HomeMy WebLinkAboutXR2024-6488 - Calcs (2)NGINEERING AND DESIGN INC.
303 Broadway St. Ste. 209 Laguna Beach, Ca. 92651
phn. 949.715.9990 fax: 949.715.9991
civil - structural - architectural
PATE: Monday, December 23, 2024
STRUCTURAL CALCULATIONS
(CB❑ 201 9)
ECP,
Gharibvand Residence.
PROJECT: Sndural plan
SITE ADDRESS: 4 Pinnacle Point,
Newport Beach, CA 92663
EUtLDINGA D,l�
�V!-'1u
Li�
8Y: Z.Z.
Mansour M, Ahmadi, F �,
O. J�� �9y
aY m
c� o -14
s clVtt. S'
\� of co
Page 1
ENGINEERING AND DESIGN INC.
Sheet Index:
Index: Page Number
Beam Calc: 3 —16
Wind & Seismic Design: 17 — 38
Lateral Strip: 39
Wind & Lateral load calculation: 40-43
Shear wall Design: 44-45
Foundation Design: 46-48
Anchor Design: 49 — 50
Hold-down Check 51- 55
505 6roaolway Solt_-206 Lacpana Beach, CA92691 office 949.1416.2661
civil - structural - architectural - Inspection
Pans 2 of 55
Project Title:
Engineer:
Project ID:
Project Descr:
Wood Beam Project File: 4 Pinnacle Point.ec6
DESCRIPTION: BEAM 1: HEADER AT BEDROOM EXTENSION
CODE REFERENCES
Calculations per NDS 2018, IBC 2021, SDPWS 2021
Load Combination Set: ASCE 7-22 / IBC 2024 (L<=100psf)
Material Properties
Analysis Method : Allowable Stress Design
Fb +
2,900.0 psi
E: Modulus of Elasticity
Load Combination ASCE 7-22 / IBC 2024 (L<=100psf)
Fla -
2,900.0 psi
Ebend- xx 2,200.Oksi
Fc -Prll
2,900.0 psi
Eminbend -xx 1, 118.19 ksi
Wood Species ii-evel Truss Joist
Fc - Perp
750.0 psi
Wood Grade Parallam PSL 2.2E
Fv
290.0 psi
Ft
2,025.0 psi
Density 45.070pcf
Beam Bracing Beam is Fully Braced against lateral -torsional buckling
0
5.25xl 1.875
Span = 11.0 it
2
Applied Loads
Servire loads entered. Load Factor will be applied for calculations.
Beam self weight calculated and added
to loading
Uniform Load : D = 0.020, L = 0,020 ksf, Tributary Width = 23.0 ft, (ROOF)
Uniform Load : D = 0.0150 ksf, Tributary
Width = 2.0 ft, (WALL)
DESIGN SUMMARY
Maximum Bending Stress Ratio =
0.491: 1
Maximum Shear Stress Ratio
=
0.365 : 1
Section used for this span
5.25x11.875
Section used for this span
5.25x11.875
fb: Actual =
1,426.12psi
fv: Actual
=
105.82 psi
Plo =
2,903.37psi
F'v
=
290.00psi
Load Combination
Load Combination
+D+L
+D+L
Location of maximum on span =
5.500ft
Location of maximum on span
=
10.036 ft
Span # where maximum occurs =
Span # 1
Span # where maximum occurs
=
Span # 1
Maximum Deflection
Max Downward Transient Deflection
0.095 in Ratio =
1395>=360 Span: 1 : L Only
Max Upward Transient Deflection
0 in Ratio =
0 <360 n/a
Max Downward Total Deflection
0.199 in Ratio =
662>=180 Span: 1 :+D+L
Max Upward Total Deflection
0 in Ratio =
0<180 n/a
Maximum Forces & Stresses for Load Combinations
Load Combination Max Stress Ratios
MomentValues
ear a�-_
Segment Length Span # M V
CD CM Ct CLx
CF Cfu Cl Cr M fb
F'b
v fv F'v
D only
0.0
0.00 0.0 0.0
Length = 11.o It 1 0.287 0.213
0.90 1.00 1.00 1.00
1.001 1.00 1.00 1.00 7.71 749.5
2,613.0
2.31 55.6 261.0
,OIL
1.00 1.00 1.00
1.001 1.00 1.00 1.00
0.0
0.00 0.0 0.0
Length = 11.0 ft 1 0.491 0.365
1.00 1.00 1.00 1.00
1.001 1.00 1.00 1,00 14.66 1,426.1
2,903.4
4.40 105.8 290.0
+D+0.750L
1.00 1.00 1.00
1.001 1.00 1.00 1.00
0.0
0.00 0.0 0.0
Length = 11.0 ft 1 0.346 0.257
1.25 1.00 1.00 1.00
1.001 1.00 1.00 1.00 12,92 1,257.0
3,629.2
3.88 93.3 362.5
+0.600
1.00 1.00 1.00
1.001 1.00 1.00 1.00
0.0
0.00 0.0 0.0
Length = 11.0 it 1 0.097 0.072
1.60 1.00 1.00 1.00
1.001 1.00 1.00 1.00 4.62 449.7
4,645.4
1.39 33.4 464.0
3
Project Title:
Engineer:
Project ID:
Project Descr:
Wood Beam
LIC#: KW-06015573, Build:20.24.12.02 CalPro Engineering & Design
DESCRIPTION: BEAM 1: HEADER AT BEDROOM EXTENSION
Overall Maximum Deflections
Span Load Combination
1 +D+L
Maximum Deflections for Load Combinations
Max. Location Load Combination
', Der to Span
0.1993 5.540
Project File: 4 Pinnacle Point.ec6
(c) ENERCALC, LLC 1982-2024
"+" Deft in Span
0.0000 0.000
Load Combination
Span
Max. Downward Defl
Location in Span
Max. Upward Dell
Locaflon in Span
D Only
1
0.1047
in
5.540 ft
0.0000 in
0.000 ft
+D+L
1
0.1993
in
5.540 ft
0.0000 in
0.000 ft
+D+0.750L
1
0.1757
in
5.540 ft
0.0000 in
0.000 ft
+0.60D
1
0.0628
in
5.540 ft
0.0000 in
0.000 ft
L only
1
0.0946
in
5.540 ft
0.0000 in
0.000 ft
Vertical Reactions
Load Combination
Support 1
Max Upward fromn all road -Conditions
5,332
Max Upward from Load Combinations
5.332
Max Upward from Load Cases
2.802
D Only
2.802
+D+L
5.332
+0+0.7501-
4.700
+0,60D
1.681
L Only
2.530
Support notation : Far left is #1 Values in KIPS
Support 2
5.332
5,332
2.802
2.802
5.332
4.700
1 -681
2.530
q
Project Title:
Engineer:
Project ID:
Project Descr:
Steel Beam Project File: 4 Pinnacle Point.ec6
DESCRIPTION: BEAM 2: steel FL BM AT REAR OF THE NEW DECK UNDER BEDROOM
CODE REFERENCES
Calculations per AISC 360-16, IBC 2021
Load Combination Set: ASCE 7-22 / IBC 2024 (L-100psf)
Material Properties
Analysis Method Allowable Strength Design Fy : Steel Yield: 50.0 ksi
Beam Bracing : Beam is Fully Braced against lateral -torsional buckling E: Modulus: 29,000.0 ksi
Bending Axis : Major Axis Bending
Loads
Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.020, L = 0.020 ksf, Extent = 0.0 --» 2.0 ft, Tributary Width = 25.0 ft, (ROOF)
Uniform Load : D = 0,0150 ksf, Tributary Width = 9.0 ft, (WALL)
Uniform Load : D = 0.0250, L = 0.040 ksf, Tributary Width = 5.0 ft, (FLOOR)
Uniform Load : D = 0.020, L = 0.020 ksf, Extent = 12.0 -->> 18.50 ft, Tributary Width = 23.0 ft, (ROOF)
Point Load : D = 2.80, L = 2.530 k @ 2.0 ft, (BEAM 1)
Point Load : D = 2.80, L = 2.530 k @ 12.0 ft, (BEAM 1)
Uniform Load : D = 0.0250, L = 0.060 ksf, Tributary Width = 6.0 ft, (DECK)
DESIGN SUMMARY
Maximum Bending Stress Ratio = 0.377: 1 Maximum Shear Stress Ratio = 0.196 : 1
Section used for this span WlOx68 Section used for this span W10x68
Me : Applied 80.192 k-ft Va : Applied 19.170 k
Mn / Omega : Allowable 212.824 k-ft Vn/Omega : Allowable 97.760 k
Load Combination Load Combination
-D+L +D+L
Location of maximum on span 0.000 It
Span # where maximum occurs
Span # 1
Span # where maximum occurs Span # 1
Maximum Deflection
Max Downward Transient Deflection
0.223 in Ratio =
995 >=360 Span: 1 : L Only
Max Upward Transient Deflection
0 in Ratio =
0 <360 n/a
Max Downward Total Deflection
0.433 in Ratio =
512 >=180 span: 1 :+D+L
Max Upward Total Deflection
0 in Ratio =
0 <180 n/a
aximum Forces & Stresses for
Load Combinations
Span # ..._.M ..--- V--
Mmax+ Mmax- Me
D Only
Dsgn. L = 18.50 ft 1
0.184
0.096
39.10
39.10
355.42
212.82 1.00 1.00
9.37
146.64
97.76
+D+L
Dsgn. L = 18.50 ft 1
0.377
0.196
80.19
80.19
355.42
212.82 1.00 1.00
19.17
146.64
97.76
+D+0.750L
Dsgn. L = 18.50 ft 1
0.329
0.171
69.91
69.91
355.42
212.82 1.00 1.00
16.72
146.64
97.76
+0.60D
Dsgn. L = 18.50 ft 1
0.110
0.058
23.46
23.46
355.42
212.82 1.00 1.00
5.62
146.64
97.76
Vertical Reactions
Support notation : Far
left is #'
Values in
KIPS
Load Combination
Support 1
Support 2
Max Upward from ail LoadCon dilions
19.170
18.673
Max Upward from Load Combinations
19.170
18.673
Max Upward from Load Cases
9.797
9.613
D Only
9.374
9.059
7
+D+L
19.170
18.673
Project Title:
Engineer:
Project ID:
Project Descr:
Steel Beam Project File: 4 Pinnacle Point.ec6
ups : nvv-uou mo ro, auiw:<u.<v. i<.ut
i,airio oyu iamiy n vmiyi i
��� o.�n..nw, �w m
DESCRIPTION: BEAM
2: steel FL BM AT REAR OF THE NEW DECK UNDER BEDROOM
Vertical Reactions
Support notation : Far left is #
Values
in KIPS
Load Combination
Support 1
Support 2
+D+0.7501-
1 fi.721
16.2fi9
-0.60D
5,624
5.436
L Only
9.797
9.613
Steel Section Properties
W10x68
Depth
10.400 in
I xx
� 394.00 in^4
J
= 3.560 inA4
Web Thick =
0.470 in
S xx
75.70 inA3
Cw
= 3,100.00 inA6
Flange Width =
10.100 in
Rxx
= 4.440 in
Flange Thick =
0.770 in
Zx
= 85.300 in^3
Area =
19.900 inA2
1 yy
= 134.000 in^4
Weight =
68,000 plf
S yy
= 26.400 in^3
Wnc
= 24.300 in12
Kdesign =
1.270 in
R yy
= 2.590 in
Sw
= 47.300 in^4
Ki =
0.875 in
Zy
= 40.100 in13
Qf
= 17.900 in^3
rts =
2.920 in
Qw
= 42.100 in13
Ycg =
5.200 in
M
W J
0
U Q
a
O
LL
O
LL
O
v
f-
v
LL
W
N
J
N
Q
U
N CO
O
N �
m
U N
LL
m
W
N Q
W
M a
� W
am
Zu)co
Elmo
Sao
m m
R
iN
H
a
Lu
,1,
m C
O
m
4
E
mr�
W
U
�0
d
Y
W
J p
O
U
N
V
1m Y
N
N
N
C
0
7
U
U
o
J
O
Y Y
� N O
o n
�
M
o
mti
00
ou
p
N 2
O N
6 U
U
0 o
0 0
0
N! Q
E E
m
T
N m
Uo'n0
O
'�
��
- J
Oo
LL O
O
I°d¢ E
n
Em
J
O
..
0#
E c
n n c
.-.O
U
N
U (0
U1 C V1
Em
a
a
W
O O
O
11 M 11
>t
A V A V
p >>
#
n O M 0
V
�p>N
�<
OOi
m W
II j
m
II II II II
V pip
0 0 0 0
N N m!0
IY CK�
O N Y
C C CS
OO
-Q M'C
N��
DO
11 �
N ro
II
DJOO
N O N N J
C
o
N — N
c
O O O p
@ O O O
MIrU
j II II II m
m
U
o
ry ry C
O c 0
UOODII
�N a
0
j'Um
j
a�i0p�
¢
Ec�aci
ma
J J J N
¢ -M
0
~
N
2E EEC
9 0 N
E N~
mN�l-
O
-~
o 0 o
mm aE
0
n
3 m c m
c
u�.E.E.E .o
m N<
y 0 ..
E
t
3
3 3 3
E» > a
2' o 2i:
# D
0� 0 7
N
m
0E U
N
c
(0 E
x X X x
NM:57E2:E
WAN
O
2
N
E
O O O O
M M M M
N N N N
O O O O
0 p m m
m rn m
m n a r
of � co vi a
Y
G
O O O O m
O O O O j
N
O O O O >
0 0 0 0
V V V rn m rn M m
N N N N
M M M M
m m w m y
v a v v a�i
LL
N N N m
M I- u6 C
v ° ao
O N M
m
0
C
C
a
N
m o n n
N N N
D
0 N M n
r m m
o m m n n m m
O O
O O O Ci UJ
m m v r
N V m M
N V M
O O O O
0 0
a c
in E
C a 0 U
r K t Q 0 J m m
O p O O Ci (p ry J 0
N N N N d O E E
n n II n K E 2 .a v
J J J J O J
c rnm d c 16 U m m 0
0
O O O O o 0 N 0 X X i 0+ . C
0 + + + > i i o 0 0 0+ o
I
1 Q
LL
LL
0
LL
LL
W
J
F
Q
m
J
LL
Q
W
m
Z
0
a_
L)
U
N
W
0
1
a D
N d M
O O
O O O O
M O
0 0 0 0
nM
uiv vim
M
N (O N M
V
0
�U �U)08
V M M G M M
C C C C C C C C
0 0 0 0 0 0 0 0
o �nv000Mo
d:��0oom�o
Mmvci Oiv ni c+i
N
C C cc C Q C C C C
0 0 o rn o o m M M M o
%1 (p m 0 0 V D7 V
L y
U
y
>p
L > ~
C
O> IL ll Q>
Y Y r}
sE
� N
U ry
� N
C p�j
Y Y
O
O
O O
r0
LL U
V
C 4
U
a �
Z
W
� W
O
0
a
D C C
g a E
N
m
ww
o
W
w
co
Q
a nano
n
w
O O O
O O O
O o N
m m N
U
m m 0I
N N N
r N O
N
z
O
I
Q
c O
_
n
as
�0
LL
+
LL LL LL
LL LL�
v w
c 0
O
c
W w
m
Z
p
N
U%
o y
X
N
m
w
N
o
0 N
II
C
N m
V
c�
m
Y
U
W
N
mo
d
S
N N
�U
yN N
Nm
'oN m
No
'.N
M w
U
rn w
J >.
a
W (n
NN
` LL
Q
o¢
nr
rE m
w
tq
U
OU)
0
Ali m
IDm
im Z
W
Z
a¢
N Q
a N
a
c
0 0
..
Ana
0-
0 m
m�a
to
W
o E
2E
Nm 0
m0
r
m O
rn G7 m
O': U)
Ott W
W
O
o.o
`—'m
°i
_C)
'oa E
0O
�
J
M
co
0
m
�i
V
U
Q
m
vL�l
co
Q m
a
E
U
m
J
0
0 0 o O o In o 0
> o - o � o � 0 �
ELN N M V
O In O N O O O M
(O V N M
O N O O O V O
O Nii — O O IN
; O O (O O 1q O
N C N U
O O O N 0
0
L
u u O 10
W
C U)
o c N
0
i N V C V
0.0
N U N U C
w 10
N U O N O V
o
co E O cps od
m 'y d_`m c
E E c m m0 u) n
7 R cm c o_ y m
E N O H 1- `
m E i»�a� O cr.
E `m 3 3 0 L" c
o�pcac� Ec�
co_u Eo xon E E
u 10Emg mm XCaE
0 C
In 'X� a ry
0 n
� J
O O O V O N o V
(O
O
O)
N V
t0 0
N
N
M •f
v
m
r r
v
m
o v
r
�
N
a0
OD N
N
m
1n
m
16
m
m
06
O]
OJ
N
N
0 0
0 0
0
0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
O o 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
OOi O
N (00
o
N O
r N
N In
O
0 0
ci
0 0
m
m m
m M
O
M r
In
o O
O o
0
11 II J II �1
5 0 5
n
> a m r c o rn
U O 0 0
U
N N
_ N
-C)
U N U U
❑ Soo
O C 0 O
a`WCLD-
a
o m
o
0
w x x
C
p�j
J
C
0 0 0 0 0
d
Ci 00 00
U
o
p
J
O
N
O
0
C
Q
U
a
}
W
C C C C C Y
O
W
O
C
0 0 0 0 0
V
0 0 0 0 0 m
O
=
0 0 0 0 0 i
a
u
NI
v v v v m
O O O O
0
0
C_ C_ _C C C
O
r m o a
1ClNrm �
o o Ci o
r o r r r m 0
N m m O N
c�mrn10Nrm
r o r r r m o
Nm mrnN
ll� In m m N r M
r vNr�6 .=v
N
C
E w
0 m
U U
m a
0 0
J J
00
a v
� � J
> > r ❑ a
C J O O
X X 0 0 + O
❑ ❑ 0 C)
Y L 6
o m o
oco r
o m o
U N
m
'w x
� � c
m
a c c w
wE aci
W W 0
W
.N .N .N .N .N .N
n n n n n n
0 0 0 0 0 0
o00 oo Sri
0 0 0 �O W N
m m m r N O
N N N N
Y
U
W
� n
IL a
W +
Z O D U 7
LL LL LL LL LL LL
W m
C
U
LL
O � a
to
a 0
LU r o
ON V
N O �
W N V c
O] n m CJ m
a - m m
uj N O
O o N m o 01
N N m N N N
U n m m O N m
Q W N J T
2 W U) mN �a LL
Q r0Q ar I... E N
W U) N m w m
m W cn M m a N >� ,� d
U O w a¢ -Aa m
Z W Z p __ c .. .. ..
Q Q N@ Q U O
W m o« C m m m
a W o E a g E
U cr mU m .Q U a mU' m
W = m d T m o o E
N O O N
i
m
J
as
m 00
O 0
N OD
W W
O
� N
N
� n
%
m
n
II
II II
11 II
N
m
c
U W c
W
Q
EEm
4:FZ
O z x
n J
II Q
.c p
p % N
m� uMiw
�-
°' a a n
CF
16
m N
O Y
� O J
m u
� J N
Y
d p Q
O O m a
u0M C�N
MIE�
Q
N
m mm O
O
EEC
pIN
Ow Z 0
d
'Q
Ems`= Ep
» "z
N
Wig
Qo.m
r- N
0
J
+
O
N
V
❑
+
0
o
II II II II
J
00
O o o O
C
U
m o
w w of�
U
n
c c c c
G
0 o
0.
O_ U
L
Ole
c
N
m >
O C
O
C
N
N U
O
N
L
O D
m ❑c
4j'
E E
c'm mpp
U!
m
x
c m c o
N
n
o m m
V
m
m E
E m
Y� E~ Y F
a� m v m
O
LL.
c t
o a
0 0 0 0 o Lq o O
O O O O N O O
m m cp cO
N N M V
O V O m O 10 O 00
0 o v o o M
C] O r
O V O O m O V
o n o . o m O o
a- a 0 o m a .-
O O O V O N O V
O m a m a m o 0
co
O
m
N O
cp m
N
N
M R
N
UO
U1 N
v
v
of v
r
m
M
Vl
m
N
r
0 0
0
0 0
0 0
0 0
0
0 0
0 0
0 0
0
0 0
0 0
0 0
0
0 0
0 0
0 0
O O
0
O
0 0
O O
0 0
O O
0 0 0 0 00 0 0
0 0
0 0
0
0
0 0
0 0
0 0
0 0
0 0
0
o O
o 0
0 0
0
0 0
0 0
o O
o
0 0
0 0
O O
O
O O
O O
m
O
N
(p
O
M
r
m
m
v
N
O
O
O
O
a
N
M
(O
r
N
i0
M
O
0
0
0
0
m
c m
3 W 0
�
0 m
J
o
m
a
m
o
co
0
m
c o n
ou Eo xoU
E
»
E
n
u
n
0 Emgmm
'cxciE
J
Li
J fn
0
J J
W+
N
O N
ro
C
C
J
O
❑
J
J
J
o
G
❑
+
cm r r = = v
0
n 0 0 0 0 0
G 0 0 0 0 0
0 o o 0 0
0 o 0 0 0 0
O
O
N
a
- E ; c c c y
00000 -
0
�00000
O O O O O
a0000a;
C
O
U
O
1� O
m
e x
N
o �
N
G C
mMI
❑ C
O
w
c a Ol
n
ry W N
U
c
o m ❑
v
O
m E
9
m
c
E
Z 0
N
o
O
Cm
O E
-
CDo
H x
❑
C
m
m
d N
o
E
.3
J
0
__
+ M
0
o
O U
O
a W
m
O
U O o o
O#+# J u
S
U❑ >
N
f
C
J
C
m O m mm—O
N m m N m m m
I MMO)M V �-M
i ui ci .=uiv.=ri
m o m m m o
N m m N m m m
M M m M V' - M
w
I�
N
�
m
N N
U
C
p
Y Y
6
p
O m
O
LL
U
o
I`
O
O
J
i
Om
N
N �
C
Q
U
a
w
v
w
z
LU x
w
o
1T
m
y,
LL
n E
0
WW
O
W
0 N N
N w N
0 0 0
0 0 0
000
0010
o
n m N
m mCD
rNo
N N N
N
C
rn
O
p
`-
O
m J
nn 0
LL LL LL
0 >
LL LL LL
c Q
LL
u
w LL
O
a O
m
n
N
a
C
U Q
O
O
W
o
O
O
V
Q
d
2
m
>n
> N
O
m
O N
V
c
w
m
m m
c J
W
N N
N
N
m
p
C)
mm
a O
W
S
J
m n
>
ao �
m�
2LL
li
W
uJ
U
U
a
E
m
o (/1
J m
N
g
O CO
N
a
m
mZ
Zzo'C3a
..
�
fl.m
a
So
W
Q£
oo
m
m
m
a
W
N
c m
d
0 E
o
U
y
.. N
W
.o
c
N
>.
-0 a
E
O
u W
O
o m
.y.
M-
00 0Co
0
0
n
�n
O
i
L
m m
v W
U) c
E U
m C7
E n
n O z x
x
x
Z
•- J M
�
Q N
i II
r �
O�
Ofo
@m
W O]
m
�
o X
N
� ~
m
w
I O Y m m
O p Y
?
� C Y J
❑
m000
�
m 0 0 0
C
N n
U II II II
mo
}
rno
-ypla 0 0 0
�p � J J
? m y
m
o E
E E E
y
�000
Z,00_
N E 'E -E E
'a
C9 E 0
'x
h N
am
o�
O O O
O O
m O
>
O
O
m 0
m 0
❑
� W
N
N
M
N N
O d
m
O
V O
V O
r 0
W m
M
N
O
(A
>
O
m O
N O
M 0
O
m 0
m O
m 0
n
o
m o
n o
o
ILL
I
v
r
o
II II
II II
N
N
m
CO
.-
m
C
(p U
O U
N
�
N Q
�
r
r
m
U=
2
r
N
M
E E
U
v
o
o
E m
E
Q>
c
m E
+
o p
o 0
0 0
0 0
w i,_
m
E
J #
�
O O
O O
O O
zi
`o
E
o 0
0 0
0 0
U
o
n m n m
U
o 0
0 0
'-
0 0
0
U a
0
0 0
0 0
0 0
m
O O
0 0
-—
0 0
0 0
M
Mm-m
5
.
— —
——
II M 11
A V A V
m m
m m
m m
r O r O
m In
U
m m
m 0�
m m
}
r v
y
o 0
0 0
0 0
'y 'y
+
O
O O
0 0
O O
0 0
O O
0 0
II 11 II II
i+
r
O .-
J
�-.
M
m
2000
C
U
rn
x(r
0 0
o00000
0 0
0 0
Nn
of
E
U
N N
y
C c C c
O
mo7o
U
g
O O
o 0
O O
0 0
O O
0 0
cN�l M
m
U
O O
O
O
rn
O
N
J
N
o U
o
II II
II 11
0
w
C
y
m >
N
m
C
O C
O
O
O
� O
y
m
N U S
W
m
m
r
U p
m
M
m
1(l
6 U
m 0
Q d
D C U
y
O
O
O
0
C
E E
c m mC,
y
m
^
c
cy
m
C N C _
d
d
y
❑
C
0
E m
o F m
i
X Ei>v
�"oF
m.O
O
cy
n
c
E w
t� LL
n
O L
m C 3 C m
m N
o
0
0
oc>'
�o� o n
3a-o
J
vi
to
,n
U
o u
E❑ x O 7
E
E
it
II
n
m
5
J
0
0 n
E m m m
X
U
n
_
J
Jm
x����
ma
m
❑
C
g
o m
Q
G
0
❑
0
O
ill
a
n J
i Q
n w
w
O
Q
W
Q
Q
w
m
a
O
Of
C)
i
2i
;Q
W
i In
a.
� Q
F
C.1
cn
W
2 +
C
E
'x
2
N
a
�
C
0 0 0 0 0
-
P 00000
0 0 0 0 0
�]
N
0 0 ci 0
0 0 0 0 06
>
X
m ik
uJ I1) In Itl IA
c In u] l0 In In
U
O C
J o
jai
c
�CCCCC �
21 0
a
mvNi
m M M M N D
C M M O N N
3 �00000
r d W w d N M m
1 a �
i � J
d Q N
CD
� N
m N VI U
Oo Y Y d � ry
6 U p
d J O N O
m U � rim v
a
z W
Q C C N
a a E m
W W ❑
ui
VI 1/1I/N UI N
a a a n n n
0 0 0 0 0 0
doo oovi
G O O N !n N
D7 m 0) n N 0
N N N N
m
n
to a LL
LLLLLL LL wIL a � m
D J ry
rn LL
O LL C a o a
a O m
U < O o
W O u
O V C
N v m
Q jU N
> N OO N
O
W a N II C
m U) 0 c= rn
m rn m
ON -� .Vl N 'O
V n• Vl m O N m
o Cif w
p g o� <n m ry 2 a LL
t\! Q Q d n F N
w f7 N W m E
a m U o U) w Q Q a m
E m Z W Z ot .. c .... ..
m N O a m C o o
N oF W
m as W 3 E a15 E o
"O 3 V m V 16 " U U) C7 m
0 # W - (6 ) N > a0 A
I� U V U J G Q J >> R]
k
N
y
J
❑
M Gj
N
m
•
0
co O
N #
o
m
�
t
tD
u
0
0
L
=
II
11 II
II II
rJ
tG
C j
U
J
a w
O _
E E
E m
J
'ac
o
Q '��
E
U +p
LL
E
J +
r
_
U
m
EEo
3
o
LL
O
t
c c
U
w
O
(n c
U-
U
o f
n n
Q
E U
-Q
U
N
U N
ZEO
J
J fn
o nwo
MW-O
Z O
@
1 M 11 W
J N
OOMO
II
L
+
O+
N M
yI
>
•.
11 11 11 II
O
p%)
CS 10
MN
O�-
N
x
M(0
#
O? 0 0
C
j II
a N
N
ON
7�
a'of m0a
N
O m
U
C c c C
U
p Z N
N M
N
p Y
O O
O
p o
II
II It
II II
w
V Y J
C
Ul
N U C
0
0 0 0 0
D
�000
N N
WO
C
O c
C
(A
U II II II
w
)
C E
EE
❑—
0
i�000
��.'-'
m
c` C
N
Qm5
0 o
Em
or EHn
0
vl00
oo
�Da
as �
EmO
� ,o
ti
M
3 J J J
= SO
LL E
�0 L
w C 3 c N
0
E
J
E E E
Co
0
c 3
3: o o.
a
N �O O O
Ec
Z 0
v
of
E X❑�
J
a
C
J❑
X A X X
0 7 0
[1
m
N
J m
2, 2:R
Q
m
c
O G
c
G
L
O 10 O N O N O
O N O f0 0 0 0
r
(O
r
O)
N
n
N
N
M
C�
IU
a
r
m
m
N
1U
N
fV
m o co
N of m
O O O O O O
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
O O O O O O
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0
I � mcn
n n n
L p
N
I T rn rn n rn U
Q
❑ O O O
Project Title:
Engineer:
Project ID:
Project Descr:
Wood Beam Project File: 4 Pinnacle Pointec6
DESCRIPTION: BEAM 7: DROP BEAM AT REAR OF FAMILY
Maximum Forces & Stresses for Load Combinations
Load Combination ax ressSt�af�os omen— _ ear values
Seqment Length Span # M V Co CM Ct CLx CF Cfu C i Cr M fb P'b V fu F'v
Length = 9.0 ft 1 0.154 0.115 1.60 1.00 1.00 1.00 1.026 1.00 1.00 1.00 4.83 734.5 4,761.9 1.77 53.3 464.0
Overall Maximum Deflections
Span Load Combination Max. Location Load Combination Max. Location
", Defl in Span "+^ Defl in Span
0.3447 4.533
Maximum Deflections for Load Combinations
0,0000 0.000
Load Combination
Span
Max. Downward Defl
Location in Span
Max. Upward Defl
Location in Span
D Only
1
0.1432
in
4.533 ft
0.0000 in
0.00a ft
+D+L
1
0.3447
in
4.533 ft
0.0000 in
0.000 ft
+0+0.750L
1
0.2943
in
4.533 ft
0.0000 in
0.000 It
+0.60D
1
0.0859
in
4.533 ft
0.0000 in
0.000 ft
L Only
1
0.2015
in
4.533 ft
0.0000 in
0.000 ft
Vertical Reactions Supportnotation : Far left is #1 Values in KIPS
Load Combination
Support 1
Support 2
Max Upward From arl Loa on itions
8.620
8.620
Max Upward from Load Combinations
8.620
8.620
Max Upward from Load Cases
5,040
5.040
D Only
3,580
3.580
+D+L
8.620
8.620
+D+0.7501-
7,360
7.360
+0.60D
2.148
2.148
L Only
5.040
5.040
CalPro engineering JOB TITLE 4 Pinnacle Point
303 Broadway
laguna Beach, Ca JOB No. 240820
949-715-9990 CALCULATED BY Mans
CHECKED BY
CS2021 Ver 2023-01-21
STRUCTURAL CALCULATIONS
FOR
4 Pinnacle Point
Newport Beach, CA 92663
SHEET NO.
DATE
DATE
w .struware.com
17
CalPro engineering
JOB TITLE
4 Pinnacle Point
303 Broadway
laguna Beach, Ca
JOB NO.
240820
SHEET NO.
949-715-9990
CALCULATED BY
Mans
DATE
CHECKED BY
DATE
www.struware.com
Code Search
Code: California Building Code 2022
Occupancy:
Occupancy Group = R Residential
Risk Category & Importance Factors:
Risk Category = II
Wind factor = 1.00
Snow factor = 1.00
Seismic factor = 1.00
Type of Construction:
Fire Rating:
Roof= 1.0hr
Floor= 1.0 hr
Building Geometry
Roof angle (0)
4.00 / 12 18.4 deg
Building length
70.0 ft
Least width
53.0 ft
Mean Roof Ht (h)
25.0 ft
Parapet ht above god
0.0 ft
Minimum parapet ht
0.0 ft
Live Loads:
Roof 0 to 200 sf: 20 psf
200 to 600 sf: 24 - 0.02Area, but not less than 12 psf
over 600 sf: 12 psf
Attics with storage 20 psf
Floor
Typical Floor 40 psf
Partitions 15 psf
Catwalks 40 psf
Decks (1.5 times live load) 60 psf
Fire escape: Multi- or single family re 40 psf
Storage areas above ceilings 20 psf
is
CalPro engineering
303 Broadway
laguna Beach, Ca
949-715-9990
Wind Loads: ASCE 7- 16
Ultimate Wind Speed
95 mph
Nominal Wind Speed
73.6 mph
Risk Category
II
Exposure Category
D
Enclosure Classif,
Enclosed Building
Internal pressure
+/-0.18
Directionality (Kd)
0.85
Kh case 1
1.126
Kh case 2
1.126
Type of roof
Monoslope
T000craohic Factor (Kzt
Topography
Flat
Hill Height (H)
80.0 ft
Half Hill Length (Lh)
100.0 ft
Actual H/Lh =
0.80
Use H/Lh =
0.50
Modified Lh =
160.0 ft
From top of crest: x =
50.0 ft
Bldg up/down wind?
downwind
H/Lh= 0.50 Kt = 0,000
x/Lh = 0.31 KZ = 0.792
z/Lh = 0.16 K3 = 1.000
At Mean Roof Ht:
Kzt=(1+KjKzK3)^2= 1.00
Gust Effect Factor
h = 25.0 ft
B = 53.0 ft
/z (0.6h) = 15.0 ft
Rigid
Structure
e =
0.13
t =
650 ft
Zmin -
7 ft
c=
0.15
9o, 9� =
3.4
Lz =
589.0 ft
Q =
0.92
I� =
0.17
G=
0.89 use G=0.85
JOB TITLE 4 Pinnacle Point
JOB NO. 240820 SHEET NO.
CALCULATED BY Mans DATE
CHECKED BY DATE
ESCARPMENT
4'(z
z
Speed-up
VW x(upwind) z x(dcv;nwind)
H
2D RIDGE or 30 AXISYMMETRICAL HILL
Flexible structure if natural frequency < 1 Hz IT> 1 second).
If building h/B>4 then may be flexible and should be investigated.
h/B = 0.47 Rigid structure (low rise bldg)
G = 0.85 Using rigid structure formula
Flexible or Dynamically Sensitive Structure
Natural Frequency (qt) =
0.0 Hz
Damping ratio (R) =
0
/b =
0.80
/D =
0.11
Vz =
102.1
Nt =
0.00
Rn =
0.000
Rh =
28,282 q = 0.000
Ra =
28.282 q = 0.000
RL =
28.282 q = 0.000
9R =
0.000
R =
0.000
Gf =
0.000
h = 25.0 ft
CalPro engineering
303 Broadway
laguna Beach, Ca
949-715-9990
Enclosure Classification
JOB TITLE 4 Pinnacle Point
JOB NO. 240820 SHEET NO.
CALCULATED BY Mans DATE
CHECKED BY DATE
Test for Enclosed Building: AD < 0.01Ag or 4 sf, whichever is smaller
Test for Open Building: All walls are at least 80% open.
AD >_ 0.8Ag
Test for Partially Enclosed Building: Predominately open on one side only
Input
Test
AD
500.0
sf
AD > 1.1Aoi NO
Ag
600.0
sf
Ao > 4' or 0.01Ag YES
AD!
1000.0
sf
Aoi / Agi 50.20 YES Building is NOT
Agi
10000.0
sf
Partially Enclosed
Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:
Ao? 1.1Aoi
AD> smaller of4'or0.01Ag
An! / Agi <_ 0.20
Where:
AD = the total area of openings in a wall that receives positive external pressure.
Ag = the gross area of that wall in which AD is identified.
Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including AD.
Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.
Test for Partially Open Building: A building that does not qualify as open, enclosed or partially enclosed.
(This type building will have same wind pressures as an enclosed building.
Reduction Factor for large volume partially enclosed buildings (Ri) :
If the partially enclosed building contains a single room that is unpartitioned , the internal
pressure coefficient may be multiplied by the reduction factor Ri.
Total area of all wall & roof openings (Aog):
Unpartitioned internal volume (Vi) :
Ground Elevation Factor (Ke)
Grd level above sea level = 0.0 ft
Constant = 0.00256
0 sf
0 cf
Ri = 1.00
Adj Constant = 0.00256
Ke = 1.0000
2 C.
CalPro engineering JOB TITLE 4 Pinnacle Point
303 Broadway
laguna Beach, Ca JOB NO. 240820 SHEET NO.
949-715-9990 CALCULATED BY Mans DATE
CHECKED BY DATE
Wind Loads - MWFRS all h (Except for Open Buildings
KIT (case 2) =
1.13
GCpi = +/-0.18
Base pressure (qh) =
22.1 psf
Bldg dim parallel to ridge =
70.0 ft G = 0.85
Roof Angle (9) =
18.4 deg
Bldg dim normal to ridge =
53.0 ft qi = on
Roof tributary area:
h =
25.0 ft
Wind normal to ridge=(h/2)'L:
875 sf
ridge ht =
29.4 ft
Wind parallel to ridge=(h/2)`L
663 sf
I lltimato Wind 5nrfare Pressures lnsfl
Surface
Wind Normal to Ridge
L/B = 0.76 h/L = 0.47
Wind Parallel to Ridge
US = 1.32 h/L = 0.36
Cp ghGCp w/+q;GCp, w/-ghGCPi
Dist.` CID ghGCp w/+q,GCp, w/-ghGCp,
Windward Wall (W W)
0.80
15.0
see table below
0.80
15.0
see table below
Leeward Wall (LW)
-0.50
-9.4
-13.4
-5.4
-0.44
-8.2
-12.2
-4.2
Side Wall (SW)
-0.70
-13.2
-17.1
-9.2
-0.70
-13.2
-17A
-9.2
Leeward Roof (LR)
-0.57
-10.7
-14.7
-6.7
Included in windward roof
Neg Windward Roof pressure
-0.48
-9.0
-13.0
-5.0
0 to h/2'
-0.90
-16.9
-20.9
-12.9
Pos/min Windward Roof press.
-0.03
-0.6
-4.6
3.3
h/2 to h'
-0.90
-16.9
-20.9
-12.9
IT to 2h'
-0,50
-9.4
-13.4
-5.4
> 2h'
-0.30
-5.6
46
-1.7
Min press.
-0.18
-3.4
-7.4
0.6
'Horizontal distance from windward sage
For monoslope roofs, entire roof surface is
either windward or leeward surface.
!Parapet
zI Kz Kzt qp (psf)
0.0 ft 1,03 1.00 0.0
Windward parapet:
0.0 psf
(GCpn =+1.5)
Leeward parapet:
0.0 psf
(GCpn = -1.0)
Windward roof overhangs :
15.0 psf (upward - add to windward roof pressure)
Windward Wall Pressures at' '
(psf)
Combined WW+LW
Windward Wall
Wind Normal
Wind Paral
z Kz
Kzt I
q,GCp w/+q,GCp, w/-ghGCp;
to Ridge
to Ridge
0 to 15' 1.03
1.00
13.8 9.8 17.7
23.2 21.9
20.0 It 1.08
1,00
14.5 10.5 18.4
23.9 22.7
h= 25.0 ft 1.13
1.00
15.0 11.1 19.0
24.4 23.2
ridge = 29.4 ft 1.16
1.00
15.5 11.5 19.4
24.9 23.7
V.nm IroPb.GU. TO PZIE
V Em PT tLLII TO PID O.
}ITY.nt 1.11 rCn 11i
�
G'
NOTE: ASCE 7 requires the application of full and partial loading of the wind pressures per the 4 cases below.
JI.i h- .PLY
CASE 1
� f ! 0.fiPn-:
7751
I
LI_L7-L1J
=-01c B. e..==0.1B
I I t 1 i 1
0 7;P. -:
CASE 3
Br
0553P_.
CASE ?
CASE 4
Wind Forces at Floors
Building dimension (parallel milh ridge)=
70.0 it
e=
IMo ft
Total Floors=
1
Buildin. dimension(nonnal to ridge)=
53.0 ft
e=
7.95 1t
PI
dn (dul bells trade) =
2.0 ft
L is the building dimension parallel to the :vind direction
Elc,ation Ilcightuf
Wind Normal to Ridge
Wind
Parallel to Ridge
Ahme C'entroid
Applied Story
Overturning
Applied
Start/ Overturning
Leccl
Grace (tt) to Fdn (11)
L
B Area (s'I) Force (k) Shear (k)
Moment Ck)
Area
Force W
Shear (k) Moment ('k)
Equip,Ce
0,M)
,vind on
equip, screem,'ails, etc=
0.0
Parapet
0.00 0,00
0.0
0.0
030
1'/Ridge
0.00 0.00
0.0 0.0
0.0
0.0
0.0
0.0
Roof
IMo 17.00
53.0
70.0 525.0 12.2 12.2
0.0
3975
8.7
8.7 0.0
1
0.00 100
53.0
70A 525.0 12.2 24.3
IS2.3
397.5
S.7
174 130.9
FDN
0.10
231.n
165.8
22
CalPro engineering
303 Broadway
laguna Beach, Ca
949-715-9990
JOB TITLE 4 Pinnacle Point
JOB NO. 240820 SHEET NO.
CALCULATED BY Mans DATE
CHECKED BY DATE
Wind Loads - MWFRS h560' (Low-rise Buildings) except For open buildines
Kz = Kh (case 1) = 1.13
Hase pressure (qn) =22.1 psi
vcpi= +/-U.Id
Wind Pressure Coefficients
Edge Strip (a)- 5.3 it
End cone (2a) = 1 U.b tt
zone 2 length = 2U.b tt
CASE A
CASE B
a = 18,4 deg
Surface
GCpf
w/-GCpi
w/+GCpi
GCpf
w/-GCpi
w/+GCpi
1
0,5
0.70
0.34
70.45
-0.27
-0.63
2
-0.69
-0.51
-0.87
-0.69
-0.51
-0.87
3
-0,47
-0.29
-0.65
-0.37
-0.19
-0.55
4
-0.42
-0.24
-0.60
-0.45
-0.27
-0.63
5
0.40
0.58
0.22
6
-0.29
-0.11
-0.47
1 E
0.78
0.96
0.60
-0.48
-0.30
-0.66
2E
-1.07
-0.89
-1.25
-1.07
-0.89
-1.25
3E
-0.67
-0.49
-0.85
-0.53
-0.35
-0.71
4E
-0.62
-0.44
-0.80
-0.48
-0.30
-0,66
5E
0.61
0.79
0.43
6E
-0.43
-0.25
-0.61
Ultimate Wind Surface Pressures (psf)
1
15.4 7.4
-6.0 -13.9
2
-11.3 -19.2
-11.3 -19.2
3
-6.4 -14.3
-4.2 -12.2
4
-5.2 -13.2
-6.0 -13.9
5
12.8 4.9
6
-2.4 -10.4
1 E
21.2 13.3
-6.6 -14.6
2E
-19.7 -27.6
-19.7 -2T6
3E
-10.9 -18.9
-7.7 -15.7
4E
-9.7 -17.6
-6.6 -14.6
5E
17.5 9.5
6E
-5.5 -13.5
Parapet
Windward parapet= 0.0 psf (GCpn=+1.5)
Leeward parapet = 0.0 psf (GCpn = -1.0)
Horizontal MWFRS Simple Diaphragm Pressures (ps
Transverse direction (normal to L)
Interior Zone: Wall
20.6 psf
Roof
-4.9 psf '*
End Zone: Wall
30.9 psf
Roof
-8.8 psf **
Longitudinal direction (parallel to L)
Interior Zone: Wall 15.3 psf
End Zone: Wall 23.0 psf
** NOTE: Total horiz force shall not be less than that determined
by neglecting roof forces (except for MWFRS moment frames),
The code requires the MW FRS be designed for a min ultimate
force of 16 psf multiplied by the wall area plus an 8 psf force
applied to the vertical projection of the roof.
Windward roof
overhangs = 15.5 psf (upward) add to
windward roof pressure
W]11Cr4V)iPD
00 EP}L•. [JO � W]NDWAPD P.00F
(�j� LEEWAPJJ A.roF
V EPTICAL
TR.PSTSIER.SE ELE`IATIOH
{-{� W[NG:VAR35 PY �JF
f f � L£EVJ?,FL PCOF
11I 1!! 1111 f VERTICAL
2�
L0TGITULSTAL ELEVF-TLOIJ
CalPro engineering JOB TITLE 4 Pinnacle Point
303 Broadway
laguna Beach, Ca JOB NO. 240820
949-715-9990 CALCULATED BY Mans
CHECKED BY
Wind Loads - h<60' Longitudinal Direction MWFRS On Open or Partially
Enclosed Buildings with Transverse Frames and Pitched Roofs
Base pressure (qh) = 22.1 psf
GCpf = +/-0.18 Enclosed bldg, procdure doesn't apply
Roof Angle (6) = 18.4 deg
SHEET NO.
DATE
DATE
ASCE 7-16 procedure
B=
53.0 ft'
# of frames (n) =
5
Solid are of end wall including fascia (As) =
1,500.0 sf
Roof ridge height =
29.4 ft
Roof eave height =
20.6 ft
Total end wall area if soild (As) =
1,325.0 sf
Longidinal Directional Force (F) = pAe
p= qh [(GCpf)windward-(GCpf)leeward] KB Ks
Solidarity ratio (10) = 1.132
n= 5
KB= 1.27
KS = 2.309
Zones 5 & 6 area = 1,204 sf
5E & 6E area = 121 sf
(GCpf) windward - (GCpf) leeward] = 0.722
p = 46.8 psf
Total force to be resisted by MW FRS (F) = 62.0 kips applied at the centroid
of the end wall area Ae
Note: The longidudinal force acts in combination with roof loads
calculated elsewhere for an open or partially enclosed building.
Cal engineering
303 Broadway
laguna Beach, Ca
949-715-9990
4 13 ZONE _' le>wrcr
Bor_2 �h
7E 3E''
CASE A l�'VDDDDltiCroN
RANG_
JOB TITLE 4 Pinnacle Point
JOB NO. 240820 SHEET NO.
CALCULATED BY Mans DATE
CHECKED BY DATE
✓C, C?.SE B
4 i\D Di LCTI(
A,\C=
NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram.
Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light -frame
construction or with flexible diaphragms need not be designed forthe torsional load case.
ASCE 7-98 & ASCE 7-10 (& later) - MWFRS wind pressure zones
e-
.:` ; zo�Z ,
` ....
Trance erse Direction
Longitudinal Direction
NOTE: Torsional loads are 25% of zones 1 - 4. See code for loading diagram.
Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light -frame
construction or with flexible diaphragms need not be designed for the torsional load case.
ASCE 7-02 and ASCE 7-05 - MWFRS wind pressure zones
CalPro engineering JOB TITLE 4 Pinnacle Point
303 Broadway-
laguna Beach, Ca JOB NO. 240820 SHEET NO.
949-715-9990 CALCULATED BY Mans DATE
CHECKED BY DATE
Wind Loads - Components & Claddinq : h <_ 60'
Kh (case 2) =
1.13
In =
25.0 it
Base pressure (qh) =
22.1 psf
a =
5.3 ft
Minimum parapet ht =
0.0 it
GCpi =
+)-0.18
Roof Angle (0) =
18.4 deg
qi = or =
22.1 psf
Type of roof = Monoslope
Roof
Area
Negative Zone 1
Negative Zone 2
Negative Zone 3
Positive All Zones
Parapet
qp = 0.0 psf
Walls
Area
Negative Zone 4
Negative Zone 5
Positive Zone 4 & 5
Ultimate Wind Pressures
p +- Gcpi
urrace Fressure (psf)
10 sf
20 sf
50 sf
100 sf
10 sf
20 sf
50 sf
100 sf
-1.48
-1.4
-1.34
-128
-32.7
31.4
-29.
-28.3
-1.78
-1.66
-1.5
-1.38
-39.4
-36.7
-33.2
-30.5
-3.08
-2.81
-2.45
-2.18
-68.1
-62.1
-54.2
-48.2
0.58
0.55
0.51
0.48
16.0
16.0
16.0
16.0
Solid Parapet Pressure
u ace Pressure ps )
10 sfj
20 sfj
50 s
Sfj
200 s
$
Zone
Zone 3 :
0.0
0.0
0.0
0.0
0.0
0.0
:ASE e: Interior zone :
Corner zone:
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
GCp+f-GCpi
Surface Pressure at h
ST
I I ULI ST
ZUU s
ST
10 SI,
1 100 sf
1 200 s
500 s
-1.58
1.18
-1.23
1.00
-1.12
0.95
-0.98
0,88
-34.9
26.1
-27.1
22.2
-24.8
21.0
-21.7
19.5
User input
10 sf
150 Sf
32.7
- .3
-39.4
-30.5
-68.1
-48.2
16.0
16.0
User input
ZU St
I bb s
-27 1
32.6
24.9
29.2
23.2
J �'
CalPro engineering JOB TITLE 4 Pinnacle Point
303 Broadway
laguna Beach, Ca JOB No, 240820 SHEET NO.
949-715-9990 CALCULATED BY Mans DATE
CHECKED BY DATE
Location of C&C Wind Pressure Zones - ASCE 7-16
Roofs w/ 8 5 10' Walls In 5 60'
and all walls & alt design h<90'
In > 60'
I I I I I I
I I I I I I
I I I I I I
I LJ 1,01 �J I(1 I
-I 1 D
01
Monoslope roofs Multispan Gable &
10'<0630' Gable 7'<0<-45'
h <— 60' & sit design h<90'
0—
0. 1 0. 11
O
r
r--- ,
I I
2
I I I I'
I I
I
L J
Gable, Sawtooth and
Multispan Gable 0 <- 7 degrees &
Monoslope <— 3 degrees
to 5 60' & all design h<90'
Hip 7' < 0 527'
s- -
U b
V, W2 W_
`V
I_
O
CI
I
J
I
�
C'
I
la
r
1O
r
I
I
I
G
I
!�
Monoslope roofs
3'<8510'
h <— 60' & sit design ti
, \B C D
Sawtooth 1 W < 8 <_ 45'
h <— 60' & Bit design h<90'
1 _v
Note: The stepped roof zones above are as shown in ASCE 7-16 (except he upper roof zones 1 and 2
are shown attire inside edge per the notes). Prior editions didn't show zones, but he notes Berl to
Stepped roofs e 5 3' the lowslope gable figure. The note In ASCE 7.16 still sends you to the low slope gablefigure, but for
h 5 60' & sit design h<90' some reasons the zones shown, are per editions prior to ASCE 7-16, Therefore. the above zones may
be a code mistake and the correct zone locations may be per the law slope gable hoof shown at the top
of this page.
L-7
Call engineering JOB TITLE 4 Pinnacle Point
303 Broadway
laguna Beach, Ca JOB No. 240620 SHEET NO,
949-715-9990 CALCULATED BY Mans DATE
CHECKED BY DATE
Roofs w/ 6 < 10'
and all walls
h>60'
—'I I
I I
I I.
I
/✓ 1
Is;
Monoslope roofs
10'<6530'
h 5 60' & sit design h<90'
Location of C&C Wind Pressure Zones - ASCE 7-10 & earlier
LL C
Walls h 5 60'
& all design h<90'
Multispan Gable &
Gable 7' <65 45'
Stepped roofs 6 < 3'
In <_ 60' & alt design h<90'
I I
I I
I I
I I
I
1 I I
I
I I
Gable, Sawtooth and
Multispan Gable 6 < 7 degrees &
Monoslope <- 3 degrees
h < 60' & alt design h<90'
n J
I.
IJ
r
�I
Hip 7' < 6 <_ 27
b1 I
Monoslope roofs
3"<6s10'
h 5 60' & sit design h<90'
a
;1
;1
:1
_
I _
Lrl
,
W1 I WV' I W3 I
Sawtooth 10' <6 < 45'
h <_ 60' & sit design h<90'
ASCE ASCE Hazards Report
MIERIG N SOGIEN OF GML ENGINEERS
Address:
Standard: ASCE/SEI7-16
Latitude:
33.597223
4 Pinnacle Pt
Risk Category: IV
Longitude:
-117.832557
Newport Coast, California
Sail Class: D - Default (see
Elevation:
755.2592201328612 ft
92657
Section 11.4.3)
(NAVD 88)
N-:3-rI:
E
httosalascehazardtool.ora/ Page 1 of 3. Sat Dec 21 2024
2c-1
ASCE
MAEiICSN SOCIEN OF MIL ENGINEERS
Seismic
Site Soil Class:
D - Default (see Section 11.4.3)
Results:
SS
1.304
Sol
N/A
Sr
0.463
TL
8
Fa
1.2
PGA:
0.565
F,
N/A
PGA M :
0.678
SMS
1.564
FPCA
1.2
SM1
N/A
le
1.5
Sos
1.043
C
1.361
Ground motion hazard analysis
may be required. See ASCE/SEI
7-16 Section 11.4.8.
Data Accessed:
Sat Dec 21 2024
Date Source:
USGS Seismic Design
Maos
httos I/ascehazardtool.org/
Page 2 of 3
Sat Dec 21 2024
,3 0
ASCE
MAERICAN SCUM OF CML ENGINEERS
The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any
kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or
has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable
sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or
quality of any data provided herein. Any third -party links provided by this Tool should not be construed as an endorsement, affiliation,
relationship, or sponsorship of such third -party content by or from ASCE.
ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent
professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such
professionals in interpreting and applying the contents of this Tool or the ASCE standard.
In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors,
employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, Incidental, or consequential
damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by
law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data
provided by the ASCE Hazard Tool.
httosi/ascehazardtool.org/ Page 3 of 3
Sat Dec 21 2024
,�'
JOSTITLE 4 Pinnacle Point
CalPro engineering
303 Broadway
laguna Beach, Ca
949-715-9990
Seismic Loads: CBC 2022
Risk Category : II
Importance Factor (le) : 1.00
Site Class: D
JOB NO. 240820 SHEET NO.
CALCULATED BY Mans DATE
CHECKED BY DATE
Strength Level Forces
Ss (0.2 sec) = 130.40 %g
S1 (1.0 sec) = 46.30 %g
Site specific ground motion analysis performed:
Fa = 1.200 Sms = 1.565 SDs = 1.043 Design Category = D
Fv = 1.837 Sm1 = 0.851 Sol = 0.567 Design Category = D
Enter Fa and Fv above from site specific geotechnical investigation
Seismic Design Category =
D
Redundancy Coefficient p =
1.30
Number of Stories:
2
Structure type:
Light Frame
Horizontal Struct Irregularities:
No plan Irregularity
Vertical Structural Irregularities:
No vertical Irregularity
Flexible Diaphragms:
Yes
Building System:
Bearing Wall Systems
Seismic resisting system:
Light frame (wood) walls with structural wood shear panels
System Structural Height Limit:
65 ft
Actual Structural Height (hn) =
25.0 ft
See ASCE7 Section 12,2.5 for exceptions and other system limitations
DESIGN COEFFICIENTS AND FACTORS
Response Modification Coefficient (R) = 6.5
Over -Strength Factor (0o) = 2.5
Deflection Amplification Factor (Cd) = 4
SDs= 1.043
5Di = 0.567
Seismic Load Effect (E) = Eh +/-EV = p Os +/- 0.2Sos D = 1.3Qe +i 0.209D QE = horizontal seismic force
Special Seismic Load Effect (Em) = Emh +/- Ev = (20 Qs +/- J.25os U = 2.5Qe +10.2091) D = dead load
PERMITTED ANALYTICAL PROCEDURES
Simplified Analysis - Use Equivalent Lateral Force Analysis
Equivalent Lateral -Force Analysis - Permitted
Building period coeL (CT) =
0.020
Cu = 1.40
Approx fundamental period (Ta) =
CTh„'=
0.224 sec x= 0.75 Tmax = CuTa = 0.313 sec
User calculated fundamental period =
T = 0.224 sec
Long Period Transition Period (TL) =
ASCE7 map =
8 sec
Seismic response coef. (Cs) =
Sdsl/R =
0.160
need not exceed Cs =
Shc I /RT =
0,390
but not less than Cs =
0.044Sdsl =
0.046
USE Cs =
0.160
Design Base Shear V = 0.160W
Model & Seismic Response Analysis
- Permitted (see code for procedure)
ALLOWABLE STORY DRIFT
Structure Type: All other structures
Allowable story drift As = 0.020hsx where hsx is the story height below level x
i2
Total Stories =
2
Floor Dead Load =
25.0 psf
Roof Dead Load = 20.0 psf
Building length L =
70.0 ft
Floor LL to include =
0.0 psf
Roof Snow Load = 0.0 psf
Building width W =
53.0 ft
Floor Equip wt =
0.0 kips
Roof Equip wt = 0.0 kips
hn =
25.0 ft
Partition weight =
10.0 psf
Parapet weight= 0.0 psf
k =
1.000
Ext Wall Weight =
15.0 psf
Parapet height = 0.0 ft
V =
0.160W
Bottom Floor is a slab on grade
Diaphragm shall be designed for level force Fx,
but not less than Fax = (E Fi I 1 wi) wpx, but
Fpx min = 0.2Sos Is wpx = 0.209 wpx
Seismic Forces Normal
to Building Length
Fpx max = 0.4Sos le wpx = 0.417 wpx
EL above Level
Cvx= V=38.1k
Seismic Base Weight
Wx hx"
Wx hx" Base Shear Distribution
Diaphragm Force Fax
Level (x) hx (ft) Wx (kips)
(ft-kips)
7 Wi hi" Fx=CvxV
E Fx (k)
Story M
E Wi (k) Fpx Design Fpx
Roof 11.00 85
1,790
0.529 20.12
20.1
0
85 20.1 20.1
? 10.50 152
1,595
0,471 17.93
38.1
211
237 24.4 31.7
I 0.00 0
0
0.000 0.00
0.0
0
0 0.0 0.0
Base 0.00 237
1.000
38.1
400
611 =
Base M
Seismic Forces Parallel to Building Length
V = 36.8k
Base Shear Distribution
Diaphragm Force Fax
Level (x)
hx (ft)
Wx (kips)
Wx hx"
Cvx =
Fx=CvxV E Fx (k)
Story M
F W i (k) Fpx Design Fpx
Roof
11.00
83
1,733
0,530
19.48 19.5
0
83 19.5 19.5
1
IO.50
147
1,539
0.470
17.29 36.8
205
229 23.5 30.6
1
0.00
0
0
0.000
0.00 0.0
0
0 0.0 0.0
Base
O.nO
229
1.000
36.8
386
591 = Base M
CalPro engineering JOB TITLE 4 Pinnacle Point
303 Broadway
laguna Beach, Ca JOB No. 240820 SHEET NO.
949-715-9990. CALCULATED BY Mans DATE
CHECKED BY DATE
Roof Design Loads
Items
IDescription
Multiple
I psf (max)
psf (min)
Roofing
3 ply felt & gravel
5.5
5.0
Decking
3/4" plywood/OSB
2.7
2.3
Framing
Wood 2x @12"
3.8
1.5
Insulation
Rigid insulation, per
1" x 1.3
2.0
0.9
Ceiling
518" gypsum
2.8
2.5
x 1.0
0.0
0.0
Mech & Elec
Mech. & Elec.
x 1.0
2.0
0.0
Sprinklers
Sprinklers
x 0.6
12
0.0
Actual Dead Load O
20.0 co
12.2
Use this DL instead C:
20.0 C
9.0
Live Load
20.0
0.0
Snow Load
16.8
0.0
Ultimate Wind (zone 2 - 100sf)
16.0
-30.5
ASD Loading
D+Lr
40.0
-
D + 0.75(0.6*W + Lr)
42.2
-
0.6*D+0.6*W
-
-11.0
LRFD Loading
1.2D+1.6 Lr +0.5W
64.0
-
1.2D+1.OW+0.5Lr
50.0
-
0.9D+1.OW
-
-19.5
Roof Live Load Reduction Roof angle 4.00 / 12 18.4 deg
0 to 200 sf: 20.0 psf
200 to 600 sf: 24 - 0.02Area, but not less than 12 psf
over 600 sf: 12.0 psf
300 sf
18.0 psf
400 sf
16.0 psf
500 sf
14.0 psf
User Input: 450 sf
15.0 psf
3
CalPro engineering
303 Broadway
laguna Beach, Ca
949-715-9990
JOB TITLE 4 Pinnacle Point
JOB No. 240820
CALCULATED BY Mans
CHECKED BY
Floor Design Loads
SHEET NO.
DATE
DATE
Items
IDescription Multiple
Ipsf (max)
psf(min)
Flooring
Carpet & pad
1.0
1.0
Decking
3/4" plywood/OSB x 1.0
2.7
2.3
Insulation
R-19 Fiberglass insul.
0.6
0.6
Framing
TJI @ 12" x 2.0
4.0
2.0
Flooring
Thin Set Tile x 2.5
10.0
7.5
Ceiling
5/8" gypsum
2.8
2.5
Sprinklers
Sprinklers
2.0
0.0
Mach & Elec
Mach. & Elec. x 1.0
1.9
0.0
0.0
0.0
Actual Dead LoaP
25.0
15.9
Use this DL instead
80.0
65.0
15.0
0.0
Partitions
Live Load
40.0
0.0
Total Live Load
....................................................
55.0
0.0
80.0
15.9
Total Load
FLOOR LIVE LOAD REDUCTION (not including partitions)
NOTE: Not allowed for assembly occupancy or LL>100psf or passenger car garages,
except may reduce members supporting 2 or more floors & non -assembly 20%.
L=Lo(0.25+15/d KLLAT)
Unreduced design live load: Lo = 40 psf
Floor member & 1 floor cols KLL =
Tributary Area AT =
Reduced live load: L =
Columns (2 or more floors) KLL =
Tributary Area AT=
Reduced live load: L =
2
300 sf
34.5 psf
4
500 sf
23.4 psf
IBC alternate procedure
Smallest of:
l .08%(SF-150)
R= 23.1It+D/L) = 37.5%
R= 40% member supports 1 floor
R= 60% member supports >_2 floors
R = 12.0%
Reduced live load: L = 35.2 psf
R = 28.0%
Reduced live load: L = 28.8 psf
35�
CalPro engineering JOB TITLE 4 Pinnacle Point
303 Broadway SHEET NO.
laguna Beach, Ca Joe No. 240820
CALCULATED BY Mans DATE
949-715-9990 CHECKED BY DATE
Wall Design Load #1
sheathing
1/2" plywood/OSB
l.8
1.5
;heathing
5/8" gypsum
2.8
2.5
-
2x4 wood stud @ 16"
1.3
0.8
-raming
7/8" Stucco
x 0.75
7.5
7 5
ieneer
x 0.00
0.0
0.0
Insulation
R-19 Fiberglass insul.
0.6
0.6
Mach & Elec
Mach. & EleC.
x 0.50
0.5
0.0
Misc.
Misc.
x 1.00
0.5
0.0
Actual Dead Load CI 15.0 GI 12.9
Use this DL instead C• 50.0 O 40.0
Wall Design Load #2
Items Description Multiple i pst (max)
Psi w.
0.0
Framing
0.0
0.0
veneer
7 7000-000,
0.0
0.0
0.0
0.0
0.0
Actual Dead Load O 0.0 U 0.0
Use this DL instead G 65.0 55.0
CalPro engineering
JOB TITLE 4 Pinnacle Point
303 Broadway
laguna Beach, Ca JOB No. 240820 SHEET NO.
949-715-9990 CALCULATED BY Mans DATE I
CHECKED BY DATE
www.struware.com
CODE SUMMARY
Code: California Building Code 2022
Live Loads:
Roof 0 to 200 sf: 20 psf
200 to 600 sf: 24 - 0.02Area, but not less than 12 psf
over 600 sf. 12 psf
Attics with storage 20 psf ------
Typical Floor
40 psf ]
Partitions
15 psf ]
Catwalks
40 psf ] Not applicable for this project
Decks (1.5 times live load)
60 psf ]
Fire escape: Multi- or single family re
40 psf ]
Storage areas above ceilings
20 psf ]
Dead Loads:
Live load
Floor
25.0 psf
40
Roof inc. Solar
25.0 psf
20
Roof Snow Loads:
-------
Design Uniform Roof Snow load
=
16.8 psf ]
Flat Roof Snow Load
Pf =
16.8 psf ]
Balanced Snow Load
Ps =
16.8 psf ]
Ground Snow Load
Pg =
20.0 psf ]
Importance Factor
I =
1.00 ]
Snow Exposure Factor
Ce =
1.20 ]
Thermal Factor
Ct =
1.00 ]
Sloped -roof Factor
Cs =
1.00 ]
Drift Surcharge load
Pd =
]
Width of Snow Drift
w =
------
Earthquake Design Data
Risk Category
Importance Factor
I = 1.00
Mapped spectral response accelerat
Ss = 130.40
S1 = 46.30
Site Class
= D
Spectral Response Coef.
Sds = 1.043
Still = 0.567
Seismic Design Category
= D
Basic Structural System
= Bearing Wall Systems
Seismic Resisting System
= Light frame (wood) walls with structural wood shear panels
Seismic Response Coef.
Cs = 0.160
Response Modification Factor
R = 6.5
Analysis Procedure
= Equivalent Lateral -Force Analysis
Rain Design Data:
Rain intensity
i = 2.00 in/hr
Rain Load
R = 16.0 psf
Wind Design Data:
Ultimate Design Wind Speed
95 mph
Nominal Design Wind Speed
73.59 mph
Risk Category
11
Mean Roof Ht (h)
25.0 ft
Exposure Category
D
Enclosure Classif.
Enclosed Building
Internal pressure Coef.
+/-0.18
Directionality (Kd)
0.85
3,7
CalPro engineering
JOB TITLE
4 Pinnacle Point
303 Broadway
laguna Beach, Ca
JOB NO.
240820
SHEET NO.
949-715-9990
CALCULATED BY
Mans
DATE I
CHECKED BY
DATE
wwwstruware.com
Component and Cladding Ultimate Wind Pressures
Roof
Area
Negative Zone 1
Negative Zone 2
Negative Zone 3
Positive All Zones
Parapet
Area
CASE A: Zone 2 :
Zone 3 :
CASE B: Interior zone:
Corner zone:
Surface Pressure (psf)
10 sf
20 sf
50 sf
100 sf
-32.7
-31A
-29.6
-28.3
-39.4
-36.7
-33.2
-30.5
-68.1
-62.1
-54.2
-48.2
16.0
16.0
16.0
16.0
Solid Parapet Pressure (psf)
10 sf
20 sf
50 sf
100 sf
200 sf
500 sf
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Wall
Surface Pressure (psf)
Area
10 sf I 100 sf 1 200 sf
500 sf
Negative Zone 4
-28.3 -24.4 -23.2
-21.7
Negative Zone 5
-34.9 -27.1 -24.8
-21.7
Positive Zone 4 & 5
26.1 22.2 21.0
19.5
3 c�
II
-
-
-
r,
r
FL
_�
BUILDING HEIGHT iH1. 0
= 28
DESIGN WIDTH(W). It
= 53
CS
DESIGN DEPTH (0) A
= 70
AREA (A)ft'
= 3710
z
ROOF PLATE HEIGHT Ia)
= 21
AC
= 0
= 0
1 ^ FLOOR PLATE HEIGHT Tall
= 10.5
S
ROOF DEAD LOAD Ip50
= 20
FLOOR(P50
= 25
S
EXTERIOR WALL(psl)
= 15
AU
INTERIOR WALL(p:f)
= 10
EXPOSURE
D
WINO SPEED
= 95 mph
ip
a
z
3
COMSINED WW a LW
Z
Navaho Ridge Parallelta Ridge
01015,
23, 16 21.95
20
23.86 228E
24
24A3 2323
28
24.86 2166
0
000 0,00
000 0.00
50
60
7D
60
90
100
• Lateral Design
2 - STORY ( STRIP #1) I
1 WIND ANALYST
Cs= SEISMIC COEFFICIENT Cs(ASCE 7C5, SECTION 120.2)_... _ 0.160
WTOTAL=W R00HW 151 _. ...__... _ 3938 pit
g V=BASE SHEAR = CI'W'."L _ _ ..._. 532 pit
_y Kr>smR IASCE 705, SECTION 12.831
✓+ TA 0.5s a K=1
T> 25s a K-2
D.5,7,2 K= (INTERPOLATE)
dead load idbutaN
ROOF = 20 70 = 1400 PIT
EAT. WALL = 15 '( 2 (21-10.5)12) = 15B PIT
TNT. WALL( _ 8 II ) = 10 'I 2 (21-10.5)12) = 105 PIT
ron. WEIGH W "oar 1 ......,. ......... = 1663 pit
w
z
a Of
0 pit
Op1f
dead load nbl utnry
1 -1 FLOOR = 25 70 = 1750 p1f
EXT. WALL = 15 '( 2' (21-105)12 - 2' (10512) = 315 PIT
TNT. WALL(' 811) = 10 '( 2' (21-105)12 + 2'(IOS2) = 210 p1f
lore• WEIGH W m I.._.._.........._..._.....,,- ............................... = 2275Pg
5 FK=Wnd,,-h(level height)
Fx aoq = 24.86 . 12&21) + 235E ' 2121 55 = 299 pit
P
0
0
Fx I1n1 = 23,86 A xi 2 'S + 212 I = 247 pit
SEISMIC ANALYSIS �•_
0 21' 1663
z Fx �ewri = ]7]Pif C va lawq = 21.1663s10.5'2275 = 0.59
a
0
'
Fx IIi1I = 259 pit C vx psll 21'1105663ri05'2275 2275 = 0.41
SUMMARY
WINO SEISMIC GOVERNING
LEVEL
LOAD(PLF) LOAD(PLF) LOAD JPLF)
ROOF
299
313
373 SEISMIC
7 v1 FLOOR
247
259
259 SEISMIC
PLATE SPLICE DIAPHRAGM
V MAX (DIAPHRAGM) v'WR'D= 373'265112'70)=71 pit
USE PP, 1A3r COX MTOOOMELOLXE0 W 08d COMMON NAILS Q6', V', 13"01.
CHORDFORCE VMAx'W"2118'0)= 373'53'531(8'70)=10711bz
USE OJ USE I2-IW SINKER NAILS MINIMUM SEMEN SPACE POINTS
R
a, V... (DIAPHRAGM) v'W12'D=
p USE DO 0OrCMPATEOUNemcKEOw1Ke CC
L CHORD FORCE, V MA.i W"21(B'D) _
USE CJ USE 6- IW SINKER NAILS MINIMUM SETV
�D
259.531(2-70) = Mips
Ir Oe.
259 '53' 53 11B' 10) = 650lb.
LMw.E
• Lateral Design
2 -STORY( STRIP #2 ) «e
BUILDING HEIGHT IH), A
= 28
DESIGN WIDTH IW), fl
= 70
o
DESIGN DEPTH (0). A
= 53
BE
AREA (A)0°
= 371C
z
ROOF PLATE HEIGHT Ibi
= 21
_
= 0
Of
= 0
= 0
1 sl FLOOR PLATE HEIGHT 01)
= 105
a
ROOF DEAD LOAD(ps`I
= 20
FLOOR(ps0
= 25
a
EXTERIOR WALL paO
15
a
INTERIOR WALL(ps0
= 10
EXPOSURE
= D
WINO SPEED
= 95 mph
RE
COMBINED WW «LW
Z
NBmltl to Ridge Parallel to Ridge
0W15'
23.16 2195
20
235E 2268
24
24.43 23,23
26
24.8E 23.66
31
01)0 0.00
000 0,00
so
60
70
so
90
1W
CS- SEISMIC COEFFICIENT C5 (ASCE 7 05. SECTION 12S 2),.._...,._........ 0.160
WTOTAL=W Rppf+W 1sl ..,,.. _.. ._..,.,_ ........_.. 3173 PIf
y V=BASE SHEAR =CS.WTOTAL--^ .... 509 If
y Kra[mN(ASCE 7-05. SECTION 12.83)
LU T<0.5sa K=1
Ta25s s K=2
05 <T <2 a K= 1 INTERPOLATE)
dead load tributary
ROOF = 20 ' 53 = 1060 pif
EXT. WALL = 15 'l 2 (2110.5)12) = 158 pIf
ENT. WALL (l d 111 = 10 'I 2 (21-10.5)12) = 105 Of
,um WEIGH W e[cT ...___. _.......,... _.__.. 1323 PIf
O of
D pit
25
0 pit
End load Idbubry
1 -1 FLOOR = 25 53 = 1325 pit
EXT. WALL = 15 '( 2' (21-105112 « 2' (10.5121 = 315 pit
INT. WALL I i S II 1 = 10 '( 2' 21.10.SU2 « 2' (10.512) = 210 Of
P. WEIGH W m 1-........_................ ...... ......-- .... ._........_..... = 1850 pit
WIND ANALYSIS Fx=wipd,,*h(levei height)
¢ F. 000 = 23.66 . (28-21) + 21? 66 ' 21 0_' = 205 pit
c
0
0
Fx 1"2 51 + 21.95 ' 1u = 234 pit
- psll
a
SEISMIC ANALYSIS
0 21 ' 1323
rc Fx �cm.I = 300 PIf C Nx lewO = 21.1323+10.5'1850 = 0.59
CP
CI
10.5' 1850
Fx ps0 = 209 PII C vx IN') 21'1323«105'1550 = 0.41
SUMMARY
LEVEL WINO SEISMIC GOVERNING
LOAD(PLF) LOAD(PLF) LOAD(PLF)
ROOF
1 - FLOOR
205
234
300
209
300 SEISMIC
234 WIND
PLATE SPLICE DIAPHRAGM
V na. IDNPHRAGM) v'WI2'D= 300-70112'531 = 198 PIf
$ USE OD 15U3"COX RATED BLOCKED 310WRE COMNONNlus B 5".v 12-"
rc CHORD FORCE. VMAX'W'2 l(B'D)= 300'M'7W(9'53)=347Ibs
USE** USE MST1e BETWEEN SPLICE POINTS
is
ON VNu BNAPHRnGMI v'WI2'D= 234.701(2'53) = 155lba
$ UBEoo 19132'COX RATED UNBLOCKEDW110d COMMON NAILS Q6', B', 12"cc.
CHORDFORCE'. VNsi W"21(B'D)= 234'70-70I(8'53)=2704 UPS
USE oo USE ST6236 BETWEEN SPLICE POINTS
LI I
Lateral Design •
2 - STORY ( STRIP #3) z
BUILDING HEIGHT (H) h
= 28
DESIGN WIDTH(W), fl
a 38
o
DESIGN DEPTH(D). I
= 38
BE
AREA(Al ff'
= 1444
z
ROOF PLATE HEIGHT
= 21
= 0
'm
= 0
= 0
1 ` FLOOR PLATE HEIGHT Iml
= 10.5
a
ROOF DEAD LOAD (p6f)
= 20
FLOOR Ipaf)
= 25
Q
EXTERIOR WALL pio
= 15
o
INTERIOR WALL(Pf)
= 10
EXPOSURE
D
WIND SPEED
= 95 mph
COMBINED WW+LW
Z
Normalm Ridge Parallelb Ridge
01015
2316 21.95
20
2356 22.66
24
2443 23,23
28
2486 2865
0
0,00 coo
000 coo
50
60
70
80
90
100
Ca= SEISMIC COEFFICIENTCa(ASCE 705 SECTION 1282)
... 0,160
WTOTAL=W ROOWW/151 ..
__..
.._. 2498 pit
g
V= BASE $HEAR = CSWTOTAIr-.,.
..__.. __.
_, 401 PIf
rail
KPAT,OR (ASCE 705 SECTION 12.8.3)
T<D.56a K=1
T> 2.5E a K=2
0.5KT2, a K=
(INTERPOIATE)
Find Ioad
tdbMtary
ROOF - 20
38
= 760 pif
ENT. WALL = 15 '
2 (21 10.5)12)
= 156 pif
INT. WALL(_811) = 10'1
2 (21-10.5)R)
= 105Of
1 1 WEIGH W ROOT ) __.....
. _..... ___.
= 1023 PIf
0 pit
0 pit
0 PSI
0 pit
dead load tr,b.buy
1 RI FLOOR = 25 ' 38 = 950Of
EXT. WALL = 15 '( 2' (21-10.5)12 r 2- (10.512) = 315 Of
INT. WALL + 8 II) = 10 '( 2' (21-10.5)12 A 2- (105G) = 210 Olt
,DIAL WEIGH W , ) ...,..... ...... .....,.._. = 1475pif
WIND ANALYSIS Fx= WindPD' h(level height)
TO
DO OR Ie00rl = 24 86 - (28 21) + 23.86 ' 21-Z = 299 pit
FO
0
0
1-10 51
Fx Mal) 23.8E " 2 + 23.2 ' 1L2 = 247 Pif
SEISMIC ANALYSIS
z Fz inooN = 233 Of C vz laaaFl = 21'102]«1089475 ` 0.58
DO
DO
0
0 10.5' 1475
Fx pm) = 168 pit C vx P•II = 21'10231105'1475 = 042
SUMMARY
WIND SEISMIC GOVERNING
LEVEL
LOAD(PLF) LOAD(PLF) LOAD(PLF)
ROOF
2%
233
299 WIND
1 s FLOOR
247
168
247 WIND
PLATE SPLICE DIAPHRAGM
V EM. (DIAPHRAGMI v'WI2'0= 299'191(2-38) = 75 pit
USE OO ISI COX HATED UNBLOCKED 20WI)4 COMMON NAILS@V, 6', lro.[
CHORD FORCE'. V MAz'WA21(6"O)= 299.38'381(8'36)=14201be
USE *' USE 10� Ifitl SINNER NAILS MINIMUM 9EM¢EN SPLICE POINTS
V .0 (DIAPHRAGM) vW12'0= 247.38112.381=12416E
O USE OO SCI COX RATED UN9LOCKE0 WI COMMON NAILS ®6", 6', IroD
z CHORD FORCE, V NAx WA2118'0) = 247' 38-381(8'38) = 58716e
USE DO SPLICE WI Ifitl SINNER NAI 16IN.DC. STANUARD CONSTRUCTION)
LP—,
. Lateral Design •
2 - STORY ( STRIP #4) +i
BUILDING HEIGHT(H). h
= 28
DESIGN WIDTH(W), O
= 38
o
DESIGN DEPTH UU. It
= 38
BE
AREA AI O'
= 14A4
BE
ROOF PLATE HEIGHT (hi
= 21
FA
= 0
AS
0
=0
1 - FLOOR PLATE HEIGHT I60
= 105
ROOF DEAD LOAD (p50
= 20
FLOOR(ps)
25
EXTERIOR WALL(psf)
15
o
INTERIOR WALL (PRO
11
EXPOSURE
= D
WINO SPEED
95 mph
z
w
SO
3
COMBINED WP3 R LW
Z
N...ltp Ridge Parallelfo Ridge
01015
23.16 21.95
20
23.86 2256
24
2443 23.23
28
24,86 23,66
31
Coo 000
000 000
50
ED
70
80
90
100
Cs= SEISMIC COEFFICIENT Ca (ASCE 7 05, SECTION 12.8 2)..... _._....._.. 0.160
WTOTAL=W kapi.W 1st _. 2458 PIf
A,V=BASE SHEAR =Cy'WTpTAC _.. _ 401 pit
N KFAMR(ASCE7-05, SECTION 12,8,3)
rn T0.5S a K=1
Ta 25, a K=2
0,5<T<2 aK= 1 (INTERPOLATE)
e4emd load hibutary
ROOF = 20 38 = 760 of
EXT. WALL = 15 '( 2 12140.5)12) = 158 IF
INT. WALL 1 L & II) = 10 '( 2 (21-10.5)12) - 105 pit
row WEIGH W nw 1 ...-......, .,____ ._..... = 4023 pit
0 pit
0 pit
25
0 pit
dead load 1dbOtary
1 :1 FLOOR = 25 38 = 950 pif
EXIT, WALL = 15 '( 2' (21-105)12 a 2' (10.5R) = 315 pIf
INT. WALL( . A II) = 10 '( 2- (21-10S)12 a 2' (10-512) = 210 pIf
rm.L WEIGH W . )......-_,,.. .,._.,. ....__. = 1475 If
WINO ANALYSIS Fx=wind,,+h(level height)
Fr lveee = 23.66 - (28-21) + 2266 • 21 2 'S = 285 plf
0
0
r Fx Iml - 22.66 ' 2( 1-1051 + 21.95 ' 1 Z f = 234 Plf
SEISMIC ANALYSIS
OF 21
¢ F. ,mP = 233 PIf C laOOD v = 21'1023a105'' 1023 1475 = 0.58
s
AA
AS
0
10.5' 1475
- F" 11s11 = 1fi8 p11 C Vx lt•4 21-1023-10.5.1475 = 0.42
SUMMARY
WINO SEISMIC GOVERNING
LEVEL
LOAD(PLF) LOAD(PLF) LOAD(PLF)
ROOF
285
233
285 WIND
1 11 FLOOR
234
168
234 WIND
PLATE SPLICE DIAPHRAGM
Vew (DIAPHRAGM) M Vl2'D= 285'381(2'38) = 143 pit
USEI5412'10. 1 ONRLOLREO Ebb W104 COMMONNMIIt 6,I 1r o.c.
CHORDFORCE, VMAR'W'21(B'D)= 285' 38' 18118' 36)=13541bS
USEOO USE 10 � 166 SINKER NAILS MINIMUM BETWEEN SPLICE POINTS
V au (DIAPHRAGM) JWiro= 234'381(2'381 = 117lbs
o USEOO 1913"COX RATED UNBLOCKED W110d COMMON NAILS@d', V, 12'0 C.
'J` CHORD FORCE: V M<YW"2IWO) = 234' 38' 10118' 381 = 111216s
USEOO USE 8-lad SINKER NAILS MINIMUM BETWEEN SPLICE POINTS
03
H/hw=10.5/9.5 = 11^- 11%
Load Increase: 1.11
SHSMIc: 66641M
G 0(p)
wxuo; 5)58Ihs
6" v
F
i 6
p
iZ-I C
- @front of the kichen and family 11 Floor level: ist Floor exterior panel
(PLYWOOD PANEL SIZE)
F+ WING H
GPfN'G1. OPEN'G LI
I Panel A 1 Panel B-
I I I 11-1 I
0" 4'- 9, 16.- 0" 4'- 9" S- 0" 01- 0"
Foundation Foundation - -
over turning moment (Io/ft) =
Panel A
34962
Panel a
34962
resisting moment (Ib.d) =
1134
1134
net moment (Ib.ft) =
33828
33828
uplift (Ibs.) =
7122
7122
a. uplift from wall above (Ibs.) =
0
0
c post @ panel edge: =
4%6
4X5
R
strap/holddwn =
HOQ8
HDQ8
h
o✓i drag force =
2473
1995
< # of A35's =
7.4
7.4
a # of anchor bolts =
5.5
5.5
0.34
1.36
Note: USE
dead bad
sold
St,, #
(psi)
(ft)
(level)
roof: 20
0
stop#1-roof
Floor: 30
0
strip#1-lst floor
deck: 30
0
-----
other; 0
0
-
i C eon, wall: is 0 -----
4
0 other:0 0 ----
O 0
0 0 ----
tribute wind ssi mseismic
Yi (pif) (plf) Ibs (Ibs)
19 799 373 0 0
19 247 259 0 0
a a 0 0 0
0 0 0 0 0
0 0 o a a
0 0 0 0 0
0 0 0 a 0
0 0 0 0 0
0 0 0 0 0
a 0 0 0 0
shear wall type= o o 0 0 0 0 0 0 0 0 0= h =A§
pane) shearro = _ _ = o. _ _ n _ _ _ _ = o c 701 plf
total line length _ o c 7 0 0 0 0 _. -_ 0 4g5 ft
R
e
m [op plate splice (max. drag farce= 2g731bs) 16-16d siM
2
t0
wAmai0<Aa..eoo>=a--o==on ao 0.015h
G
0,0 deflection: > > > _--> 1.36 < 3.15
ShearrvaIII
L-1
- 0 LEFT OF NEW FAMILY ROOM EXTENSION
floor level: 1st Floor exterior panel
Load increase: 1.0 L= 18'-0" dead load span strip A tributary
a cQ�Qp (p) vntl se
sei¢9417 a (PLYWOOD PANEL SUE) (ps) (ft) (level) e () (off) (eli lbc (Its)
w.Nn: 9602 has 9 roof: 20 0 strip a2-roof 37 285 300 0 0
C 10'- 6" Q Floor. 30 0 strip x2-1st Fri 37 234 209 0 0
?= WENG OPEN'G OPEPI'G i f.
qq { Q deck: 30 0 -- 0 0 0 0 0
„ ^p Ep other: 0 0 --- 0 0 0 0 0
panel A—t r Q exL wall: 15 0----- 0 0 0 0 0
—I—I G other: 0 0 ---- 0 0 0 0 0
30'- 0" 181- 0" 2'- 0" 01- 0" C- 0" 0'- 0" 0'- 0" 0'- 0" -+ - 0 0 ----- 0 0 0 0 0
Foundation - - - -0 0----- 0 0 0 0 0
- 0 0 --- 0. 0 0 0 0
- p 0---- 0 0 0 0 0
over turning moment (10./R) = 100]3] shear wall type= ? _ _ _ _ _ _ _ _ -+ _ _ = 3
resisting moment (haft) = 18180
net moment (Ioll = 82557 panel shear^ _ - - > > - _ - _ - _ _+ _ - 533 elf
uplift (Its.) = 4587
a. uplift from wall above (Ibs,) = 0 0 0 0 '} total line length 50.0 ft
c post panel edge: = 4x4/4x6 m
q C
H strap/holtlown = HTiS 2 top plate splice (max. drag force961 Ibs) MSTC66
drag force = 5761 «
W
Gtt of A35's = 21.3 C d max`4.0 < A,__ = > > _ - _ = 0 7 = 0 7 0.025h
P of anchor bolts = 160
0.0 deflection: _ _ _ - > > _ - 1.6 < 3,15
Note: USE NTiS
SheareallsQ02242 21-24
Conventional jla6 on 3rade Design
#
soil:
(coefficient of friction)
(subgrade modulus) K = 250
(poison ratio) v = 0.15
y
Slab:
j assumed slab section = 12" blw;a, % 25' L(iengi
(assumed thickness) t = 5"
w be, type = #4
G bars @ inches c.c. both ways = 16"
f'r (psi) = 4500
(concrete weight) w. = 144 psf
loading checkpoint load)
(point load) jh,, x = 4 o'r5A
where:
Z 2k
9 EI
u
N
bf'
(section module) 5 =
6
0
m
E = 570001rT
9
(elasticity modulus)
bt
c
(moment of inertia) / = 12"
6
thereFpre:
p = (1.6V �'c �(
db") 4 EI
p = 760 Ibs. ✓
0 area pf steel check
r area of steel k,,e )=w L/2fe
= 0.02 in'
J
C area of steel A.(orwmea) = Rr'
O = 3.14/4-(4/6)^2-(12/16)
m = 0.15 in'
n hence:
O A.fri > Asaenm
0
a 0.15 in° o, 0.02 in' ✓
a
Pm„= 7601bs
w = 144 sf
3
m
5,. Thick
t
n
m
7
#4 Bars @ 16" O.C. bath ways
( L= 25' b
yb
Concrete FmIrnp Aae_oaa a2008
2-5tory Footing Design Calculation
soil:
soil bearing pressure (psf) = 1500
footing:
_
W assumed footing = 24" w(,,,) X 24" e(depm)
< (wall thickness) It = 6"
> 16500 J'r (psi) = 4500
z
yrebartype = #5
o # of rebars = (4)
�j Fr (psi) = 60,000
W
^o (clearance to edge steel) = 3"
4:
6
r lbutaw
dead load
1w.load
roof = 40 psf * 40/2 + 0/2
= 400.0 Pif
400.0 plf
wall = 15 psf * 9 + 10
= 285.0 Plf
0.0 plf
i floor = 65 psf * 1612 + 0/2
= 200.0 plf
320 pif
footing = 24" X 24" (150*24-24/144)
= 600.0 pf
0.0 PIT
O
total uniform load (DL) + (LL) e e a
1485 pif
720 pif
total uniform load acting on footing a
2205 pif
soil bearing check:
(load induced presure) Pu = I.2 ' 1485 + 1.6 * 720
= 29341bs. ✓
Pu 2934
(soil bearing req'd) qe = Amom,y 2.00
= 1467 psf < 1500 psf ✓
shear check (concrete):
load,.—, V. = qu*b(IJ2-c/2-D)
= 29341bs.
loadlanawaeal 0 V, = 0.85(2) /'c r,5 bd
56107 lbs.
0 V� = 56107 lbs. > 2934 lbs. ✓
area of steel check
z momentlaya,al) M„ = (3/2*PU*(b-W))
Me = 3/2*2934'(24)
5 M„ = 105624 in. lbs.
t� R.
1l1bd12
z _ 115114
= 11.64 ✓
fGRi 'c _ 2Rn
Plraem,l = J
v
= 0.059
Pta,�al = (d/b)P
= 0.0502
where:
area of steel As(,eo'dl = Pls.... )bp
= 0.05*20.5*0.06
= 0.0605 in'
area of steel Ayp,o,,,ded) = ❑r'
= 2`(5/8)^2/4'3.14
= 0.6133 ins
hence:
A.(..mem> kamd)
0.6133 in' > 0.0605 in' ✓
P..= 150001bs
t = 6"
c
0
N
q , s
U
6
O
As(ra4'd) — (4) #5 Bars
O
N
b=123.5" �,epd) 4 24" Ipramdadl ✓
i-7
c Ilrv. remms_slan_pad -BIDS
Pad Calculation
Soil Bearing Presure = 1500 psf
Minimum Footing Depth = 24"
Pad #: 3 6EAM z
Point Load = 19170 lbs.
Min. Pad Size Required: = 3.57 ft. SQ.
USEoba 48" SQ. X 24" Deep Concrete Pad
WITHboo (4) #4 Bars @ Bottom
Pad #: E)EAM 3 KGT
Point Load = 18730 lbs.
Min. Pad Size Required: = 3.53 ft. SQ.
USEoob 48" SQ. X 24" Deep Concrete Pad
WITHoob (4) #5 Bars @ Bottom
-
Point Load = 0 lbs.
Min. Pad Size Required: = 0.00 ft. SQ.
USEooa 24" SQ. X 24" Deep Concrete Pad
WITHoee (2) #4 Bars @ Bottom
i
Pad #: 0
Point Load = 0lbs.
Mln. Pad Size Required: = 0.00 ft. SQ.
FUSE*e4 24" SQ. X 24" Deep Concrete Pad
WITHbbb (2) #4 Bars @ Bottom
Pad #: nFA E beam 3 LEFT
Point Load z.d = 20230lbs.
Min. Pad Size Required: = 3.67 ft. SQ.
USEbba 48" SQ. X 24" Deep Concrete Pad
WITHbbb (4) #5 Bars @ Bottom
Pad #: 1
-M, e-
Point Load = 0lbs.
Min. Pad Size Required: = 0.00 ft. SQ.
FE- q 24" SQ. X 24" Deep Concrete Pad
.A�b (2) #4 Bars @ Bottom
USE 48" PAD
Pad
Point Load ` = 0lbs.
Min. Pad Size Required: = 0.00 ft. SQ.
FUSEd 24" SQ. X 24" Deep Concrete Pad
WITHOOO (2) #4 Bars @ Bottom
Point Load = 0lbs.
Min. Pad Size Required: = 0.00 ft. SQ.
USEo 24" SQ. X 24" Deep Concrete Pad
WITHaoa (2) #4 Bars @ Bottom
q0
Concrete - Fooling siabyad �PpOB
ANCHOR BOLT CALCULATION NEAR AN EDGE
(Base on ACI-318 Appendix D)
USE»> 518" ANCHOR BOLT
z
w fc = 2500 PSI CONCRETE
o-
EDGE DISTANCE = 1-314"
V, = STEEL STRENGTH IN SHEAR
Ve, = 48021bs. (ACI 318-14 APPENDIX 0.)
Oveq = 0.6'4802 = 2881.2
CONCRETE BREAKOUT STRENGTH IN SHEAR:
I, =het = 7" —MINIMUM 5"
d,z = 518" 0.625"
web V = 0.7+ 03 1.5 Oar (Eq. D-28)
w,d V = 0.77
USE 1.0 W, IS 1.0 WITH NO SUPPLEMENTARY REINFORCEMENT:
1,2 WITH #4
1.4 WITH GREATER THAN #4
A,, = 1.5 Cal( 1.5 Cal+Caz) (Eq FIG RD621(b))
A w = 69.4 In"2
A„p = 1.5 Cal( 2 Ca,+Caz) (Eq. D,23)
A „o = 113 In"2
Vmi =�A ury JX wedv wcv wb (Eq. 0.21J
V,yt = (69.41113)' 0.77' 1.0' 4689
V,b, = 2217
0 = 0.7
FV,bt = 15521bs. (Per D4.4-c Condition)
Cat = 5.00"
Caz = 1 75"
L
Vb = 7„ do ��c (Ge )tos (Eq. 0-24)
r o
Vbz = 7" �8 0.2 (0.625)"0.5"(2500)"05'(5)"L5
Vbz = 4689 lbs.
Ca 1 = 1.75"
Caz = 5.00"
10 az
Vb = 7" — X do X fo X(C.,)1s
do
Vb, _ 7 1 118102 (0,625)"0.5'(2500)"0.5'(1.75)"1.5
V61 — 971 lbs.
web v = 1.0 (Per D-6.21)
Ill = 1.0 (Per D-62, 7 with no sopplementalreinlorcing)
A,, = 15 Cal( 2Cal +Caz)
A, = 20 In"2 (Fig. RD-6 21.b)
A„, = 4.5 (Cal)' (Per 0-23)
A..o = 13,78 In"2
Vm2 = 2x(gvco lO Xw,d.X wc, XVb
Av, _ 5 nlllAv,o= A o = 1,0 (Per 0-2180-6.2.1-c)
V112 = 2'1'1'971 = 19421bs.
0 = 0.7 (Per D44.-c Condition)
FV,bz = 13591bs.
V,b = min. ((DV,61,OVcbz) (Per O-621EJ
V,b = 13591bs.
q1
ANCHOR BOLT CALCULATION NEAR AN EDGE (Cont'd)
(Base on ACI-318 Appendix D)
V,p = KIP XN,b
K, = 1.0 forh,r 5 25 (Eq. D-29)
Kip = 2C forh, <_ 2.5
her = 5,
N,b trA ��a Wea�W=m4'�pWd (Eq.D-4)
W,. N = 1.0 (Per D g)
Nb = K: Tc ha's
K,. = 24 CAST IN ANCHOR
K� = 17 FOR POST INSTALLED ANCHOR
Nb = 24'(2500)^O5'(5)^1.5
Nb = 134161bs.
Ce 9 min
Wee N = 0.7 + 0.3 (Eq. D-11)
2 h,i
0,7+0,3'(1.75/(1.5*5))0.77
4), N = 1,0
A ,,, _ (Ca z + 1.5 h,) (2 x 1.5 h,f) (Fig. RD-5.2. 1-b)
A,,, _ (1,75+1.5'5)(2'1.5'S)
A, = 139 In2
A— = 9 h p 2 (Eq. D-G)
A.., = 9'(5)"2=225 In
N'b t�q',d � W � N 4',a LP,
A
IV, = (139/225)'077'1.0'13416= 63821bs.
V,, = 2 Na,
V, = 2.6382 = 127641bs.
0 = 0.7
WV,p = 0.7' 12764 = 8935Ibs.
DETERMINE LOWEST DESIGN SHEAR
OV„ = (P min. ((P,,, OV,b, OV,o) = 13591bs.
OV„ = 0.75'1359= 10191bs. (Eq. D-33,3)
LOAD PER ANCHOR BOLT MAXIMUM AT 8" O.C.:
1019*12 1529
LOAD = = 1529 lbs. ba LOAD,,, = — = 437lbs.
8 2.5'1.4
Anchor DesignerT"" for
Concrete Software
Version 3.3.2410.2
1.Proiect information
Project description:
Location:
Design name: Design
2. Input Data & Anchor Parameters
General
Design method:ACI 318-19
Units: Imperial units
Anchor Information:
Anchor type: Bonded anchor
Material: F1554 Grade 36
Diameter (inch): 0.625
Effective Embedment depth, her (inch): 10.000
Code report: ICC-ES ESR-4057
Anchor category: -
Anchor ductility: Yes
hmm (Inch): 11.38
cap (inch): 22.57
Cmw (inch): 1.75
Smm (inch): 3,00
Recommended Anchor
Anchor Name: SET-3GT4' - SET-313 w/ 5/8"0 F1554 Gr. 36
Code Report: ]CC -ES ESR-4057
Company:
Date:
12/21/2024
Engineer:
Page:
1
Project:
Address:
Phone:
E-mail:
Comment:
Base Material
Concrete: Normal -weight
Concrete thickness, in (inch): 13.78
State: Uncracked
Compressive strength, fc (psi): 2500
Reinforcement condition: B tension, B shear
Supplemental edge reinforcement: No
Reinforcement provided at corners: No
Ignore concrete breakout in tension: No
Ignore concrete breakout in shear: No
Hole condition: Dry concrete
Inspection: Continuous
Temperature range, ShorULong: 150/110°F
Reduced installation torque (for AT-3G): Not applicable
Ignore 6do requirement: Not applicable
Build-up grout pad: No
Si
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
5 mpson Stmrg-Tie Ccmpaay Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 wwwstronglie.com
Anchor DesignerTM for
Concrete Software
Version 3.3.2410.2
Load and Geometry
Load factor source: ACI 318 Section 53
Load combination: not set
Seismic design: Yes
Anchors subjected to sustained tension: Yes
Ductility section for tension: 17.10.5.2 not applicable
Ductility section for shear: 17.10.6.2 not applicable
Qo factor: not set
Apply entire shear load at front row: Yes
Anchors only resisting wind and/or seismic loads: No
Strength level loads:
W[Ibj: 5000
Via. (lb]: 0
Vuar [lb]: 0
<Figure 1>
M
r
0 lb
Company:
Date:
1 12/21 /2024
Engineer:
Page:
2
Project:
Address:
Phone:
E-mail:
11
6 2-
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
5 rrp, ; 1 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 wwwstrongtie.com
<Figure 2>
Anchor DesignerTM for
Concrete Software
Version 3.3.2410.2
Company:
Date:
12/21/2024
Engineer:
Page:
3
Project:
Address:
Phone:
E-mail:
r
-
�z
u
3. Resultino
Anchor Forces
Anchor
Tension load,
Shear load x,
Shear load y,
Shear load combined,
N,a (lb)
V„a. (lb)
V,,,y (lb)
J(Vp..)z+(Vu.,)' (Ib)
1
5000.0
0.0
0.0
0.0
Sum
5000.0
0.0
0.0
0.0
Maximum concrete compression strain (%o): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (ib): 5000
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e'N. (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'NY (inch): 0.00
S3
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked far plausibility.
Simpson Strong -Tie Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 w atrongtie.com
Anchor DesignerTM for
Concrete Software
Version 3.3.2410.2
4. Steel Strength of Anchor in Tension Mac. 17.6.11
M, (lb) 0 ONea (Ib)
13110 0.75 9833
Company:
Date:
12/21/2024
Engineer
Page:
4
Project:
Address:
Phone:
E-mail:
5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.6.2)
Nb = kcA.Vfcherr s (Eq. 17.6.2.2.1)
ke A. fe (psi) he (in) Nb (lb)
24.0 1.00 2500 10.000 37947
0.75^b=0.750(ANa/AN-)Ye4N Yc.NW NN,(Sec. 17.5.1.2&Eq. 17.6.2.1 a)
ANc (in2) ANco (in' c.," (in) Yed.N P.N Vo,N Nb (lb)
892.50 900.00 14.75 0.995 1.00 0,665 37947
6. Adhesive Strenoth of Anchor in Tension (Sec. 17.6.5)
rk.,,ecr= 2,500)^
rk,,,rccr (psi) feed rem K,w
aNsda
fc (psi) n rk.wer (psi)
2162 1,00 1.00
1.00
2500 0.35 2162
Nb = d a mrccr>rdehar (Eq. 17.6.5.2.1)
da r„ecr (psi) da (in)
her (in)
Ma (Ib)
1.00 2162 0.63
10.000
42451
0.750Mb (lb)
12132
0.750Ne = 0.750 (ANa/ ANao) YEd,Na `v p NaNba (Sec. 17.5.1.2 & Eq. 17.6.5.1 a)
AN. (in2) ANao (in2) cNa (in) ca, 'r (in) 'wing Y'c,N. Nao (lb) 0 0.750Ne (lb)
307.10 307.10 8.76 14.75 1.000 0.654 42451 0.65 13526
OM,v = 0.550Nba (Eq. 17.5.2.2)
0 Nba(Ib) ¢Nam (lb)
0.65 42451 15176
11. Results 5 2-f
Interaction of Tensile and Shear Forces (Sec. 17.81 r
Tension Factored Load, %. (lb) Design Strength, eN, (lb) Ratio Status
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
&i,pson Strang -Tie Ccmpany Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925. 560.9000 Fax: 925.847.3871 www.strongtie.com
Anchor Designer TIM for
Concrete Software
Version 3.3.2410.2
Company:
Date:
12/21/2024
Engineer:
Page:
5
Project:
Address:
Phone:
E-mail:
Steel
5000
9833
0.51
Pass (Governs)
Concrete breakout
5000
12132
0.41
Pass
Adhesive
5000
13526
0.37
Pass
Adhesive (sustained)
5000
15176
0.33
Pass
SET-3G w/ 518"0 F1554 Gr. 36 with hef = 10.000 inch meets the selected design criteria.
12. Warnings
- Per designer input, the tensile component of the strength -level earthquake force applied to anchors does not exceed 20 percent of the total
factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.10.5.2 for tension
need not be satisfied — designer to verify.
- Per designer input, the shear component of the strength -level earthquake force applied to anchors does not exceed 20 percent of the total
factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.10.6.2 for shear need
not be satisfied — designer to verify.
Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.
s5
Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility.
5 ^ps:n 5•tong-Ta Company Inc 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax 925.847.3871 www.stronglie.com