23.1It+D/L) = 37.5% R= 40% member supports 1 floor R= 60% member supports >_2 floors R = 12.0% Reduced live load: L = 35.2 psf R = 28.0% Reduced live load: L = 28.8 psf 35� CalPro engineering JOB TITLE 4 Pinnacle Point 303 Broadway SHEET NO. laguna Beach, Ca Joe No. 240820 CALCULATED BY Mans DATE 949-715-9990 CHECKED BY DATE Wall Design Load #1 sheathing 1/2" plywood/OSB l.8 1.5 ;heathing 5/8" gypsum 2.8 2.5 - 2x4 wood stud @ 16" 1.3 0.8 -raming 7/8" Stucco x 0.75 7.5 7 5 ieneer x 0.00 0.0 0.0 Insulation R-19 Fiberglass insul. 0.6 0.6 Mach & Elec Mach. & EleC. x 0.50 0.5 0.0 Misc. Misc. x 1.00 0.5 0.0 Actual Dead Load CI 15.0 GI 12.9 Use this DL instead C• 50.0 O 40.0 Wall Design Load #2 Items Description Multiple i pst (max) Psi w. 0.0 Framing 0.0 0.0 veneer 7 7000-000, 0.0 0.0 0.0 0.0 0.0 Actual Dead Load O 0.0 U 0.0 Use this DL instead G 65.0 55.0 CalPro engineering JOB TITLE 4 Pinnacle Point 303 Broadway laguna Beach, Ca JOB No. 240820 SHEET NO. 949-715-9990 CALCULATED BY Mans DATE I CHECKED BY DATE www.struware.com CODE SUMMARY Code: California Building Code 2022 Live Loads: Roof 0 to 200 sf: 20 psf 200 to 600 sf: 24 - 0.02Area, but not less than 12 psf over 600 sf. 12 psf Attics with storage 20 psf ------ Typical Floor 40 psf ] Partitions 15 psf ] Catwalks 40 psf ] Not applicable for this project Decks (1.5 times live load) 60 psf ] Fire escape: Multi- or single family re 40 psf ] Storage areas above ceilings 20 psf ] Dead Loads: Live load Floor 25.0 psf 40 Roof inc. Solar 25.0 psf 20 Roof Snow Loads: ------- Design Uniform Roof Snow load = 16.8 psf ] Flat Roof Snow Load Pf = 16.8 psf ] Balanced Snow Load Ps = 16.8 psf ] Ground Snow Load Pg = 20.0 psf ] Importance Factor I = 1.00 ] Snow Exposure Factor Ce = 1.20 ] Thermal Factor Ct = 1.00 ] Sloped -roof Factor Cs = 1.00 ] Drift Surcharge load Pd = ] Width of Snow Drift w = ------ Earthquake Design Data Risk Category Importance Factor I = 1.00 Mapped spectral response accelerat Ss = 130.40 S1 = 46.30 Site Class = D Spectral Response Coef. Sds = 1.043 Still = 0.567 Seismic Design Category = D Basic Structural System = Bearing Wall Systems Seismic Resisting System = Light frame (wood) walls with structural wood shear panels Seismic Response Coef. Cs = 0.160 Response Modification Factor R = 6.5 Analysis Procedure = Equivalent Lateral -Force Analysis Rain Design Data: Rain intensity i = 2.00 in/hr Rain Load R = 16.0 psf Wind Design Data: Ultimate Design Wind Speed 95 mph Nominal Design Wind Speed 73.59 mph Risk Category 11 Mean Roof Ht (h) 25.0 ft Exposure Category D Enclosure Classif. Enclosed Building Internal pressure Coef. +/-0.18 Directionality (Kd) 0.85 3,7 CalPro engineering JOB TITLE 4 Pinnacle Point 303 Broadway laguna Beach, Ca JOB NO. 240820 SHEET NO. 949-715-9990 CALCULATED BY Mans DATE I CHECKED BY DATE wwwstruware.com Component and Cladding Ultimate Wind Pressures Roof Area Negative Zone 1 Negative Zone 2 Negative Zone 3 Positive All Zones Parapet Area CASE A: Zone 2 : Zone 3 : CASE B: Interior zone: Corner zone: Surface Pressure (psf) 10 sf 20 sf 50 sf 100 sf -32.7 -31A -29.6 -28.3 -39.4 -36.7 -33.2 -30.5 -68.1 -62.1 -54.2 -48.2 16.0 16.0 16.0 16.0 Solid Parapet Pressure (psf) 10 sf 20 sf 50 sf 100 sf 200 sf 500 sf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Wall Surface Pressure (psf) Area 10 sf I 100 sf 1 200 sf 500 sf Negative Zone 4 -28.3 -24.4 -23.2 -21.7 Negative Zone 5 -34.9 -27.1 -24.8 -21.7 Positive Zone 4 & 5 26.1 22.2 21.0 19.5 3 c� II - - - r, r FL _� BUILDING HEIGHT iH1. 0 = 28 DESIGN WIDTH(W). It = 53 CS DESIGN DEPTH (0) A = 70 AREA (A)ft' = 3710 z ROOF PLATE HEIGHT Ia) = 21 AC = 0 = 0 1 ^ FLOOR PLATE HEIGHT Tall = 10.5 S ROOF DEAD LOAD Ip50 = 20 FLOOR(P50 = 25 S EXTERIOR WALL(psl) = 15 AU INTERIOR WALL(p:f) = 10 EXPOSURE D WINO SPEED = 95 mph ip a z 3 COMSINED WW a LW Z Navaho Ridge Parallelta Ridge 01015, 23, 16 21.95 20 23.86 228E 24 24A3 2323 28 24.86 2166 0 000 0,00 000 0.00 50 60 7D 60 90 100 • Lateral Design 2 - STORY ( STRIP #1) I 1 WIND ANALYST Cs= SEISMIC COEFFICIENT Cs(ASCE 7C5, SECTION 120.2)_... _ 0.160 WTOTAL=W R00HW 151 _. ...__... _ 3938 pit g V=BASE SHEAR = CI'W'."L _ _ ..._. 532 pit _y Kr>smR IASCE 705, SECTION 12.831 ✓+ TA 0.5s a K=1 T> 25s a K-2 D.5,7,2 K= (INTERPOLATE) dead load idbutaN ROOF = 20 70 = 1400 PIT EAT. WALL = 15 '( 2 (21-10.5)12) = 15B PIT TNT. WALL( _ 8 II ) = 10 'I 2 (21-10.5)12) = 105 PIT ron. WEIGH W "oar 1 ......,. ......... = 1663 pit w z a Of 0 pit Op1f dead load nbl utnry 1 -1 FLOOR = 25 70 = 1750 p1f EXT. WALL = 15 '( 2' (21-105)12 - 2' (10512) = 315 PIT TNT. WALL(' 811) = 10 '( 2' (21-105)12 + 2'(IOS2) = 210 p1f lore• WEIGH W m I.._.._.........._..._.....,,- ............................... = 2275Pg 5 FK=Wnd,,-h(level height) Fx aoq = 24.86 . 12&21) + 235E ' 2121 55 = 299 pit P 0 0 Fx I1n1 = 23,86 A xi 2 'S + 212 I = 247 pit SEISMIC ANALYSIS �•_ 0 21' 1663 z Fx �ewri = ]7]Pif C va lawq = 21.1663s10.5'2275 = 0.59 a 0 ' Fx IIi1I = 259 pit C vx psll 21'1105663ri05'2275 2275 = 0.41 SUMMARY WINO SEISMIC GOVERNING LEVEL LOAD(PLF) LOAD(PLF) LOAD JPLF) ROOF 299 313 373 SEISMIC 7 v1 FLOOR 247 259 259 SEISMIC PLATE SPLICE DIAPHRAGM V MAX (DIAPHRAGM) v'WR'D= 373'265112'70)=71 pit USE PP, 1A3r COX MTOOOMELOLXE0 W 08d COMMON NAILS Q6', V', 13"01. CHORDFORCE VMAx'W"2118'0)= 373'53'531(8'70)=10711bz USE OJ USE I2-IW SINKER NAILS MINIMUM SEMEN SPACE POINTS R a, V... (DIAPHRAGM) v'W12'D= p USE DO 0OrCMPATEOUNemcKEOw1Ke CC L CHORD FORCE, V MA.i W"21(B'D) _ USE CJ USE 6- IW SINKER NAILS MINIMUM SETV �D 259.531(2-70) = Mips Ir Oe. 259 '53' 53 11B' 10) = 650lb. LMw.E • Lateral Design 2 -STORY( STRIP #2 ) «e BUILDING HEIGHT IH), A = 28 DESIGN WIDTH IW), fl = 70 o DESIGN DEPTH (0). A = 53 BE AREA (A)0° = 371C z ROOF PLATE HEIGHT Ibi = 21 _ = 0 Of = 0 = 0 1 sl FLOOR PLATE HEIGHT 01) = 105 a ROOF DEAD LOAD(ps`I = 20 FLOOR(ps0 = 25 a EXTERIOR WALL paO 15 a INTERIOR WALL(ps0 = 10 EXPOSURE = D WINO SPEED = 95 mph RE COMBINED WW «LW Z NBmltl to Ridge Parallel to Ridge 0W15' 23.16 2195 20 235E 2268 24 24.43 23,23 26 24.8E 23.66 31 01)0 0.00 000 0,00 so 60 70 so 90 1W CS- SEISMIC COEFFICIENT C5 (ASCE 7 05. SECTION 12S 2),.._...,._........ 0.160 WTOTAL=W Rppf+W 1sl ..,,.. _.. ._..,.,_ ........_.. 3173 PIf y V=BASE SHEAR =CS.WTOTAL--^ .... 509 If y Kra[mN(ASCE 7-05. SECTION 12.83) LU T<0.5sa K=1 Ta25s s K=2 05 <T <2 a K= 1 INTERPOLATE) dead load tributary ROOF = 20 ' 53 = 1060 pif EXT. WALL = 15 'l 2 (2110.5)12) = 158 pIf ENT. WALL (l d 111 = 10 'I 2 (21-10.5)12) = 105 Of ,um WEIGH W e[cT ...___. _.......,... _.__.. 1323 PIf O of D pit 25 0 pit End load Idbubry 1 -1 FLOOR = 25 53 = 1325 pit EXT. WALL = 15 '( 2' (21-105112 « 2' (10.5121 = 315 pit INT. WALL I i S II 1 = 10 '( 2' 21.10.SU2 « 2' (10.512) = 210 Of P. WEIGH W m 1-........_................ ...... ......-- .... ._........_..... = 1850 pit WIND ANALYSIS Fx=wipd,,*h(levei height) ¢ F. 000 = 23.66 . (28-21) + 21? 66 ' 21 0_' = 205 pit c 0 0 Fx 1"2 51 + 21.95 ' 1u = 234 pit - psll a SEISMIC ANALYSIS 0 21 ' 1323 rc Fx �cm.I = 300 PIf C Nx lewO = 21.1323+10.5'1850 = 0.59 CP CI 10.5' 1850 Fx ps0 = 209 PII C vx IN') 21'1323«105'1550 = 0.41 SUMMARY LEVEL WINO SEISMIC GOVERNING LOAD(PLF) LOAD(PLF) LOAD(PLF) ROOF 1 - FLOOR 205 234 300 209 300 SEISMIC 234 WIND PLATE SPLICE DIAPHRAGM V na. IDNPHRAGM) v'WI2'D= 300-70112'531 = 198 PIf $ USE OD 15U3"COX RATED BLOCKED 310WRE COMNONNlus B 5".v 12-" rc CHORD FORCE. VMAX'W'2 l(B'D)= 300'M'7W(9'53)=347Ibs USE** USE MST1e BETWEEN SPLICE POINTS is ON VNu BNAPHRnGMI v'WI2'D= 234.701(2'53) = 155lba $ UBEoo 19132'COX RATED UNBLOCKEDW110d COMMON NAILS Q6', B', 12"cc. CHORDFORCE'. VNsi W"21(B'D)= 234'70-70I(8'53)=2704 UPS USE oo USE ST6236 BETWEEN SPLICE POINTS LI I Lateral Design • 2 - STORY ( STRIP #3) z BUILDING HEIGHT (H) h = 28 DESIGN WIDTH(W), fl a 38 o DESIGN DEPTH(D). I = 38 BE AREA(Al ff' = 1444 z ROOF PLATE HEIGHT = 21 = 0 'm = 0 = 0 1 ` FLOOR PLATE HEIGHT Iml = 10.5 a ROOF DEAD LOAD (p6f) = 20 FLOOR Ipaf) = 25 Q EXTERIOR WALL pio = 15 o INTERIOR WALL(Pf) = 10 EXPOSURE D WIND SPEED = 95 mph COMBINED WW+LW Z Normalm Ridge Parallelb Ridge 01015 2316 21.95 20 2356 22.66 24 2443 23,23 28 2486 2865 0 0,00 coo 000 coo 50 60 70 80 90 100 Ca= SEISMIC COEFFICIENTCa(ASCE 705 SECTION 1282) ... 0,160 WTOTAL=W ROOWW/151 .. __.. .._. 2498 pit g V= BASE $HEAR = CSWTOTAIr-.,. ..__.. __. _, 401 PIf rail KPAT,OR (ASCE 705 SECTION 12.8.3) T<D.56a K=1 T> 2.5E a K=2 0.5KT2, a K= (INTERPOIATE) Find Ioad tdbMtary ROOF - 20 38 = 760 pif ENT. WALL = 15 ' 2 (21 10.5)12) = 156 pif INT. WALL(_811) = 10'1 2 (21-10.5)R) = 105Of 1 ­ 1 WEIGH W ROOT ) __..... . _..... ___. = 1023 PIf 0 pit 0 pit 0 PSI 0 pit dead load tr,b.buy 1 RI FLOOR = 25 ' 38 = 950Of EXT. WALL = 15 '( 2' (21-10.5)12 r 2- (10.512) = 315 Of INT. WALL + 8 II) = 10 '( 2' (21-10.5)12 A 2- (105G) = 210 Olt ,DIAL WEIGH W , ) ...,..... ...... .....,.._. = 1475pif WIND ANALYSIS Fx= WindPD' h(level height) TO DO OR Ie00rl = 24 86 - (28 21) + 23.86 ' 21-Z = 299 pit FO 0 0 1-10 51 Fx Mal) 23.8E " 2 + 23.2 ' 1L2 = 247 Pif SEISMIC ANALYSIS z Fz inooN = 233 Of C vz laaaFl = 21'102]«1089475 ` 0.58 DO DO 0 0 10.5' 1475 Fx pm) = 168 pit C vx P•II = 21'10231105'1475 = 042 SUMMARY WIND SEISMIC GOVERNING LEVEL LOAD(PLF) LOAD(PLF) LOAD(PLF) ROOF 2% 233 299 WIND 1 s FLOOR 247 168 247 WIND PLATE SPLICE DIAPHRAGM V EM. (DIAPHRAGMI v'WI2'0= 299'191(2-38) = 75 pit USE OO ISI COX HATED UNBLOCKED 20WI)4 COMMON NAILS@V, 6', lro.[ CHORD FORCE'. V MAz'WA21(6"O)= 299.38'381(8'36)=14201be USE *' USE 10� Ifitl SINNER NAILS MINIMUM 9EM¢EN SPLICE POINTS V .0 (DIAPHRAGM) vW12'0= 247.38112.381=12416E O USE OO SCI COX RATED UN9LOCKE0 WI COMMON NAILS ®6", 6', IroD z CHORD FORCE, V NAx WA2118'0) = 247' 38-381(8'38) = 58716e USE DO SPLICE WI Ifitl SINNER NAI 16IN.DC. STANUARD CONSTRUCTION) LP—, . Lateral Design • 2 - STORY ( STRIP #4) +i BUILDING HEIGHT(H). h = 28 DESIGN WIDTH(W), O = 38 o DESIGN DEPTH UU. It = 38 BE AREA AI O' = 14A4 BE ROOF PLATE HEIGHT (hi = 21 FA = 0 AS 0 =0 1 - FLOOR PLATE HEIGHT I60 = 105 ROOF DEAD LOAD (p50 = 20 FLOOR(ps) 25 EXTERIOR WALL(psf) 15 o INTERIOR WALL (PRO 11 EXPOSURE = D WINO SPEED 95 mph z w SO 3 COMBINED WP3 R LW Z N...ltp Ridge Parallelfo Ridge 01015 23.16 21.95 20 23.86 2256 24 2443 23.23 28 24,86 23,66 31 Coo 000 000 000 50 ED 70 80 90 100 Cs= SEISMIC COEFFICIENT Ca (ASCE 7 05, SECTION 12.8 2)..... _._....._.. 0.160 WTOTAL=W kapi.W 1st _. 2458 PIf A,V=BASE SHEAR =Cy'WTpTAC _.. _ 401 pit N KFAMR(ASCE7-05, SECTION 12,8,3) rn T0.5S a K=1 Ta 25, a K=2 0,5<T<2 aK= 1 (INTERPOLATE) e4emd load hibutary ROOF = 20 38 = 760 of EXT. WALL = 15 '( 2 12140.5)12) = 158 IF INT. WALL 1 L & II) = 10 '( 2 (21-10.5)12) - 105 pit row WEIGH W nw 1 ...-......, .,____ ._..... = 4023 pit 0 pit 0 pit 25 0 pit dead load 1dbOtary 1 :1 FLOOR = 25 38 = 950 pif EXIT, WALL = 15 '( 2' (21-105)12 a 2' (10.5R) = 315 pIf INT. WALL( . A II) = 10 '( 2- (21-10S)12 a 2' (10-512) = 210 pIf rm.L WEIGH W . )......-_,,.. .,._.,. ....__. = 1475 If WINO ANALYSIS Fx=wind,,+h(level height) Fr lveee = 23.66 - (28-21) + 2266 • 21 2 'S = 285 plf 0 0 r Fx Iml - 22.66 ' 2( 1-1051 + 21.95 ' 1 Z f = 234 Plf SEISMIC ANALYSIS OF 21 ¢ F. ,mP = 233 PIf C laOOD v = 21'1023a105'' 1023 1475 = 0.58 s AA AS 0 10.5' 1475 - F" 11s11 = 1fi8 p11 C Vx lt•4 21-1023-10.5.1475 = 0.42 SUMMARY WINO SEISMIC GOVERNING LEVEL LOAD(PLF) LOAD(PLF) LOAD(PLF) ROOF 285 233 285 WIND 1 11 FLOOR 234 168 234 WIND PLATE SPLICE DIAPHRAGM Vew (DIAPHRAGM) M Vl2'D= 285'381(2'38) = 143 pit USEI5412'10. 1 ONRLOLREO Ebb W104 COMMONNMIIt 6,I 1r o.c. CHORDFORCE, VMAR'W'21(B'D)= 285' 38' 18118' 36)=13541bS USEOO USE 10 � 166 SINKER NAILS MINIMUM BETWEEN SPLICE POINTS V au (DIAPHRAGM) JWiro= 234'381(2'381 = 117lbs o USEOO 1913"COX RATED UNBLOCKED W110d COMMON NAILS@d', V, 12'0 C. 'J` CHORD FORCE: V M<YW"2IWO) = 234' 38' 10118' 381 = 111216s USEOO USE 8-lad SINKER NAILS MINIMUM BETWEEN SPLICE POINTS 03 H/hw=10.5/9.5 = 11^- 11% Load Increase: 1.11 SHSMIc: 66641M G 0(p) wxuo; 5)58Ihs 6" v F i 6 p iZ-I C - @front of the kichen and family 11 Floor level: ist Floor exterior panel (PLYWOOD PANEL SIZE) F+ WING H GPfN'G1. OPEN'G LI I Panel A 1 Panel B- I I I 11-1 I 0" 4'- 9, 16.- 0" 4'- 9" S- 0" 01- 0" Foundation Foundation - - over turning moment (Io/ft) = Panel A 34962 Panel a 34962 resisting moment (Ib.d) = 1134 1134 net moment (Ib.ft) = 33828 33828 uplift (Ibs.) = 7122 7122 a. uplift from wall above (Ibs.) = 0 0 c post @ panel edge: = 4%6 4X5 R strap/holddwn = HOQ8 HDQ8 h o✓i drag force = 2473 1995 < # of A35's = 7.4 7.4 a # of anchor bolts = 5.5 5.5 0.34 1.36 Note: USE dead bad sold St,, # (psi) (ft) (level) roof: 20 0 stop#1-roof Floor: 30 0 strip#1-lst floor deck: 30 0 ----- other; 0 0 - i C eon, wall: is 0 ----- 4 0 other:0 0 ---- O 0 0 0 ---- tribute wind ssi mseismic Yi (pif) (plf) Ibs (Ibs) 19 799 373 0 0 19 247 259 0 0 a a 0 0 0 0 0 0 0 0 0 0 o a a 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 shear wall type= o o 0 0 0 0 0 0 0 0 0= h =A§ pane) shearro = _ _ = o. _ _ n _ _ _ _ = o c 701 plf total line length _ o c 7 0 0 0 0 _. -_ 0 4g5 ft R e m [op plate splice (max. drag farce= 2g731bs) 16-16d siM 2 t0 wAmai0<Aa..eoo>=a--o==on ao 0.015h G 0,0 deflection: > > > _--> 1.36 < 3.15 ShearrvaIII L-1 - 0 LEFT OF NEW FAMILY ROOM EXTENSION floor level: 1st Floor exterior panel Load increase: 1.0 L= 18'-0" dead load span strip A tributary a cQ�Qp (p) vntl se sei¢9417 a (PLYWOOD PANEL SUE) (ps) (ft) (level) e () (off) (eli lbc (Its) w.Nn: 9602 has 9 roof: 20 0 strip a2-roof 37 285 300 0 0 C 10'- 6" Q Floor. 30 0 strip x2-1st Fri 37 234 209 0 0 ?= WENG OPEN'G OPEPI'G i f. qq { Q deck: 30 0 -- 0 0 0 0 0 „ ^p Ep other: 0 0 --- 0 0 0 0 0 panel A—t r Q exL wall: 15 0----- 0 0 0 0 0 —I—I G other: 0 0 ---- 0 0 0 0 0 30'- 0" 181- 0" 2'- 0" 01- 0" C- 0" 0'- 0" 0'- 0" 0'- 0" -+ - 0 0 ----- 0 0 0 0 0 Foundation - - - -0 0----- 0 0 0 0 0 - 0 0 --- 0. 0 0 0 0 - p 0---- 0 0 0 0 0 over turning moment (10./R) = 100]3] shear wall type= ? _ _ _ _ _ _ _ _ -+ _ _ = 3 resisting moment (haft) = 18180 net moment (Ioll = 82557 panel shear^ _ - - > > - _ - _ - _ _+ _ - 533 elf uplift (Its.) = 4587 a. uplift from wall above (Ibs,) = 0 0 0 0 '} total line length 50.0 ft c post panel edge: = 4x4/4x6 m q C H strap/holtlown = HTiS 2 top plate splice (max. drag force961 Ibs) MSTC66 drag force = 5761 « W Gtt of A35's = 21.3 C d max`4.0 < A,__ = > > _ - _ = 0 7 = 0 7 0.025h P of anchor bolts = 160 0.0 deflection: _ _ _ - > > _ - 1.6 < 3,15 Note: USE NTiS SheareallsQ02242 21-24 Conventional jla6 on 3rade Design # soil: (coefficient of friction) (subgrade modulus) K = 250 (poison ratio) v = 0.15 y Slab: j assumed slab section = 12" blw;a, % 25' L(iengi (assumed thickness) t = 5" w be, type = #4 G bars @ inches c.c. both ways = 16" f'r (psi) = 4500 (concrete weight) w. = 144 psf loading checkpoint load) (point load) jh,, x = 4 o'r5A where: Z 2k 9 EI u N bf' (section module) 5 = 6 0 m E = 570001rT 9 (elasticity modulus) bt c (moment of inertia) / = 12" 6 thereFpre: p = (1.6V �'c �( db") 4 EI p = 760 Ibs. ✓ 0 area pf steel check r area of steel k,,e )=w L/2fe = 0.02 in' J C area of steel A.(orwmea) = Rr' O = 3.14/4-(4/6)^2-(12/16) m = 0.15 in' n hence: O A.fri > Asaenm 0 a 0.15 in° o, 0.02 in' ✓ a Pm„= 7601bs w = 144 sf 3 m 5,. Thick t n m 7 #4 Bars @ 16" O.C. bath ways ( L= 25' b yb Concrete FmIrnp Aae_oaa a2008 2-5tory Footing Design Calculation soil: soil bearing pressure (psf) = 1500 footing: _ W assumed footing = 24" w(,,,) X 24" e(depm) < (wall thickness) It = 6" > 16500 J'r (psi) = 4500 z yrebartype = #5 o # of rebars = (4) �j Fr (psi) = 60,000 W ^o (clearance to edge steel) = 3" 4: 6 r lbutaw dead load 1w.load roof = 40 psf * 40/2 + 0/2 = 400.0 Pif 400.0 plf wall = 15 psf * 9 + 10 = 285.0 Plf 0.0 plf i floor = 65 psf * 1612 + 0/2 = 200.0 plf 320 pif footing = 24" X 24" (150*24-24/144) = 600.0 pf 0.0 PIT O total uniform load (DL) + (LL) e e a 1485 pif 720 pif total uniform load acting on footing a 2205 pif soil bearing check: (load induced presure) Pu = I.2 ' 1485 + 1.6 * 720 = 29341bs. ✓ Pu 2934 (soil bearing req'd) qe = Amom,y 2.00 = 1467 psf < 1500 psf ✓ shear check (concrete): load,.—, V. = qu*b(IJ2-c/2-D) = 29341bs. loadlanawaeal 0 V, = 0.85(2) /'c r,5 bd 56107 lbs. 0 V� = 56107 lbs. > 2934 lbs. ✓ area of steel check z momentlaya,al) M„ = (3/2*PU*(b-W)) Me = 3/2*2934'(24) 5 M„ = 105624 in. lbs. t� R. 1l1bd12 z _ 115114 = 11.64 ✓ fGRi 'c _ 2Rn Plraem,l = J v = 0.059 Pta,�al = (d/b)P = 0.0502 where: area of steel As(,eo'dl = Pls.... )bp = 0.05*20.5*0.06 = 0.0605 in' area of steel Ayp,o,,,ded) = ❑r' = 2`(5/8)^2/4'3.14 = 0.6133 ins hence: A.(..mem> kamd) 0.6133 in' > 0.0605 in' ✓ P..= 150001bs t = 6" c 0 N q , s U 6 O As(ra4'd) — (4) #5 Bars O N b=123.5" �,epd) 4 24" Ipramdadl ✓ i-7 c Ilrv. remms_slan_pad -BIDS Pad Calculation Soil Bearing Presure = 1500 psf Minimum Footing Depth = 24" Pad #: 3 6EAM z Point Load = 19170 lbs. Min. Pad Size Required: = 3.57 ft. SQ. USEoba 48" SQ. X 24" Deep Concrete Pad WITHboo (4) #4 Bars @ Bottom Pad #: E)EAM 3 KGT Point Load = 18730 lbs. Min. Pad Size Required: = 3.53 ft. SQ. USEoob 48" SQ. X 24" Deep Concrete Pad WITHoob (4) #5 Bars @ Bottom - Point Load = 0 lbs. Min. Pad Size Required: = 0.00 ft. SQ. USEooa 24" SQ. X 24" Deep Concrete Pad WITHoee (2) #4 Bars @ Bottom i Pad #: 0 Point Load = 0lbs. Mln. Pad Size Required: = 0.00 ft. SQ. FUSE*e4 24" SQ. X 24" Deep Concrete Pad WITHbbb (2) #4 Bars @ Bottom Pad #: nFA E beam 3 LEFT Point Load z.d = 20230lbs. Min. Pad Size Required: = 3.67 ft. SQ. USEbba 48" SQ. X 24" Deep Concrete Pad WITHbbb (4) #5 Bars @ Bottom Pad #: 1 -M, e- Point Load = 0lbs. Min. Pad Size Required: = 0.00 ft. SQ. FE- q 24" SQ. X 24" Deep Concrete Pad .A�b (2) #4 Bars @ Bottom USE 48" PAD Pad Point Load ` = 0lbs. Min. Pad Size Required: = 0.00 ft. SQ. FUSEd 24" SQ. X 24" Deep Concrete Pad WITHOOO (2) #4 Bars @ Bottom Point Load = 0lbs. Min. Pad Size Required: = 0.00 ft. SQ. USEo 24" SQ. X 24" Deep Concrete Pad WITHaoa (2) #4 Bars @ Bottom q0 Concrete - Fooling siabyad �PpOB ANCHOR BOLT CALCULATION NEAR AN EDGE (Base on ACI-318 Appendix D) USE»> 518" ANCHOR BOLT z w fc = 2500 PSI CONCRETE o- EDGE DISTANCE = 1-314" V, = STEEL STRENGTH IN SHEAR Ve, = 48021bs. (ACI 318-14 APPENDIX 0.) Oveq = 0.6'4802 = 2881.2 CONCRETE BREAKOUT STRENGTH IN SHEAR: I, =het = 7" —MINIMUM 5" d,z = 518" 0.625" web V = 0.7+ 03 1.5 Oar (Eq. D-28) w,d V = 0.77 USE 1.0 W, IS 1.0 WITH NO SUPPLEMENTARY REINFORCEMENT: 1,2 WITH #4 1.4 WITH GREATER THAN #4 A,, = 1.5 Cal( 1.5 Cal+Caz) (Eq FIG RD621(b)) A w = 69.4 In"2 A„p = 1.5 Cal( 2 Ca,+Caz) (Eq. D,23) A „o = 113 In"2 Vmi =�A ury JX wedv wcv wb (Eq. 0.21J V,yt = (69.41113)' 0.77' 1.0' 4689 V,b, = 2217 0 = 0.7 FV,bt = 15521bs. (Per D4.4-c Condition) Cat = 5.00" Caz = 1 75" L Vb = 7„ do ��c (Ge )tos (Eq. 0-24) r o Vbz = 7" �8 0.2 (0.625)"0.5"(2500)"05'(5)"L5 Vbz = 4689 lbs. Ca 1 = 1.75" Caz = 5.00" 10 az Vb = 7" — X do X fo X(C.,)1s do Vb, _ 7 1 118102 (0,625)"0.5'(2500)"0.5'(1.75)"1.5 V61 — 971 lbs. web v = 1.0 (Per D-6.21) Ill = 1.0 (Per D-62, 7 with no sopplementalreinlorcing) A,, = 15 Cal( 2Cal +Caz) A, = 20 In"2 (Fig. RD-6 21.b) A„, = 4.5 (Cal)' (Per 0-23) A..o = 13,78 In"2 Vm2 = 2x(gvco lO Xw,d.X wc, XVb Av, _ 5 nlllAv,o= A o = 1,0 (Per 0-2180-6.2.1-c) V112 = 2'1'1'971 = 19421bs. 0 = 0.7 (Per D44.-c Condition) FV,bz = 13591bs. V,b = min. ((DV,61,OVcbz) (Per O-621EJ V,b = 13591bs. q1 ANCHOR BOLT CALCULATION NEAR AN EDGE (Cont'd) (Base on ACI-318 Appendix D) V,p = KIP XN,b K, = 1.0 forh,r 5 25 (Eq. D-29) Kip = 2C forh, <_ 2.5 her = 5, N,b trA ��a Wea�W=m4'�pWd (Eq.D-4) W,. N = 1.0 (Per D g) Nb = K: Tc ha's K,. = 24 CAST IN ANCHOR K� = 17 FOR POST INSTALLED ANCHOR Nb = 24'(2500)^O5'(5)^1.5 Nb = 134161bs. Ce 9 min Wee N = 0.7 + 0.3 (Eq. D-11) 2 h,i 0,7+0,3'(1.75/(1.5*5))0.77 4), N = 1,0 A ,,, _ (Ca z + 1.5 h,) (2 x 1.5 h,f) (Fig. RD-5.2. 1-b) A,,, _ (1,75+1.5'5)(2'1.5'S) A, = 139 In2 A— = 9 h p 2 (Eq. D-G) A.., = 9'(5)"2=225 In N'b t�q',d � W � N 4',a LP, A IV, = (139/225)'077'1.0'13416= 63821bs. V,, = 2 Na, V, = 2.6382 = 127641bs. 0 = 0.7 WV,p = 0.7' 12764 = 8935Ibs. DETERMINE LOWEST DESIGN SHEAR OV„ = (P min. ((P,,, OV,b, OV,o) = 13591bs. OV„ = 0.75'1359= 10191bs. (Eq. D-33,3) LOAD PER ANCHOR BOLT MAXIMUM AT 8" O.C.: 1019*12 1529 LOAD = = 1529 lbs. ba LOAD,,, = — = 437lbs. 8 2.5'1.4 Anchor DesignerT"" for Concrete Software Version 3.3.2410.2 1.Proiect information Project description: Location: Design name: Design 2. Input Data & Anchor Parameters General Design method:ACI 318-19 Units: Imperial units Anchor Information: Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.625 Effective Embedment depth, her (inch): 10.000 Code report: ICC-ES ESR-4057 Anchor category: - Anchor ductility: Yes hmm (Inch): 11.38 cap (inch): 22.57 Cmw (inch): 1.75 Smm (inch): 3,00 Recommended Anchor Anchor Name: SET-3GT4' - SET-313 w/ 5/8"0 F1554 Gr. 36 Code Report: ]CC -ES ESR-4057 Company: Date: 12/21/2024 Engineer: Page: 1 Project: Address: Phone: E-mail: Comment: Base Material Concrete: Normal -weight Concrete thickness, in (inch): 13.78 State: Uncracked Compressive strength, fc (psi): 2500 Reinforcement condition: B tension, B shear Supplemental edge reinforcement: No Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Hole condition: Dry concrete Inspection: Continuous Temperature range, ShorULong: 150/110°F Reduced installation torque (for AT-3G): Not applicable Ignore 6do requirement: Not applicable Build-up grout pad: No Si Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. 5 mpson Stmrg-Tie Ccmpaay Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 wwwstronglie.com Anchor DesignerTM for Concrete Software Version 3.3.2410.2 Load and Geometry Load factor source: ACI 318 Section 53 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: Yes Ductility section for tension: 17.10.5.2 not applicable Ductility section for shear: 17.10.6.2 not applicable Qo factor: not set Apply entire shear load at front row: Yes Anchors only resisting wind and/or seismic loads: No Strength level loads: W[Ibj: 5000 Via. (lb]: 0 Vuar [lb]: 0 <Figure 1> M r 0 lb Company: Date: 1 12/21 /2024 Engineer: Page: 2 Project: Address: Phone: E-mail: 11 6 2- Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. 5 rrp, ; 1 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 wwwstrongtie.com <Figure 2> Anchor DesignerTM for Concrete Software Version 3.3.2410.2 Company: Date: 12/21/2024 Engineer: Page: 3 Project: Address: Phone: E-mail: r - �z u 3. Resultino Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, N,a (lb) V„a. (lb) V,,,y (lb) J(Vp..)z+(Vu.,)' (Ib) 1 5000.0 0.0 0.0 0.0 Sum 5000.0 0.0 0.0 0.0 Maximum concrete compression strain (%o): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (ib): 5000 Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'N. (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'NY (inch): 0.00 S3 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked far plausibility. Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 w atrongtie.com Anchor DesignerTM for Concrete Software Version 3.3.2410.2 4. Steel Strength of Anchor in Tension Mac. 17.6.11 M, (lb) 0 ONea (Ib) 13110 0.75 9833 Company: Date: 12/21/2024 Engineer Page: 4 Project: Address: Phone: E-mail: 5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.6.2) Nb = kcA.Vfcherr s (Eq. 17.6.2.2.1) ke A. fe (psi) he (in) Nb (lb) 24.0 1.00 2500 10.000 37947 0.75^b=0.750(ANa/AN-)Ye4N Yc.NW NN,(Sec. 17.5.1.2&Eq. 17.6.2.1 a) ANc (in2) ANco (in' c.," (in) Yed.N P.N Vo,N Nb (lb) 892.50 900.00 14.75 0.995 1.00 0,665 37947 6. Adhesive Strenoth of Anchor in Tension (Sec. 17.6.5) rk.,,ecr= 2,500)^ rk,,,rccr (psi) feed rem K,w aNsda fc (psi) n rk.wer (psi) 2162 1,00 1.00 1.00 2500 0.35 2162 Nb = d a mrccr>rdehar (Eq. 17.6.5.2.1) da r„ecr (psi) da (in) her (in) Ma (Ib) 1.00 2162 0.63 10.000 42451 0.750Mb (lb) 12132 0.750Ne = 0.750 (ANa/ ANao) YEd,Na `v p NaNba (Sec. 17.5.1.2 & Eq. 17.6.5.1 a) AN. (in2) ANao (in2) cNa (in) ca, 'r (in) 'wing Y'c,N. Nao (lb) 0 0.750Ne (lb) 307.10 307.10 8.76 14.75 1.000 0.654 42451 0.65 13526 OM,v = 0.550Nba (Eq. 17.5.2.2) 0 Nba(Ib) ¢Nam (lb) 0.65 42451 15176 11. Results 5 2-f Interaction of Tensile and Shear Forces (Sec. 17.81 r Tension Factored Load, %. (lb) Design Strength, eN, (lb) Ratio Status Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. &i,pson Strang -Tie Ccmpany Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925. 560.9000 Fax: 925.847.3871 www.strongtie.com Anchor Designer TIM for Concrete Software Version 3.3.2410.2 Company: Date: 12/21/2024 Engineer: Page: 5 Project: Address: Phone: E-mail: Steel 5000 9833 0.51 Pass (Governs) Concrete breakout 5000 12132 0.41 Pass Adhesive 5000 13526 0.37 Pass Adhesive (sustained) 5000 15176 0.33 Pass SET-3G w/ 518"0 F1554 Gr. 36 with hef = 10.000 inch meets the selected design criteria. 12. Warnings - Per designer input, the tensile component of the strength -level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.10.5.2 for tension need not be satisfied — designer to verify. - Per designer input, the shear component of the strength -level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.10.6.2 for shear need not be satisfied — designer to verify. Designer must exercise own judgement to determine if this design is suitable. - Refer to manufacturer's product literature for hole cleaning and installation instructions. s5 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. 5 ^ps:n 5•tong-Ta Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax 925.847.3871 www.stronglie.com