Loading...
HomeMy WebLinkAbout7 STAR CATCHER - CALCSpool /20/ N. 7-u5Em Avenue engineering Anaheim, CA 32607 ine. Fax: (7/4) 630-6/ l4 Phone: (7 / 4) 630-6 / 00 STRUCTURAL CALCULATIONS FOR Ron Lacher, R. C. E Freestanding Solid Roof Patio Cover AT The Andersen Residence 7 5tarcatcher Newport Coast, CA 92657- / 652 FOR Owner/Builder 7 Starcatcher Newport Coast, CA 92657- / 652 DESIGN BASED ON CDC 2007 EDITION TUBE STEEL: Fy = 46 ksi (A5TM A500 Gr. D) STEEL PIPE° Fy = 35 k5/ (AS TM A53 Gr. B) CONCRETE: f = 2, 500 psi REINFORCING: Fy = 40000 psi (GRADE 40 OR AS NOTED) FOUNDA TION PRESSURE: 1, 500 psf 06/04/2008 12:51:26 PM Page 1 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, Inc. 2008 Designer: CJ13 Freestanding 5olid Roof Patio Cover Job #08-0389 51TE LOCATION: The Andersen Residence 7 5tarcatcher Newport Beach, CA 92657-1 G52 Patio Cover Properties: Lcover = 16ft column to column length of patio cover Wcover = 16ft column to column width of patio cover Loh = 24in length of overhang Nopost := 2 total number of posts per side Loverall = 20 ft overall length of patio cover Woverall = 20 ft overall width of patio cover hoot:= 8ft height of column Rise,nin = 3 minimum vertical component of slope SP,.af = 24in rafter center -to -center Spacing Risemax = 6 maximum vertical component of slope q := 1500psf soil bearing capacity dsticco := 18in finished dimension of stucco wrapping -fp,:= 100pef passive 5011 pressure Yconc := 150pcf unit weight of reinforced concrete Wcol:= 5001b weight of stucco column Patio Cover Loading: Dead load: Roofing := 5psf DECRA roofing panels (ICC EK-436 I) w/ 1 112" steel battens Rafters 2.21 •psf 4" x 2" x 1 /8" Tube Steel Rafters Stucco := lopsf Stucco coat to underside of rafters DL := Roofing + Rafters + Stucco DL = 17.21 •psf Roof Dead Load Live Load: LL = 20•psf (CBC/IBC Table 1 G07. I ) 06/04/2008 12:51:25 PM Page 3 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, Inc. 2008 )esigner: CJ15 Free5tandmg Solid Roof Patio Cover Job #08-038`. Structure Period: 11max = 12ft max. height of structure (used for period calculations only) li,,,i„ = 8 ft- - min. height of Structure (used for period calculations only) - Ct := 0.02 period coefficient per ASCE 7-05 Table 1 2.8-2 0.75 Tmax s'Ct'(h ft X) Tmax = 0.129 s approximate fundamental period, max. value Period = "Short period structure per ASCE 7 Section 12.8.1.3" hmin 0.75 Tmin := s Ct m Tmi„ = 0.095 s approximate fundamental period, min, value Rigid = "Not a rigid structure per ASCE 7 Section 15.4.2" SEISMIC FACTOR: CBc/IBc Seicmic Ground Motion Values Site Class := D Site Class (ASCE 7-05, Section 1 1 .4.2) Ss := 1.50 Short -period Spectral Response Acceleration SI := 1.30 1-5ec Period Spectral Response Acceleration Non -Building Structure (ASCE 7-05 Section 15.4) lscis:= 1.0 Occupancy Importance Factor R := 2 Response Modification Factor p := 1.0 Redundancy Factor Site Coefficients Fa = 1 ASCE 7-05 TABLE 1 1 .4-1 F,, = 1.5 ASCE 7-05 TABLE 1 1 .4-2 SDS := 3 . Fa Ss SDS = 1 Short Period Design Spectral Acceleration Parameter (ASCE 7-05 Eq. 1 1 .4-3) SDI ;= 3'Fv'SI SDI = 1.3 1-5ec Period Design Spectral Acceleration Parameter (ASCE 7-05 Eq, .1 1 .4-4) Seismic Response Coefficient (ASCE 7-05 section 1 2.6. 1 . I ) Csr _ SDS'lscis C,I = 0.5 Seismic Response Coefficient (ASCE 7-05 Eq. 1 2.8-2) R Cs3 := 0.03 Minimum Non-Buildmg Seismic Response Coefficient (ASCE 7-05 Eq. 1 5.4-1) 0.8 • S 1' lseis CA := CA = 0.52 Minimum Non -Building Seismic Response Coefficient (ASCE 7-05 Eq. 1 5.4-2) R Cs = 0.52 Governing Seismic Response Coefficient CBC/IBC ALTERNATE BA51C LOAD COMBINATIONS USING ALLOWABLE STREOS DE51GN , (Section 1 G05.3.2, Eq. I G-20 * I G-2 1) Sf := PC s Sf = 0.371 hori2ontal seismic load factor (ASCE 7-05 Eq. 1 2.4-3) 1.4 0.2• SDS Sf„ = Sf,, = 0.143 vertical seismic load factor (ASCE 7-05 Eq. 1 2.4-4) 1.4 06/04/2008 12:51:25 PM Page 4 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, Inc. 2008 Designer: CJB Freestanding Solid Roof Patio Cover Job #08-0389 ROOF MEMBER DESIGN: See Enei-Calc Raftei°5: Self weight included in distributed dead load inin(Wcovco Lcover) Lraf 2 Lraf = 8 ft trib w := SPraf WL := trib_w•DL wDL = 34.42•plf wLL := trib_w•LL Use 4" x 2" x 1/8" hollow Structural Section Rafters @ 24" o.c. Hip Beams: Trianrgular loading Lhip Lraf'V 2 Lhip = 11.314 ft max . wDL := trib_w•DL wDL = 137.68•plf Use 4" x 3" x 1/8" hollow Structural Section hip Beams Beams: Lbm := max(Lcoven Wcover) Lb, = 16 ft wstucco dstucco'4•Stucco wstucco = 60•plf wDL := trib_w•DL + wst„oco wDL = 232.1 plf wb,,, := 15.88plf beam Self weight Use 8" x G" x 3/ 1 G" Tube Steel hip Beams trib_w := Lraf max wLL := trib_w•LL trib w := Lraf + Loh trib_w = 2 ft wLL = 40•plf trib_w = 8 ft wLL = 160•plf trib_w = 10 ft wLL := trib_w•LL wLL = 200•plf DLbm :_ (wbm + 'stucco)' Lbm DLbm = 607.04 lb 06/04/2008 12:51:26 PM Page 5 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, Inc. 2008 pool 0 g I n eri n g Pool Engineering, Inc. 1201 N, Tustin Ave. Anaheim, CA 92807 Phone: (714) 630-6100 Fax: (714) 630-6114 Descriptlon Rafters_ Title : Andersen Dsgnr: Project Desc.: Project Notes : Job # 08-0389 Printed: 4 JUN 2008 NNaterla"I RrOpertl@S� Calculations per IBC 2006, CBC 2007,13th RISC Analysis Method : Allowable Stress Design Fy : Steel Yield: 46.0 ksi Beam Bracing : E: Modulus: 29,000.0 ksi Bending Axis : Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 Applied Loads Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load : D = 0.034420, Lr = 0.040 k/ft, Tributary Width =1.0 fl Maximum Bending Stress Ratlo = 0.156: 1 - - Maximum Shear Stress Ratio = - 0.043 : 1 Section used for this span HSS4X2X1/8 Section used for this span HSS4X2X1/8 I Mu : Applied 0.595 k-ft Vu : Applied 0,29768 k Mn / Omega: Allowable 3.810 k-ft Vn/Omega : Allowable 7.0013 k Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 3.973ft Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Support Reactions ( kips ) Max Downward Live Load Deflection 0,048 in D L+Lr S W Max Upward Live Load Deflection 0.000 in _._... Support #1 0.14 016 Live Load Deflection Ratio 1979 Support #2 0.14 0.16 Max Downward Total Deflection 0.090 in Max Upward Total Deflection 0.000 in Total Deflection Ratio 1064 . MAXIM M Forces tStresses;'far I_oad,COmbinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values _ Segment Length Span # M V Mmax + Mmax - Ma - Max Mnx Omega*Mnx Cb Rm Va Max Vnx Omega*Vnx Overall MAXimum Envelope Dsgn. L = 8.00 ft 1 0.156 0.043 0.60 0.60 6.36 3.81 1.13 1.00 0.30 11.69 7.00 +D Dsgn. L = 8.00 ft 1 0.072 0.020 0.28 0.28 6.36 3.81 1.13 1.00 0.14 11.69 7.00 +D+L+H Dsgn. L = 8.00 ft 1 0,072 0.020 0.28 0.28 6.36 3.81 1.13 1.00 0.14 11.69 7.00 +D+Lr+H Dsgn. L = 8.00 ft 1 0.156 0.043 0.60 0.60 6.36 3.81 1.13 1.00 0.30 11.69 7.00 +D+0.750Lr+0.750L+H Dsgn. L = 8.00 ft 1 0.135 0.037 0.52 0.52 6.36 3.81 1.13 1.00 0.26 11.69 7.00 OveralhMaximutn Deflections - Unfactored Loads Load Combination Span Max. `2 Defl Location in Span Load Combination Max. "+" Defl Location in Span D + Lr + L 1 0.0902 4.027 0.0000 0.000 Maxirnuni befledtians for Load Combinatjohs - Unfac#fired Loads Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span D Only 1 0.U41 t 4.U2t U.uuuu U.uuu Lr+L Only 1 0.0485 4.027 0.0000 0.000 D + Lr + L 1 0.0902 4.027 0.0000 0.000 06/04/2008 12:51:25 PM Page 6 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report,pdf ©Pool Engineering, Inc. 2008 col Pool Engineering, Inc. Title: Andersen Job # 08-0389 _ 1201 N. Tustin Ave. Dsgnr; engineering Anaheim, CA92807 ProjectDesc.: Phone: (714) 630-6100 Project Notes Inc. Fax: (714) 630-6114 Printed: 4 JUN 2008 Description : Rafters Maxilmuin Reattio • UI16 oPed u Note: Only non zero reactions are listed. Load Combination Support Vertical Reaction Overall MAXimum Support 1, (D + Lr+ L) 0.298 Overall MAXimum Support 2, (D + Lr + L) 0.298 D Only Support 1 0.138 D Ohly Support 2 0.138 Lr+L Only Support 1 0.160 Lr+L Only Support 2 0.160 D + Lr + L Support 1 0.298 D + Lr + L Support 2 0.298 Steel Section Properties HSS4X2X118' Depth = 4.000 in I xx = 2.65 inA4 J = 2.200 inA4 S xx = 1.32 inA3 Cw = 0.13 inA6 Width = 2.000 in R xx = 1.430 in Wall Thick = 0.116 in Zx = 1.660 inA3 Area = 1.300 inA2 lyy = 0.898 inA4 C = 1.690inA3 Weight = 4.746 pif S yy = 0.898 inA3 R yy = 0.830 in Zy = 1.020 inA3 Ycg 2.000 in 06/04/2008 12:51:25 PM Page 7 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, Inc. 2008 pool Pool Engineering, Inc. Title : Andersen Job # 08-0389 1201 N. Tustin Ave. Dsgnr: engineering Anaheim, CA 92807 Project Desc.: N Phone: (714) 630-6100 Project Notes Fax:(714) 630-6114 Printed: 4 JUN 2008 Description : Hip Beams - - - MaterlalrOperttds t: Calculations per IBC 2006,CBC2007,13thAl"aC Analysis Method : Allowable Stress Design Fy : Steel Yield : 46.0 ksi Beam Bracing : E: Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 Applied LoadS" _ _ Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Varying Uniform Load : D(S,E) = 0.13768-4.0, Lr(S,E) = 0.160->0.0 k/ft, Extent = 0.0 -->> 11.3140 ft, Tributary Width =1.0 f g _. Maximum Bending Stress Ratio - - 0.523: 1 - - - - - _ Maximum Shear Stress Ratio - 0.165 : 1 Section used for this span HSS4X3X1/8 Section used for this span HSS4X3X1/8 Mu : Applied 2.532 k-ft Vu : Applied 1.1543 k Mn / Omega: Allowable 4.843 k-ft Vn/Omega : Allowable 7.0013 k Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 4.784ft Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Support Reactions ( kips ) Max Downward Live Load Deflection 0.293 in D L+Lr S W E H Max Upward Live Load Deflection 0.000 in Support #1 0.0.0 Live Load Deflection Ratio 463 Support #2 0.29 29 0.30 Max Downward Total Deflection 0.565 in Max Upward Total Deflection 0.000 in Total Deflection Ratio 240 Maximur i Forces, Stresses for;Load Cornlb Ions Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma - Max Mnx Omega*Mnx Cb Rm Va Max Vnx Omega*Vnx Overall MAXimum Envelope Dsgn. L = 11.31 ft 1 0.523 0.165 2.53 2.53 8.09 4.84 1.15 1.00 1.15 11.69 7.00 +D Dsgn. L = 11.31 ft 1 0.252 0.079 1.22 1.22 8.09 4.84 1.15 1.00 0.55 11.69 7.00 +D+L+H Dsgn. L = 11.31 ft 1 0.252 0.079 1.22 1.22 8.09 4.84 1.15 1.00 0.55 11.69 7.00 +D+Lr+H Dsgn. L = 11.31 ft 1 0.523 0.165 2.53 2.53 8.09 4.84 1.15 1.00 1.15 11.69 7.00 +D+0.750Lr+0.750L+H Dsgn. L = 11.31 It 1 0.455 0.143 2.20 2.20 8.09 4.84 1.15 1.00 1.00 11.69 7.00 QveraI Maximum Deflections w-Unfactored L60ds Load Combination Span Max. "-" Dell Location in Span Load Combination Max. "+" Defl Location in Span D + Lr + L 1 0.5651 5.467 0.0000 0.000 1> 6ximam I)efldcfioris fo"raoad'Cambinations Unfactored Loads Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span D Only 1 0.2723 5.467 0.0000 0.000 Lr+L Only 1 0.2928 5.467 0.0000 0.000 06/04/2008 12:51:25 PM Page 8 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, Inc. 2008 Pool Engineering, Inc. Title : Andersen Job # 08.0389 pool 1201 N. Tustin Ave. Dsgnr: engineering Anaheim, CA92807 ProjectDesc.: ^ M Phone: (714) 630-6100 Project Notes ri Fax: (714) 630-6114 Printed: 4 JUN 2006 Description : Hip Beams MxjmUm` Defleotions for,Load Combtnaiiorts - Unfactored Leads Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span D + Lr + L 1 0.5651 5.467 0.0000 0.000 Maximum Reactions - Unfactored; Note: Only non -zero reactions are listed. Load Combination Support Vertical Reaction Overall MAXimum Support 1, (D + Lr + L) 1.154 Overall MAXimum Support 2, (D + Lr + L) 0.593 D Only Support 1 0.551 D Only Support 2 0.291 Lr+L Only Support 1 0.603 Lr+L Only Support 2 0.302 D + Lr+ L Support 1 1.154 D + Lr+ L Support 2 0.593 Steel Section Properties . ` ' AtX3X1/8;; Depth = 4.000 in I xx = 3.52 inA4 J = 4.380 in^4 S xx = 1.76 In^3 Cw = 0.13inA6 Width = 3.000 in R xx = 1.520 in -Wall Thick = 0.116 in Zx = 2.110 inA3 Area = 1.540 inA2 Iyy = 2.270 inA4 C = 2.590inA3 Weight = 5.597 pif S yy = 1.510 inA3 R yy = 1.210 in Zy = 1.730 1n^3 Ycg = 2.000 in 06/04/2008 12:51:25 PM Page 9 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, Inc. 2008 Pool Engineering, Inc. Title : Andersen Job # 08-0389 _ pool 1201 N. Tustin Ave. Dsgnr, Anaheim, CA 92807 Project Dose.: ., Phone: (714) 630-6100 Project Notes : Fax: (714) 630-6114 Printed: 4 JUN 2008 Description : Beam Ma�erlal Properties: h „ Calculations per 16C 2006, CBC 2007,13th RISC Analysis Method : Allowable Stress Design Fy : Steel Yield : 46.0 ksi Beam Bracing : E: Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load : D = 0.23210, Lr = 0.20 k/ft, Tributary Width =1.0 fl Maximum Bending Stress Ratio = 0.522: 1 Maximum Shear Stress Ratio = 0.167 : 1 Section used for this span HSS8X6X3/16 Section used for this span HSS8X6X3/16 Mu: Applied 14.374 k-ft Vu : Applied 3.5936 k Mn / Omega: Allowable 27.544 k-ft Vn/Omega : Allowable 21.5044 k Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 7.946ft Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Support Reactions ( kips ) Max Downward Live Load Deflection 0.235 in D L+Lr S W E H Max Upward Live Load Deflection 0.000 in ... "-_ Support #1 1.99 1.60 Live Load Deflection Ratio 816 Support #2 1.99 1.60 Max Downward Total Deflection 0.528 in Max Upward Total Deflection 0.000 in Total Deflection Ratio 363 Maximum Forces Stresses for Load Comiomations: Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma - Max Mnx Omega*Mnx Cb Rm Va Max Vnx Omega*Vnx Overall MAXimum Envelope Dsgn. L = 16.00 ft 1 0.522 0.167 14.37 14.37 46.00 27.54 1.13 1.00 3.59 35.91 21.50 +D Dsgn. L = 16.00 ft 1 0.290 0.093 7.97 7.97 46.00 27.54 1.13 1.00 1.99 35.91 21.50 +D+L+H Dsgn. L = 16.00 ft 1 0.290 0.093 7.97 7.97 46.00 27.54 1.13 1.00 1.99 35.91 21.50 +D+Lr+H Dsgn. L = 16.00 it 1 0.522 0.167 14.37 14.37 46.00 27.54 1.13 1.00 3.59 35.91 21.50 +D+0.750Lr+0.750L+H Dsgn. L = 16.00 ft 1 0.464 0.149 12.77 12.77 46.00 2T54 1.13 1.00 3.19 35.91 21.50 Overall Maxinium'Deflections - Unfactored Loads - Load Combination Span Max. " ' Defl Location in Span Load Combination Max. "+" Dell Location in Span D + Lr + L 1 0.5283 8.054 0.0000 0.000 Maximurit Defilecfons for Load Gombinations = Unfiactored Loads .. ;. _., _._ Load Combination Span Max. Downward Defl Location in Span Max. Upward Dell Location in Span D Only 1 0.2931 8.054 0.0000 0.000 Lr+L Only 1 0.2352 8.054 0.0000 0.000 06/04/2008 12:51:25 PM Page 10 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, inc. 2008 pool Pool Engineering, Inc. Title : Andersen Job # 08-0389 1201 N. Tustin Ave. Dsgnr: engineering Anaheim, CA 92807 Project Desc.: inC. Phone: (714) 630.6100 Project Notes Fax: (714) 630.6114 Printed: 4 JUN 2008 Description : Beam Maximum Deflections for Load C:ombirtatI in - Unf cto`red Loads Load Combination Span Max. Downward Dail Location in Span Max. Upward Defl Location in Span D + Lr + L 1 0.5283 8.054 0.0000 0.000 Maximum ReactiOnS 4nfAct6red Note: Only non -zero reactions are listed. Load Combination Support Vertical Reaction Overall MAXimum Support 1, (D + Lr+ L) 3.594 Overall MAXimum Support 2, (D + Lr + L) 3.594 D Only Support 1 1.994 D Only Support 2 1.994 Lr+L Only Support 1 1.600 Lr+L Only Support 2 1.600 D + Lr+ L Support 1 3.594 D + Lr + L Support 2 3.594 Steel Section Properties : HSS8X6X3116 Depth = 8.000 in I xx = 43.70 inA4 J = 53.700 inA4 S xx = 10.90 inA3 Cw = 0.19 inA6 Width = 6.000 in R xx = 3.060 in -Wall Thick = 0.174 in Zx = 13.000 inA3 Area = 4.670 inA2 I yy = 28.200 inA4 C = 15.800 inA3 Weight = 17.102 plf S yy = 9.390 inA3 R yy = 2.460 in Zy = 10.700 inA3 Ycg = 4.000 in 06/04/2008 12:51:25 PM Page 11 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, Inc. 2008 Desicgner: CJB Freestanding Solid Roof Patio Cover Job #08-0385 WIND DESIGN: CBc/IBc f min f = 7.755•I4z approximate fundamental frequency of structure i - - Tnrfu Trnaz - Structure = "Is a rigid structure in accordance with ASCE 7-05 Section 6.2" Open BuildmcJ (ASCE 7-05 Section G.S. 13) Exp := C Exposure Category (ASCE 7-05 G.5.G.3) Iwnnd := 1.0 Importance Factor (ASCE 7-05 G.5.5) V := 85mph Basic wind speed (ASCE 7-05 Figure G- 1) Kd := 0,85 directionality factor (ASCE 7-05 G.5.4.4) Gw = 0.85 Gust effect factor (ASCE 7-05 G.5.8) KZ = 0.85 exposure coefficient (ASCE 7-05 G.5.G.G) CN := 1.7 Pressure Coefficient (Figure G-18) KZt := 1.0 topographic factor (ASCE 7-05 G.5.7.2) qh := 0.00256•F',•KZt'Kd'V2'lwind qh = 13.4•psf Velocity Pressure (ASCE 7-05 G.S. 10) p := gh•Gw•CN p = 19.3•psf design wind pressure (ASCE 7-05 Eq. G-25) Vwind := p' (hmax — heol)'Loverall Vwind = 1545 lb Vseismic Sf'Loverall'Woverall•DL Vseismic = 25571b Controlling = "Seismic loading controls lateral design" pnplin := 1.3•(p — 5psf) puplift = 18.6•psf Post Uplift: Wcover trib_A :_ (Lcover)' 2 + Loh if Nopost > 2 CLcovcr 1 (Wcover 2 + LohJ I 2 +Loh otherwise Pnplift := trib_A•puplift Rafter Uplift: SP,.af = 24•in rtrib_Araf SLraf Praf'I 2 + Loh P"plift_raf := trib_AfafTuplift Pnplift = 1860.307 lb rafter spacing trib_A,.af = 12 ft2 total wind base shear total seismic base shear net uplift force on structure (assume only 5p5f dead load) trib_A = 100 ft2 USE: 3/ 1 G" FILLET WELD, ALL AROUND OK BY INSPECTION Puplift_raf = 223.237lb USE: 3/ 1 G" FILLET WELD, ALL AROUND OK BY INSPECTION 06/04/2008 12:51:25 PM Page 12 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, Inc. 2008 designer: CJB Freestanding Solid Roof Patio Cover Job #08-038` POST; STEEL COLUMN - Load and Resistance Factor Design STEEL_PIPE := "P5-STD" - See A15C 3GO-05 Pg. 1-99 A53 Grade B 5TEEL: c := 2.78in A := 4.03in2 Ico1:= 14,3in4 r := 1.88in S := 5.14in3 Z := 6,83in3 � := 0.90 Fy := 35000psi Yield strength of Steel Pipe per ASTM A53 Eoo1= 29000ksi Modulus of Elasticity of Steel L := hool L = 8 ft Actual Height of Column x := 2 total number of beams coming into column K:= 2.10 Bucklmg Length Coefficient (AISC 3GO-05, Table C-C2.2) PDL := trib_A•DL + x•DLb,n PDL = 29351b PLL := trib_A•LL PLL = 2000lb PE := 1.4.Sfv'(PDL + Wcot) PE = 687 lb Pu := 1.2'(PDL + Wcol) + PE + 1.6•PLL P„ = 80091b Vertical Load on column VL,:= 1.4•Sf•(PDL+ Wcol) Vu= 17861b Base Shear on column MU := 1.4•Sf.(PDL•L + 0.5Wco1'L) M11= 13250 ft•lb Bending Moment on column due to base shear. 2 Fe ?r 'Ecol Fe = 24890•psi Elastic Critical Bucklmg Stress (AISC 3GO-05, Eq. E3-4) K•L112 Cr/ Fy F F,,-,:= 0.658 e •Fy (AISC 13, Eq. E3-2) Fcr b 0.877'17e (AISC 3GO-05, Eq. E3-3) Fcr:= if(Fe >_ 0.44•Fy,Fc,._a,Fc,._b) FC1.= 19430•psi Buckling Stress (AISC 360-05, Chapter H, Section 1-12) Pe := (�•Fcr•A Pe = 70471 lb Design Compressive Stress in Column (AISC 3GO-05, Chapter H, Section H2, and Chapter If, Section E3) Mc:= min(c-Fy•Z,1.6•FyS) Mc= 17929•lb•ft Design Bending Stress on Column (AISC 3GO-05, Chapter H, Section H2, and Chapter F, Section F 1 1) Interaction Formula: Since P" = 0.11 Use = "EQ_HI-lb Per AISC, Chapter H, Section 1" Pc For PrZ 0 2 Pl' + 8 • M`� = 0.771 < 1.0 AISC 3GO-05, Eq. H I - I a Casel = "N/A" Pc Pe 9 (Me) For P' < 0.2 Pn + Mu 0.796 < 1.0 AISC 3GO-05, Eq. H I - I b Case2 = "OK" Pe 2Pc Me Check Drift of Column: L = 8 ft Height of Level Da := 0.025•1, Aa = 2.4•in Allowable Drift (ASCE 7, Table 1 2. 1 2-1) Iscis = I Importance Factor C8 := 2 3 6„e:= 1.4•(16•Sf•PDL+ 5•Sf'Wcot) L Deflection 48 • Ecol' Ico1 8, = 2.286•in < Da = 2.4•in DRIFT = "OK" Deflection Amplification Factor Sx := Cd bxe Design Drift (ASCE 7, Eq. 12.8-1 5) Iscis USE = "5in.(nominal) Steel Round Pipe Column" 06/04/2008 12:51:25 PM \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patlo\Final Report.pdf Page 13 of 17 ©Pool Engineering, Inc. 2008 X z Andersen Bearing Pressure Maximum Bearing 2.064 ksi Max/Allowable--Ratio _ _.809-- AI_SC_(A4-5) (ABIF = 1.000)-_ v v 12 in Plain Base Plate Connection Base Plate Thickness : 1. in Base Plate Fy : 36. ksi Bearing Surface Fp : 2.55 ksi Anchor Bolt Diameter :.75 in Anchor Bolt Material : A307 Anchor Bolt Fu : 60. ksi Column Shape : PI 5.0 Design Code : AISC LRFD 2nd Coarse Solution Selected - Anchor Bolts Rnif X (inl 7 (in) Tpnc (k) \/x (k) \/7 2.064 (ksi) 0. - Base Plate Stress Maximum Stress 19.255 ksi Max/Allowable Ratio .594 AISC (A4-6)(E) (ASIF = 1.000) .,. 19.255 (ksi) X .257 t k) Ft (ksi) Fv (ksi) Unity Combination 1 4.5 4.5 6.038 .319 0. N.A. N.A. N.A. AISC A4-6 E 2 -4.5 4.5 5.85 -.319 0. N.A. N.A. N.A. AISC A4-6 E 3 4,5 -4.5 6.038 .319 0. N.A. N.A. N.A. AISC A4-6 E 4 -4.5 -4.5 5.85 -.319 0. N.A. N.A. N.A. AISC A4-6 E Loads P (k) Vx (k) Vz (k) Mx (k-ft) Mz (k-ft) Reverse DL LL EL 3.435 No 2, No .491 1.276 9.464 Yes 06/04/2008 12:51:25 PM Page 14 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patlo\Final Report.pdf ©Pool Engineering, Inc. 2008 )esigner: CJB Freestanding Solid Roof Patio Cover Job #08-038� Baseplate Design: Pdl PDL + Wcol Pdi = 3.435 •k ultimate factored dead load bf := 24in width of footing PH PLL Pit = 2•k ultimate factored live load df := 64in depth of footing Pe Sfd(PDL + Wcol) Pc = 0.491 -k ultimate factored vertical seismic load V = 1.276•k ultimate factored base shear M = 9.464•k•ft ultimate factored moment Baseplate designed using Risa-Base using loads above, Loads have been converted for LRFD design. USE :_ "12in. SQUARE x lin. THICK'A36' STEEL BASEPLATE" ANCHOR BOLT DESIGN: Ultimate Strength Design per AC1318 - Appendix D Tu := 6.038k Max. tension in anchor bolts from Risa-Base analysis do := 3 in diameter of bolt 4 �1 := 0.75 reduction factor for tension (ACI3 18 Section D.4.4) hcf := 6in minimum embedment depth (�2 := 0.65 reduction factor for shear (ACI3 18 Section D.4.4) �, := 0.75 seismic reduction factor (ACI3 18 Section D.3.3.3) fc := 2500psi comp. strength of concrete fya := 60000psi for ASTM A307 bolt f„ta := min(1.9•fy,,,125000psi) Steel Strength of Anchor: 2 A,, := 0.7854•(do _ 0.97431 Ase = 0.334•in2 stress area n := 1 nt Nsa n,Ase'fiita Nsa = 38128.521 lb (ACI3 18 eq. D-3) Vsa := n•0.6•A,4,ta Vsa = 22877.112 lb (ACI3 16 eq. D-20) Pullout Strength of Anchor in Tension: �c p := 1.0 (ACI3 18 Section D.5.3.G) Abrg = 1.59•in2 Np := 8•Ab,g•fc Np = 31800lb (ACI3 18 eq. D-1 5) Np„ :_ c p•Np Np„ = 31800lb (ACI3 18 eq. D-14) s := 9in max spacing of bolts nt = 10. 1 threads per inch to ea = 7.5•in minimum edge distance f„ta = 114000•psi number of anchors in the group Area of hexagonal bolt head Concrete Side -Face Blowout Strength of Anchor in Tension: X := 0.5 multiplication factor when ca i = ca2 (ACI3 18 Section D.5.4. 1) ,; ,g f� L,00•1b) Nsb = 1 x 103071b (ACI3 l 8 eq. D- 17) Nsb := if(ca < 0.4hcf,160•cAb 06/04/2008 12:51:25 PM \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf Page 15 of 17 ©Pool Engineering, Inc, 2008 )esigner: CJB Freestanding Solid Roof Patio Cover Job #08-038E Concrete Breakout Strength of Anchor: i c 1 �- if c > 1.5•hef,1, 03 + 0.3 �ed N = 0,95 (AC13 1.8 ecl D- 10, f 1) ed_N - n - 1.51ef = - - - Yc N := 1.0 (ACI3 18 Section D, 5.2.6) �cp N := 1.0 (ACI3 18 Section D.5.2.7) r 11.5 kc := 24 for cast -in anchors Nb := [k..V—f.. b•I he J •lb Nb = 17636.3261b (ACI3 18 eq. D-7) in ANe = 198•in2 Projected concrete failure area of anchor bolt ANeo := if(ea < 1.5•hef,AN,,9'hef2) ANeo = 198•in2 (ACI3 18 Section D.5.2. I ) Ncb := ANo 'Oed N' N_N'q�cp—N'Nb Ncb = 16754.51 lb (ACI3 18 eq. D-4) �2-Neb = 10890.431 lb ANeo ha:= min(1.5ca,df) ha= 11.25•in depth of concrete for shear breakout Ave = 210.937•in2 total projected area for anchor bolt in shear Avco := if(l.5ea S haalAve) 2.5•ea hal Avco = 210.937•in2 (ACI3 18 Section D.6.2. 1) '�ed_V := C0.7 + .3 I *ed_V = 0.9 (ACI3 18 eq. D-28) 1�e V := 1.0 (ACI3 18 Section D.G.2.7) 1. le := min(hef,8•do) J le= 6•in (ACI318 Section D,6.2.2) 0.2 r 11.5 Vb :=[7-(do do fe b I n I •lb Vb = 9436.448lb (AC13 18 eq. D-24) o) \ J Vcb •= Ave *ed V'PcV'Vb Vcb = 8492.804lb (AC1318 eq. D-2 I ) AVco _ Concrete Pryout Strength of Anchor in Shear: kcp := iff(hef >_ 2,5in, 2,1) kcp = 2 (ACI3 18 Section D.6.3. 1) Vcp := kep'Ncb Vcp = 33509.02 lb (ACI3 18 eq. D-29) Interaction of Tensile and Shear Forces: Nua := Tu Nua = 6038lb total tension in anchor bolt V„a := 4u V„a = 446.56lb total shear in anchor bolt �Nn t•min(NsaeNpn,Nsb,Ncb) (�N„ = 9424,412lb design tension strength 0.:= k'412•min(Vsa)Vcb,Vvp) �Vn = 4140.2421b design shear strength Nua + Visa = 0.749 < 1.2 (ACI3 18 eq. D-3 1) �Nn �Vn USE _ "3/4 DIA. CAST -IN -PLACE HEADED ANCHOR BOLT' 06/04/2008 12:51:25 PM Page 16 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, Inc. 2008 designer: CJ6 Freestanding Solid Roof Patio Cover Job #08-038� POLE FOOTING DE51GN Pmax PDL + Wool + PLL Pmax = 5435lb maximum vertical loading shape := "SQUARE" SQUARE or ROUND footing w = 24•in footing size d = 65.222•in footing depth Af = 4 ft2 bearing area of footing Pmax qa := A qa = 1358.77•psf vertical bearing pressure < q = 1500•psf Vertical —Bearing = "PASS" f NON -CONSTRAINED AT GROUND LEVEL: (SEE CBC/IBC 1805.7.2. 1) b = 33.941•in diagonal dimension of footing V = 1275.887lb total base shear M = 9464.238 ft•lb total moment h := M h = 7.418 ft effective height of lateral loading V Sl := 2. C'Yr 3) 3 S1 = 483.126-psf allowable lateral soil -bearing based on 1/3 embedment depth (10(0% increase for isolated pole * 1 /3 increase for short term) A := 2534� A = 26.218•in d,.o9 :_ •I 1 + 4.36• A + 1 I d,.o� = 65.221 -in required pole embedment i ` J d,.o9 = 65.221•in < d = 65.222•in Depth = "PASS" USE _ "24in. SQUARE x 66in DEEP POLE FOOTING" 06/04/2008 12:51:25 PM Page 17 of 17 \\Peanasv2\Pool\Projects\2008\0389-08 Free -Standing Patio\Final Report.pdf ©Pool Engineering, Inc. 2008