Loading...
HomeMy WebLinkAbout3 PELICAN CREST DR - CALCS- pool /20/ A/. FL15irn Avenue englneering Anaheim, CA 92807 inc. Fax: (7/4) 630-6/ l4 Phone. (7/4) 630-6/00 5TRUCTURAL CALCULA TION5 FOR Ron Lacher, R, C. E Caisson Retalning Wall AT The Matranga Residence 3 Pelican Crest Dr Newport Beach, CA 92657- l 604 Pridemark Contractors, Inc. 54 Tesla Irvine, CA 92616 DESIGN BA,5ED ON CDC 200 / EDITION 4t 6E0-ENVIRONMENTAL, INC. 50IL5 REPORT, PROJECT #03 / - / 4, DA TED DEC. 30, 2005 ADDENDUM LETTER DA TED OCT / 7, 2007 MA50NRY• f m = l 500 p5l CAI55ON 0 GRADE BEAM CONCRETE: f = 3000 psl REINFORCING: f,, = 40, 000 psi (Grade 40) f,, = 60, 000 p5/ (Grade 60) ACTI VE PRE55URE = 45 pcf PA55I VE PRE55JRE = 250 pcf 5KIN FRICTION = 350 psf END BEARING CAPACI TY = 3500 p5f 10/26/2007 09:01:46 AM Page 1 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007 DESIGNER: CJB Caisson * Grade Beam Supported JOB #07-073E Retaining Wall SITE LOCATION: The Matrancga Re5ldence -._ - 3 Pelican Crest Dr: Newport Beach, CA 92657-1804 PROPERTIES. - - - Hw := 7.333ft max. height of retaining wall bgb := 24in width of grade beam b := 12in design strip width hgb := 18in height of grade beam �o := 24in diameter of caisson clr, := 3in reinforcing cast against earth Lsp := 7.75ft maximum caisson spacing clrw := 2in reinforcing exposed to weather Sc := 150pcf unit weight of reinforced concrete hpil := 3ft height of pilaster above retained height Soils Report provided by Geo-Environmental, Inc. Project No: 031-14 - Dated December 30, 2005 ' & addendum letter dated October 17, 2007 d := 3500psf end bearing capacity xi := 2ft soil neglected @ top of caisson ya := 45pcf active earth pressure (level) x& := 35ft depth from finished grade to competent soil for end bearing yp = 250pcf passive earth pressure yl, ,,,ax := 1500psf max. passive earth pressure Na := 1.0 near -source factor SF = 350psf skin friction N„ := 1.0 near -source factor STEM WALL ANALYSIS: Per attached calculations from RETAIN PRO Weie tS: w 403.3j1 soil over heel �sec,n 746.,8jb stem wall weight soil wt,.a„s 171;O11soil at stem transitions Wgb bc'bgb•hgb wgb = 450 plf weight of grade beam w� := 8C 4 �02 w. = 471.239 plf weight of caisson wwall := 'soil + Wti-mis + Wstem wwail = 1321.1 plf weight of wall b Overturnmq Force: Vheer = 11755,,Splf heel active pressure x 7�2.;94ft location of resultant from bottom of grade beam Reaction at each Cai55on: Ry := Lsp•(wwall + wgb) Ry = 13726.025 lb vertical force on caisson Rx Lsp-Vh,�el Rx = 13605,125 lb lateral force on caisson 5el5mlc Factor: Z := 0.4 seismic zone factor R := 2.2 structure factor 2.5•C,; I Fl R.1.4 (OR) 0.8.Z•NvI F2 R,1.4 Use Seismic Factor: Sf= 0.3571 I := 1 importance factor Ca:= 0.44•Na seismic coefficient Fl = 0.3571 F2 = 0.104 10/26/2007 09:01:46 AM Page 2 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007 pool Pool Engineering, Inc. Title ; Matranga Page; 1201 N. Tustin Ave. Job # 07-0738 Dsgnr: CJB Date: OCT 23,2007 - engineering Ahahelm, CA. 90807 Description.... !no, Fax: (714) 630.6114 STEM DESIGN ONLY Phone: (714) 630-6100 This Wall in File: w:lretain pro\projects 2007.rp5 Retain Pro 2007, 1-Jan-2007, (c) 1989-2007 www.retainpro.com/support for latest release Cantilevered Retaining Wall Design Code: CBC 2001 Registration #: RP-1159015 2007001 Criteria Retained Height = 7.33 ft Wall height above soil = 0.00 ft Slope Behind Wall = 0.00 : 1 Height of Soil over Toe = 0.00 in Water height over heel = 0.0 ft Soil Data Allow Soil Bearing = 1,000.0 psf Equivalent Fluid Pressure Method Heel Active Pressure = 45.0 psf/ft Toe Active Pressure = 0.0 psf/ft Passive Pressure = 250.0 psf/ft Soil Density = 110.00 pcf FootingIlSoil Friction = 0.300 Surcharge Loads Surcharge Over Heel = 0.0 psf NOT Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 psf NOT Used for Sliding & Overturning Axial Load Applied to Stem Axial Dead Load = 0.0 Ibs Axial Live Load = 600.0 Ibs Axial Load Eccentricity = 6.0 in Lateral Load Applied to Stem Lateral Load = 0.0 #/ft ...Height to Top = 0.00 ft ...Height to Bottom = 0.00 ft Adjacent Footing Load Adjacent Footing Load = 0.0 Ibs Footing Width = 0.00 ft Eccentricity = 0.00 in Wall to Ftg CL Dist = 0.00 ft Footing Type Line Load Base Above/Below Soil _ at Back of Wall - 0.0 ft Poisson's Ratio = 0.300 Stem Construction Design Height Above Ftg ft = Wall Material Above "Ht" _ Thickness = Rebar Size = Reber Spacing = Rebar Placed at - Design Data fb/FB + fa/Fa = Total Force @ Section Ibs = Moment.... Actual ft-ft Moment..... Allowable ft-ft _ Shear..... Actual psi = Shear..... Allowable psi = Wall Weight psf = Rebar Depth 'd' in = LAP SPLICE IF ABOVE in = LAP SPLICE IF BELOW in = HOOK EMBED INTO FTG in = Masonry Data f'm psi = Fs psi = Solid Grouting = Special Inspection = Modular Ratio 'n' _ Short Term Factor = Equiv. Solid Thick. in = Masonry Block Type = Masonry Design Method = Concrete Data f'c psi = Fy psi = p Stem Stem OK 2.67 Masonry 8.00 # 4 8.00 Edge 0.784 489.2 1,060.4 1,353.2 7.6 19.4 84.0 6.00 20.00 20.00 2nd Stem OK 0.00 Masonry 12.00 # 5 8.00 Edge 0.907 1,209.9 3,257.4 3,589.9 11.4 19.4 133.0 9.88 30.00 6.00 1,500 1,500 20,000 24,000 Yes Yes No No 21.48 21.48 1.000 1.000 7.60 11.60 Normal Weight ASD Load Factors - Building Code Dead Load Live Load Earth, H Wind, W Seismic, E CBC 2001 1.400 1.700 1.700 1.300 1.000 Summary of Overturning & Resisting Forces & Moments --� .....OVERTURNING..... RESISTING..... M Force Distance oment Force Distance Moment Item Ibs ft ft-# Ibs ft ft-# Heel Active Pressure = 1,755.5 2.94 5,168.8 Toe Active Pressure = 0.50 Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Soil Over Heel = Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = Soil Over Toe _ Surcharge Over Toe _ Stem Weight(s) Earth @ Stem Transitions Footing Weight _ Key Weight Vert. Component _ 403.3 1.75 705.8 0.50 746.8 171.0 450.0 0.91 681.5 1.33 228.0 1.00 450.0 10/26/2007 09:01:46 AM Page 3 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf @Pool Engineering, Inc. 2007 8.in Mas w/ #4 @ 8.in o/c Solid Grout, 4'-8" 12.in Mas w/ #5 @ 8.in o/c Solid Grout, 2'-8" 2" I r #0@0.in @Toe Designer select #0@0.in all horiz. reinf. @ Heel See Appendix A 2'-0" -9411-1110. 10/26/2007 09:01:46 AM Page 4 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007 DL= 0., LL= 600.#, Ecc= 6.in 1755.5# 10/26/2007 09:01:46 AM Page 5 of 22 W:\Projects\2007\0738-07 Caisson Pool\retalning wall\Final Report.pdf ©Pool Engineering, Inc. 2007 DESIGNER: CJB Caisson * Grade Beam Supported JOB #07-0738 Retaining Wall Grade Beam (Vertical Loading) - flexural Design - Allowable Stress Design Method - Batize�- NumBar4fc car clearance (earth, water, or -center) = 0.625 in dia. of reinforcing FS = 24000psi tensile strength of steel fy = 60000psi yield strength of steel Fr:= 0.45•f, Fc= 1350psi vc:= I.I. fit v,= 60.249psi Es E, := 57000 fe t E, = 3122019 psi ES := 29000000psi n := n = 9.289 E, beam —depth = 18 in cover = 3 in dv = 14.688 in Effective —Depth = "Reinforcing Sin. clear from earth" 2 As := � � •NtunBar As = 0.92 in area of steel provided 4 Allowable Moment and Shear: p := As p = 0.003 lc := 2•p•n + (p•n)2 — p•n k = 0.197 j := 1 — 3 j = 0.934 bgb• dv MS := FS•p• j•bgb•dv2 MS = 25258 ft•lb moment strength (based on yielding of steel) Fcj k bgb dv2 Me := M� = 53685 ft•lb moment strength (based on concrete crushing) 2 Ma = 25258 ft•lb allowable moment Va := v,. bgb•dv Va = 21238 lb allowable shear Design Forces on Beam w := wwatl + wgb w = 1771.1 plf beam linear load Mmax v 0.0909•w•Lsp2 Mini, v 0.100w•LSP 2 Mmax v = 9670 ft•lb < Mmin_v — — — 10638 ft•lb < Vmax v 0.600w•LsP Vmax v = 8236 lb < Ma = 25258 ft•lb Max Moment = 'PASS" (CBC 1908.3.3) Ma = 25258 ft•lb Min 'Moment = "PASS" ; (CBC 1908.3.3) Va = 21238 lb Shear = "PASS" (CBC 1908.3.3) Minimum Flexural Steel Check 3• f� t 200•bgb•dv't 2 As,n;,, := min bgb•dv, As,,,i„ = 0.965 in minimum required area of steel (CBC 1910.5.1) fy fy Tensile Reinfofcement = "Tensile reinforce neiit provided is at, least one-third greater than that required by analysis" 'Clzeok = "Minitnui flexural steel requirement is not applicable per CBC Section 1910.5.3" REINFORCING = "(3) #5 BARS @ TOP AND BOTTOM OF GRADE BEAM" CONCRETE = "24in. WIDE x 18in. DEEP GRADE BEAM, 3in. CLEAR COVER TO SOIL" 10/26/2007 09:01:46 AM W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf Page 6 of 22 ©Pool Engineering, Inc. 2007 DESIGNER: CJB Caisson � Grade Beam Supported JOB #07-0736 Retaining Wall Grade Beam (Lateral Loading) - Flexural Design - Allowable Stress Design Method Properties: BarSize := 5 NtlniBar :=,2 fe := 3000•pst CLR := "earth"! clearance (earth, water, or center) = 0.625 in dia. of reinforcing FS = 24000 psi tensile strength of steel fy = 60000 psi yield strength of steel Fe:= 0.45•fe Fe= 1350psi ve:= I.I. fit Ee := 57000• fe t Ee = 3122019 psi ES := 29000000psi beam —depth = 24 in cover = 3 in As := Tc-2 •NumBar As = 0.614 in Allowable Moment and Shear: As p := p = 0.002 hgb•dl 2 dl = 20.687 in v o = 60.249 psi ES n = � n = 9.289 c Effective Depth = "Reinforcing 3in. clear from earth" area of steel provided k := 2•p•n + (p•n)2 — p•n k = 0.16 j:= 1 — k j = 0.947 3 MS := FS•p•j•hgb•dl MS = 24031 ft•lb moment strength (based on yielding of steel) Fe j lc hob d12 Me := 2 Me = 65760 ft•lb moment strength (based on concrete crushing) M = 24031 ft•lb allowable moment V,, := v,. hgb'dl Design Forces on Beam w := Vheel Va = 22435 lb allowable shear M,n x I := 0.0909 w•LSp2 Mmin_1 0.100w• Lsp 2 0.600w•Lsp Minimum Flexural Steel Check w = 1755.5 plf beam linear load Mn,"x 1 = 9584 ft•lb < M„ = 24031 ft•lb Max Moment = "PASS (CBC 1908.3.3) M,ni„ 1= —10544 ft•lb < Ma = 24031 ft•lb Min Moment = "PASS" (CBC 1908.3.3) V,nsx l = 8163 lb < V" = 22435 lb Shear = "PASS" (CBC 1908.3.3) 3• fe t 200•hgb•dl•t 2 Asn,i„ := min f •hab•dt, f Asmin = 1.02 in minimum required area of steel (CBC 1910.5.1) y y Tensile Reinforcernent = "Tensile reinforcement provided is at least one -"third greater than that required by analysis"" Check = "Miniinuln flexural steel requirement is not applicable per, CBC Section 1910,53" REINFORCING = "(2) #5 BARS cr FRONT & REAR FACE OF GRADE BEAM" CONCRETE = "24in. WIDE x 18in. DEEP GRADE BEAM, 3in. CLEAR COVER TO SOIL" 10/26/2007 09:01:46 AM Page 7 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report,pdf ©Pool Engineering, Inc. 2007 DESIGNER: CJ13Cai55on * Grade Beam Supported JOB #07-0738 Retaining Wall Concrete Grade Beam - Shear Torsion Design - Ultimate Strength Design Shear Design. shear reinforcin bar`size - 0 $.5 shear reduction factor ;Shear Bar; , 4, g - diasheu = 0.5 in diameter of shear reinforcing fyv = 40000 psi yield strength of shear reinforcing Av = 0.196 in area of shear steel provided Vertical Loading: dv = 14.688 in effective depth of beam V,, := 1.4•V,.n X_v V„ = 11530 lb maximum shear on beam Ve := 2 t f� bgb•dv Ve = 38614 lb shear strength of concrete Vu = 11529.861 lb < -Vo = 16411 lb Stirrups - "Not Required'. Use thin. "shearxeinforcing" 2 s., = 7.344 in maximum stirrup spacing (ACI 318-95 Sec. 11.5) Lateral Loading: dt = 20.687 in effective depth of beam V„ := 1.7•V,,,,,X t V„ = 13877 lb maximum shear on beam Ve 2 t f� hgb•dl Ve = 40792 lb shear strength of concrete V„ = 13877.227 lb < �2 c = 17336 lb Stirrups "Not Required. Use thin. shear reinforcing" s.,,, = 10.344 in maximum stirrup spacing (ACI 318-95 Sec. 11.5) Torsional Design: Acp:= bgb' hgb AcP 3 ft2 gross area of concrete beam Pcp := 2(bgb + hgb) Pcp = 7 ft outside perimeter of concrete beam 2 T<,tlow :_ ,p. R A't' Tnnow = 8620 ft•lb allowable torsional moment P, T„ := 1.7VheCl• LSP •I x — hgbl T„ = 25326 ft•lb factored torsional moment T„ = 25325.94 ft•lb` > T,,11o,,, = 8620 ft•lb Torsional Design = "Required" Determine if Size of Cross Section is Adequate: diashea,. dias�1ea,. erimeter of centerline of outermost Pt, := 2 hgb — 2•cire — + 2 b$b — 2•clre — Ph = 59 in p 2 2 closed transverse torsional reinforcement dlashear).(bgb — e dlashear 2 Aob :_ (hgb — 2•c1re — 2•clr— Aot, = 208.6 in area enclosed by centerline of outermost 2 2 closed transverse torsional reinforcement V„ = 13877 lb ultimate factored shear on beam Ve = 40792 lb shear strength of concrete 2 2 V V" + T" Pb = 245.3 psi e + 8 i fe = 466 psi Cheek = "Section is adequate" hob dt 1.7•Aeh2 h�b•dl 10/26/2007 09:01:46 AM Page 8 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc, 2007 )ESIGNER; CJB Caisson * Grade Beam Supported JOB #07-073E Retaining Wall Determine Transverse Reinforcement required for Torsion: fYV = 40000psi yield strength of shear reinforcing 0 := 45deg angle of compression diagonals 2 At s - T„ At_S = 0,0252 In transverse reinforcement required for torsion 2•��fyV•0.85•Aoh•cot(0) in Determine Transverse Reinforcement required for Shear: 2 A,, s := V, - th Vc A,, s = -0.015 n Check = "Reinforcement is NOT required for shear" 2 fyv d; _ in 2 2 ASS:=if Ass>0,AV5,0m A s=0m in - in 2 25•b� a 2 At 5 + Av 5 = 0.0252 n > b = 0.015 m Check = "OK" in fYV in Determine Size of Stirrups: Shear Bar = 4 shear reinforcing bar size Av = 0.196 in cross sectional area of shear reinforcing s,mx := Mill—,12in, d; , A� smax = 7.37 in s = 7' in maximum spacing of stirrups 8 2 A,-, ) 2 A, = 0.028 in > s in Determine Longitudinal Steel: 25•b b a in2 - = 0.015 — Check = "OK fYV in fy = 60000 psi yield strength of longitudinal reinforcing sreq = 6 in stirrups spacing as required above At := At 5•P;,•(fyJ cot(0)2 A; = 0.9916 in' area of longitudinal steel required for torsion Y 5' t'fc'Acp At S•Ph•fy, — At 2 ,,,;,, = 0.9802 in min. area of longitudinal steel required for torsion fy fy At := max(Ai,Ai mil) AI = 0.9916in2 min. area of longitudinal steel required Abot_req 21 Abot_,cq = 0.4958 in < As = 0.614 in flexural steel provided CONCRETE = "24in. WIDE x 18in, DEEP GRADE BEAM, 3 in. CLEAR COVER TO SOIL" REINFORCING = "(3) #5 BARS @ TOP AND BOTTOM OF GRADE BEAM w/ #4 TIES @ 6in, O.C." 10/26/2007 09:01:46 AM Page 9 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007 DESIGNER: CJ13 Caisson * Grade Beam Supported JOB #07-073e Retaining Wall MASONRY PILASTER DESIGN - Allowable Stress De5lcgn m ressive stren th of masonry 24u p g y -- w square width of _ ,l GR = 60, reinforcingsteel grade(40 or 60 ) Special Inspectiony= Na special inspection repaired? FS = 24000 psi z' tensile strength of steel steel cover 2� clear cover to steel Bars ze , • Sf No", = 2 number of bars per face 8�,, L, 13,Spcf unit weight of CMU BarSize in �= � g As• •= 0.625 in = dia. of reinforcing bars ,ti � •(Nobar ) As = 0.614 in total area of steel 8 4 A, := wpil2 AC = 576 in cross sectional area of concrete column r := we'll r = 6.928 in radius of gyration Hw + hpil = 17.897 slenderness ratio < 99 J12 r (12 Pal := ISP•(0.25•f..)•A,+ 0.65•AS•Fj 1 — I H,,, + hp;1J 140•r 70•r 2 Pa2:= 1SP•(0.25•f„)•A,+ 0.65•As•FS� I H + h ) w pil C Hw + hpil 1 t Pa := if r <— 99,Pal, Pa2 P Pal = 721351 lbk Pal = 200.78psi A, Pat = 11218234 lb k Fb := SP•(0.33•f,,,) Fb = 247.5 psi F,, := SP f,,,•psi'5 Es := 29000000•psi d := wl,;l — cover — 2 AS p:= p=0.00118 Wpil • d Ms := FS•As• j•d Fb' k' j • Wl)il • d2 2 Ma := min(Ms, M,,,) E,,, := 750•f,,, E,,, = 1125000 psi d = 21.687 in effective depth k:= 2•p•n + (p•11)2 — p•n k = 0.218 Allowable Vertical Load Capacity Fv = 19.365 psi E n := s n = 25.778 E,n j := 1 — k j = 0.927 3 MS = 24681 lb•ft Moment Capacity (Yeilding of steel) Min = 23534lb•ft Moment Capacity (Yeilding of Concrete) Allowable Bending Capacity Pl,il := 6c,,,,,•Ac, (Hw + hpil) Ppil = 5579.82 lb weight of masonry pilaster 3 "Ya'Hw '�'�'pil Mpil := Mpil = 5914.749 ft•lb moment for soil pressure 6 Vseis := Sf (6CMU A,- hpil) Vseis = 578.571 lb seismic base shear from masonry pilaster Mscis := Vseis•h�l + Hw l M'Cis = 5110.521 ft•lb seismic moment from pilaster Ppil Mpil +Mscis + — 0.517 < 1.333 Interaction Forinula = "PASS" ` Pa Ma — USE = "#5 VERT. BARS @ EACH CORNER w/ 6" MIN. STD. HOOK EMBEDMENT TO FOOTING" SPECIAL INSPECTION = "NOT REQUIRED" 10/26/2007 09:01:46 AM Page 10 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007 DESIGNER: CJ6 Caisson * Grade Beam Supported JOB #07-0738 Retaming Wall Vertical Caisson Desiatn: dt,i,, = 11.718ft trial embedment depth for iteration Pc := w,. (dtrial + xi) Pc = 6.464 kip self -weight of caisson Ry = 13.726 kip weight of wall and grade beam P,, := Pc + Ry + Ppit P,, = 25.77 kip total vertical loading on caisson d,.c P V dre = 11,718 ft required depth for iteration 9 SF'n'�c q D,, := Ceil(d,n,0.5ft) + xi D = 14 £t ' required embedment beneath grade beam to resist vertical loading Lateral Load Analyais : flaclpole_footinq, Non -constrained at Ground Level for Isolated Caissons - Per CBC section 180G.8.2 dt :_ 15.22ft trial depth for iteration Rx = 13.605 kip design shear due to soil pressure �c = 2 ft diameter of caisson M := Rx.(x + xi) M = 67.209 f -kip design moment due to soil pressure h ,— M + Mseis + Vseis'(hgb + xi) h = 5.242 ft effective height Rx + Vseis Pi, := 2.71, Pt, = 500pcf Nominal Passive Pressure increased by 100% for isolated caissons C dl 1 2.34•(Rx + Vseis) St := min Pp, 3 ,'gyp n,ax S1 = 1500 psf A := S A = 11.063 ft ( 1 1 �c 2�I 1 + Fl— dreq:= 4. A 1iJ d,.,9 = 15.22 ft required depth for iteration D, := Ceil(d,.c,t, 0.5ft) + x; Dt = 17,5 ft required embedment beneath grade beam to resist lateral loading Dc„isso„ := max(D,,,Di) Dcsisson 17.5 ft required embedment beneath grade beam 10/26/2007 09:01:46 AM Page 11 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wallOnal Report.pdf ©Pool Engineering, Inc. 2007 DESIGNER: CJB Caisson * Grade Beam Supported JOB #07-0738 Retaining Wall Flexural Design of Caissons Set Lateral -Force equal to Passive Resistance and solve for necessary depth of fixity in competent soil - - - - - - Pt, (dp - xi)2 _ - 2• Rx +- Vscis - RX + Vseis y lateral force equilibrium Solving for depth, we get dp :_ + xi 2 Pp' k dp = 7.326 ft depth to point of fixity into soil To obtain Max Bending Moment on Caisson we sum moments about the point of fixity: �c M„ := 1.7 Pp•�� (dp — xi)3 RX•(x + xi + dp) — 6 + 1.4•[Mseis + Vseis'(h& + xi + dp)] — 0.9•(Ry + Ppil + wc'Dcaisson)' 2 Mu = 232.618'kip4j Factored Ultimate Moment P„ := 1.44P, Pl, 36'.078 kip Factored Ultimate Vertical Load Loading for dowels (caisson to grade beam) b Md „:= 1.7•RX•x + 1.41Mseis + Vscis•(h& + xi + dp)] - 0.9•Ry gb Ma „_= 71.569kip•ft Factored Ultimate Moment Pd „ 1.4•Ry + Ppil `Pd u = 24.796.kip Factored Ultimate Vertical Load See CSI Column Calculation Sheets (following) for Concrete Design of Caissons CONCRETE = "24in. DIA. CAISSON, fc = 3,000psi" REINFORCING = "(9) #8 VERTICAL BARS THROUGHOUT CAISSON w/ (9) #5 DOWELS TO GRADE BEAM" 10/26/2007 09:01:46 AM Page 12 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007 Project Information Project Matranga Job No 07-0738 Company Pridemark Contractors Designer CJB Remarks flexural caisson design Software CSICOL (Version: 8.3 (Rev. 1)) File Name WAProjects\2007\0738-07 Caisson Pool\retaining wall \flexural caisson design Working Units US (in, kip, k-ft, ksi) Design Code ACI-318-99 Column:Caisson Basic Design Parameters Caption = Caisson Default Concrete Strength, Fc = 3.00 ksi Default Concrete Modulus, Ec = 3200.00 ksi Maximum Concrete Strain = 0.003 in/in Rebar Set = ASTM Default Rebar Yeild Strength, Fy = 60.00 ksl Default Rebar Modulus, Es = 29000.00 ksi Default Cover to Rebars = 3.500 in Maximum Steel Strain = Infinity Transverse Rebar Type = Spiral Total Shapes in Section = 1 Consider Slenderness = No W.IProjects1200710738-07 Caisson Poollretaining walllflexural caisson design. CDB Page 1 10/26/2007 09:01:46 AM Page 13 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007 4 _ II!- I - I 1 . } 1 1 I ....{ 12o 24 --i .I.. - i k 1 Q[t - _ j i Py r {Z'A 01 }Sg lu L ..„...,.q. I 1 I 1.�dg .. �-- I `^C JP f };i• Fb.w4'�'4 i"„ iV �i •.^ `•`�!',{^Pd} ,'',Ji .P �e* ....�.. i �T R. I f Section Diagram Cross-section Shapes Shape Width Height Conc Fc S/S Curve Rebars in in ksi Circle 24.000 24.000 3.000 ACI-Whitney Rectangular 948 Rebar Properties Sr.No Designation Area Cord-X Cord-Y Fy S/S Curve in^2 in in ksi 1 #8 0.79 20.500 12.000 60.00 Elasto-Plastic 2 #8 0.79 18.511 17.464 60.00 Elasto-Plastic 3 #8 0.79 13.476 20.371 60.00 Elasto-Plastic 4 #8 0.79 7.750 19.361 60.00 Elasto-Plastic 5 #8 0.79 4.013 14.907 60.00 Elasto-Plastic 6 #8 0.79 4.013 9.093 60.00 Elasto-Plastic 7 #8 0.79 7.750 4,639 60.00 Elasto-Plastic 8 #8 0.79 13.476 3.629 60.00 Elasto-Plastic 9 #8 0.79 18.511 6.536 60.00 Elasto-Plastic 9-#8 Total Area = 7.11 in^2 Steel Ratio = 1.57 % Basic Section Properties: Total Width = 24.00 in Total Height = 24.00 in Center, Xo = 0.00 in W1Projects1200710738-07 Caisson Poollretaining walllflexural caisson design.CDB Page 2 10/26/2007 09:01:46 AM W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf Page 14 of 22 ©Pool Engineering, Inc. 2007 Center, Yo X-bar (Right) X-bar (Left) Y-bar (Top) Y-bar (Bot) Transformed Properties: Base Materail Area, A Inertia, Ixx Inertia, lyy Inertia, Ixy Radius, rx Radius, ry Final Design Loads Sr.No Combination 1 Combinationl 2 Combination2 Result Summary Sr.No Combination 1 Combinationl 2 Combination2 me! = 12.00 = 12.00 = 12.00 = 12.00 =fc'=3.0ksi = 452.39 = 1.63E+04 = 1.63E+04 = 0.00E+00 = 6.00 = 6.00 in in in in in inA2 inA4 in^4 inA4 In in Load Pu Mux-Bot Muy-Bot Mux-Top Muy-Top kip k-ft k-ft k-ft k-ft 36.078 232.018 0.00 232.018 0.00 36.078 0.00 232.018 0.00 232.018 Pu (kip) Cap. Ratio-Bot Cap. Ratio - Top 36.078 0.962 0.962 36.078 0.963 0.963 Remarks Capacity OK Capacity OK W.•IProjects1200710738-07 Caisson Poollretaining walllflexural caisson design. CDB Page 3 10/26/2007 09:01:46 AM W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf Page 15 of 22 ©Pool Engineering, Inc. 2007 Load -Moment Interaction WProjects1200710738-07 Caisson PooAretaining walllflexural caisson design.CDB Page 6 10/26/2007 09:01:46 AM Page 16 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007 Load -Moment Interaction W.- Projects1200710738-07 Caisson PooAretaining walllflexural caisson deslgn.CDB Page 7 '1126/2007 09:01:46 AM Page 17 of 22 ,J:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007 Column:Dowels Basic Design Parameters Caption =-Dowels_- Default Concrete Strength, Fc = 3.00 ksi - - -- Default Concrete Modulus, Ec = 3200.00 ksi Maximum Concrete Strain = 0.003 in/in Rebar Set = ASTM Default Rebar Yeild Strength, Fy = 60.00 ksi Default Rebar Modulus, Es = 29000.00 ksi Default Cover to Rebars = 3.500 in Maximum Steel Strain = Infinity Transverse Rebar Type = Spiral Total Shapes in Section = 1 Consider Slenderness = No --r i }_ II 1 raJr 1 I J 0 u� I `pt r hi 1 . S~V ' IN ! "t+•.: d pY °°rr x'� Y� �* N g � •a`!• 1 X ,d 4w. J5 yA�Y � '�,�� �.� l .._._. y�yu CV X C .* s#_i}7��•�},'� �r .. �'�'.�'�(4''k ��,,�xOwy ,a i Pk`"k �'1 w+N P pyM�:." 'ham. {k�%v5'� .. 1pf�R 'b.L n• Ji � { �'•p�_`iM}� i ' ^'tQX, g i i 4- IX A 1 i I 1! t Section Diagram Cross-section Shapes Shape Width Height in in Circle 24.000 24.000 Rebar Properties Conc Fc S/S Curve Rebars ksi 3.000 ACI-Whitney Rectangular 945 W.• ProjectsW070738-07 Caisson Poollretaining walAflexural caisson design. CDB Page 4 10/26/2007 09:01:46 AM Page 18 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007 Sr.No Designation Area in^2 1 #5 0.31 2 #5 0.31 3 #5 0.31 4 #5 0.31 5 #5 0.31 6 #5 0.31 7 #5 0.31 8 #5 0.31 9 #5 0.31 9-#5 Total Area = 2.78 Steel Ratio = 0.61 Basic Section Properties; Cord-X Cord-Y Fy S/S Curve in in ksi 20.500 12.000 60.00 Elasto-Plastic 18.511 17.464 60.00 Elasto-Plastic 13.476 20.371 60.00 Elasto-Plastic 7.750 19.361 60.00 Elasto-Plastic 4,013 14.907 60.00 Elasto-Plastic 4.013 9,093 60.00 Elasto-Plastic 7.750 4.639 60.00 Elasto-Plastic 13.476 3.629 60.00 Elasto-Plastic 18.511 6.536 60.00 Elasto-Plastic inA2 Total Width = 24.00 Total Height = 24.00 Center, Xo = 0.00 Center, Yo = 0.00 X-bar (Right) = 12.00 X-bar (Left) = 12.00 Y-bar (Top) = 12.00 Y-bar (Bot) = 12.00 Transformed Properties: Base Materail = fc' = 3.0 ksi Area, A = 452.39 Inertia, Ixx = 1.63E+04 Inertia, lyy = 1.63E+04 Inertia, Ixy = 0.00E+00 Radius, rx = 6.00 Radius, ry = 6.00 Final Design Loads Sr.No Combination Load Pu kip 1 Combination1 24.796 2 Combination2 24.796 Result Summary Sr.No Combination Pu (kip) 1 Combination1 24.796 2 Combination2 24.796 in in in in in in in in inA2 inA4 inA4 inA4 in in Mux-Bot Muy-Bot Mux-Top Muy-Top k-ft k-ft k-ft k-ft 72.735 0.00 72.735 0.00 0.00 72,735 0.00 72.735 Cap. Ratio-Bot Cap. Ratio- Remarks Top 0.565 0.565 Capacity OK 0.568 0.568 Capacity OK W.-1Projects1200M738-07 Caisson Poollretaining walllflexural caisson design. CDB Page 5 ,2007 09:01:46 AM projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf Page 19 of 22 ©Pool Engineering, Inc. 2007 Load -Moment Interaction W.•IProjects1200710738-07 Caisson Poollretaining walAflexural caisson design. CDB Page 8 10/26/2007 09:01:46 AM Page 20 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc, 2007 Load -Moment Interaction W:• Projects1200710738-07 Caisson Poollretalning walllflexural caisson design. CDB Page 9 10/26/2007 09:01:46 AM Page 21 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007 )E5IGNER: CJB Ca155on � Grade Beam Supported JOB #07-073� Retaining Wall Horizontal Spiral Tic Keciuirement5: - 120% of flexural length per CBC section 1809.5. 1 -- f�-3OOOtSsi compressive strength -of-pile-concrete, thus: R`1-= 0.85 dfx : Cei1(d,, 6in) dll, = 7.5 ft assumed depth to point of fixity into competent soil 24 in diameter of caisson Ba' Sfze, $ size of vertical bars clre = 3 in concrete cover BaiSizeh .= 4 size of horizontal ties 5 :- oin spacing of horizontal ties dbh = 0.5 in diameter of horizontal ties db, = 1 in diameter of vertical bars fy = 60000 psi yield strength of vertical bars d, 2 (clr,� d,; = 18 in, diameter of concrete core measured out -to -out of spiral reinforcing ties A,� := 4 •dC2 A, = 254 in area of concrete core measured out -to -out of spiral reinforcing ties lsp := nd, lsp = 56.549 in length of one turn of the spiral 2 Asp := Tudbh Asp = 0.196 in cross sectional area of horizontal tie 4 Asp• 1si, ps := ps = 0.007 volumetric ratio of spiral tie reinforcing provided A,• S f Ps_mir, 0.12f ps_mi❑ = 0,006 min. volumetric ratio of spiral reinforcement CBC section 1921.4.4.1 y ps ,,,i„ = 0.006 < ps = 0.007 Ties = "OK" dsp := Cei1[.2•(dr;,,),6in] dsp = 1.5 ft depth to extend spiral tie requirement past point of fixity HORIZONTAL SPIRAL TIE REQUIRMENTS FOR PILE BELOW 120% OF FLEXURAL LENGTH: min(16•db,,,48•dbh,k) S,,,,,X = 16in maximum spacing per CBC section 1907.10.5.2 Spiral_Ties = "USE #4 TIES @ 6in. O.C. TO 91 INTO SOIL & #4 TIES @ 12in. O.C. REMAINDER" 10/26/2007 09:01:46 AM Page 22 of 22 W:\Projects\2007\0738-07 Caisson Pool\retaining wall\Final Report.pdf ©Pool Engineering, Inc. 2007