Loading...
HomeMy WebLinkAbout3 CURRENTS - CALCSUNIVERSAL ENGINEERING' "One Source for All Your Engineering Needs" 15375 Barranca Pkwy, #H106 Irvine, CA 92618 949.788.0424 SHEET NO OF CALCULATED BY DATE CHECKED BY-_ h oonnnrr on, • rw yy y�v�V ����V V IlvVyy�� � V V 4VVV �b5 fn � a N QSq, a\W W � \ 7 y �g a OQ 0 m \� W H P 7a �D Z m r CD N a Zm C O Noo N �ZZ LxiA 00 y X 0. X0. O,� X m 00 N "Z 3 N X x� o w\W O Nam` 00 X �1X awa _ p J= O j _ _ 7p X _ o p W (f X X < Qa .A W O N W rJ\ X X 3 ,,, ONE X\ O •� O C h�1' O o L' tlo °� C-' ,A 6aa a O _ W O O N•: b d O k ` ... ,t 3 °'Wo J� wx `.0 0o Sip a •$ do 3 w �<f < a a rn d Uqa a p N 5 In O B O amcr Cr x co ° o Ow o g 5 P p yp X.Mm 00 a N U W N Q4�� l7 11 a pt. $ c OO ii0oo [[Jryy7y7ry m m O Op w N W w O O p a g A 1O• m dw O LA v W A w A » `• O O N w (� Z' •1� OC c w V ov CDw U wt� O a u �p a O Pa O Ln O U OW g V A T A W j z 6 g 8 Q Nm a x X� pw OX O. 3N 3^ 30 3 W r, w N� Oq N ;Nc . OXO o �OX3 yQp�O1�O\ NaX C�3` G Or •. N O<0O 0 A l_N" �ONX o 07G0C . N N atk °N� NOa N_'p =C. v44'i2 tl�O1— 2 QO 3W CN-N C a GWm a O ry CA g m O ice' , 9L w 1C k cr c c O �p�p ryC� 8 rnrnO O W- I U3 r O O O O LA Ln n � o Ln o o m wom WOOD Notes to Table 2306.4.1 For SI: I inch = 25.4 mm, 1 pound per foot = 14.5939 N/ni a. For framing of other species: (1) Find specific gravity for species of lumber in AF&PA NDS. (2) For staples find shear value from table above for Structural panels (regardless of actual. ) grade and multiply value by 0.82 forspecies.withspecificgravity of 0.42 orgreater, or 0.65 for all other species. (3) For nails find shear value from table above for nail size for actual grade and tine- iq value by the following adjustment factor: Specific Gravity Adjustment Factor = [1-(0.5 -So)], where SG Specific Gravity of ilia framing lumber. Irad adjustment factor shall he tie greater than i. b. Panel edges backed with 2-inch nominal or widerfraining. Install panels either horizontally or vertically, Space fasteners maximum 6 inches on center along intermediate inches framing for 3/8-inch' and 7116-Inch panels installed on studsspaced 24 inches on center. For other conditions and tnel thickness, space fasteners maximum 12 inches on center on intemtediate supports, g ate c. glow le shear thickness or siding with a span rating of 16 inches on center is the minimurn recommended where applied direct to framing as exterior siding. d, Allowable shear values are permitted to be increased to values shown for 15/ inch sheathiag with same nailing inches on center, or (b)panels are applied with long dimension across or /32 . g provided (a) studs are spaced a maximum of 16 c. Framing at'adjoiningpanei`edges shall be 3 inches nornina( or wider; and nails shall6estaggered where pails eras aced 2 f, Framing at adjoining panel edges shall be 3 inches norilral or wider, and nails shall be`sfaggered where both of the fo 0,148")'Halls having penetration into fraining of more than 1 11 inches and (Z) nails are spaced 3 inches on center. Ilow are inches center., followingconditions met: (I) 10d (3" x g. Values apply to all -veneer plywood. Thlckness at point ot` t`astening on panel edges gov&ns shear values. h. Where panels applied on both faces of a wall and nail spacing is less than 6 inches o.c. on eltherside, panel joints shall be offset to fall on different framing mem- bers, or Framing shall be 3-inch nominal or thicker at adjoining panel edges and nails on each side shall be staggered. i, InSeiismicDesignCategoryD,EorF,wheresheardesignvaluesexceed350poundsperlinearfoot,allframingmembersreceivingedgenailingfromabuttin pan- els shall not be less than a single 3-inch nominal member, or two 24ch nominal members fastened together in accordance with Section 2306.1 to transfer the design shear value between framing members. Wood structural panel joint and sill plate nailing shall be staggered In all cases, See Section 2305.3.11 for sill plate size and anchorage requirements. j. Galvanized nails shall be hot dipped or tumbled. k. Staples shall have a minimum crown width of 7/16 inch and shall be installed with their crowns parallel to the long dimension of the framing members, I. Forshearloadsofnormalorpermanentload duration asdefined bytheAF&PANDS,thevaluesinthetableaboveshallbemultiplied by0.63or0.56,respectively. m. [DSA-SS & OSbfPD 1, 2 and 4JRefer to Section 2305.2;4.2, which requires ahy wood structural panel sheathing used for diaphragms and shear walls that are part of the seismic -force -resisting system to be applied directly to framing members. TABLE �366.4.1 ALLOWABLE SHEAR FOR PARTICLEBOARD SHEAR WALL SHEATHINGh MINIMUM NOMINAL' PENETRAT ONINIMUM I IN PANEL GRADE PANEL THICKNESS FRAMING (inch) (Inefies) M-S "Exterior Glue" 3/ and M-:Z "Exterior t, 1 1/2 Glue„ Nail size or I APPLIED DIRECT TO FRAMING Allowable shear (pounds per foot) nail spacing at imzec cox)M 6d 8d lOd For ST: 1 inch = 25A mm, I pound per foot ; 14.5939 N/m. 200 30S 395 a. Values are not permitted in Seismic Design Category D, E or F. b. Galvanized nails shall be hot -dipped or tumbled. TABLE 2306.4.4 . . OR S SHEAR WALLS OF FIBERBOARD SHE THNG BOARD CONST UICTION EISMIC LOADING ON: FOR TYPE V CONSTRUCTION TION OkLYe,bAd, fa.h z 300 315 350 460 520 SHEAR VALUE — THICKNESS AND GRADE (Pounds per linear foot). FASTENER SIZE 3-INCH NAIL SPACING AROUND PERIMETER AND 6-INCH AT INTERMEDIATE POINTS . 1/2" Structural No, 11 gage galvanized roofing nail 11/ 2" long, 7/,6"head 1259 2s/�2"Structural No. I 1 gage galvanized roofing nail long, 7/ " head 1759 For SI: I inch = 25.4 min, I pound per foot = 14.5939 N/m. a. Fiberboard sheathing diaphragms shall not be used to brace concrete or masonry walls, b. Panel edges shall be backed with 2 inch or wider framing of Dougla's fir -larch or Southern pine. c. Fiberboard sheathing on one side only. d. Fiberboard panels are installed with their long.diinension parallel orpetpendicular to studs. . e. Fasteners shall be spaced 6 inches on center along intermediate framing members. f. For framing of other species: (1) Find specific gravity f rspecies of lumber in AF&PA NDS and (2) Multiply the shear value from the above table by 0,82 fors e- des with specific gravity of 0,42 or greater, or 0.65 for all other species. _ g. The same values can be applied when staples are used as described in Table 2304,9.1. P h. Values are not permitted in Seismic Design Category D, E or F. 325 UNIVERSAL ENGINEERIN "One Source for All Your Engineering Needsly SHEET NO. _ , 15375 Barranca Pk # of Irvine, CA 9261g H106 CALCULATED BY DATE 949.788.0424 CHECKED BY DATE— INPUT.DATA Exposure category (B, C or D) b Importance factor, pg 77, 0.87, 1.0 or 1A5 C" ( ) 0p Category II Basco wind speed (IBC Tab 1609.3.1 V 9 ry ss) ` V = 85 mph Topographlo factor (sac,6,5.7,2, pg 26 & 45) c` Kn = Flat Bullding height to eave h c ^. e 12 z ft Buildlhg'helght to ridge hr = , 4 ; ft Bulldirig length L = ft nB Byllding width B Effective area of components . A = 10 z eft. besldN SUMMARY:. Max horizontal force normal to building length, L, face — M3.91 kips: . ax horizontal force'normal to building length, B, face _ Max total horizontal torsional load 1.17 kips. Maz totaiu ward force 10,,84 ft-kips 1.83 kips . . ANALYSIS': Vefoclty uressure ' qh = 0:00256 kh kn Kd.V2.1 _ 13.36 psf where: qh = velocity pressure at mean roof height, h. (Eq. 6-15. page 27) Kh =velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg 70) e. 0.85'. Kd = wind directionality factor, (Tab. 6-4, for building, page 80) h = mean roof height ... 13.00 ft Desl In taressures for MWFRS S 60 ft, [Satisfactory] P = ph [(G CiO-(G Cpi where: p = pressure;in appropriate zone. (Eq. 6-18, page 28).:. G Cp r = product Of gust effect factor and external pressure coefficient, see'table below. (Fig.6-10, page 53 & 54) G Cp I = product of gust effect factor and Internal pressure coefficient,(Fig. 6-5, Enclosed Building, page 47) 0',18 or =01t3 a = width of edge strips, Fig 6 10, note 9, page 54, MAX[ MIN(0.1 B, 0,4h), 0.04B,31 _ $.00 ft Net Pressures s , Basic Load Cases Net Pressures nsf , Torsional Load Cases Roof an le 0.. 31.61 Roof an le A = 0.00 Surface NeE Pressure with Roof an le 0 = 31.61 . G C Net Pressure with p r (tGCp i) (-GG Cp r Surface Net Pressure with' pl) ( GC'pl) (-GCPI) OCpr (GC+pI) ("GCPI): 1 0.56 5,08 9,89 0.40 2.94: 7,75 2 0.21 0.40 5;21 -0,69 -11.63 -6.82 1T 0;56 1.27 2,47: 8 -0.43 .8,15 -3.34 -0,37 -7,35 -2.54 2T 6-2t 0.10 130. 4 -0.37 -7,35 -2:54 -0 29 -6:28. -1.47 3T -0;43 -2.04 -0.84. 1E 0.69 6.82 11,63• 0.61 US. 10.66 4T 0,37.` -1,84 0,63r 2E 0.27 . 1.20 6.01 -1,07 -16,70 -11,gg Roof an le.o '=.. 0.00:.. Suriaoe Net Pressure with . 3E -0.53 -9.40 -4.68 -0.53 9,49 -4.68. OCpr. 4E -0.48 -8.82 -4,01 -0.45 8;15 . 3.34". (+GCp 1) (-GGP I ) 5 -0,45 -8,42 -3.81 -0.45 8.42 -3:61 1T 0,40:_ . 0,73 2T " 6. -0.45 -8.42. -3.61 -0,45 -8.42 =3.61 0.6Or -2.91 -11G. 3T -0.37 -1.84 I.. 4T -0,29' -1,57 :. 3E 3. - 2 . ' - 2E _ - ZONE 2/3 BOUNDARY ' 3 2 3E 3T 32 3T T 3 T 4E a�. B 6 4E�_ — '''6 4E q�`4T 2E 2 _ 6 '4`_AT U C 4E�- REFERENCE CORNER tE 6 jE. _ 1E IT REFERENCE CORNER 1E REFERENCE CORNER. 6 IT i ° WIND DIRECTION - - - - REFERENCE CORNER - WIND DIRECTION ° - WIND DIRECTION - .WIND DIRECTION Transverse Direction Longitudinal Direction Transverse Direction Longitudinal Direction Baslo Load Cases .. Torsional Load Cases: In rressure K With. -- --vil Surface pressure k with (ft2) (+GCpI) (-GCpI) SUffaCa Area 1 192 0.97 1,90 (ft)2 (� GCpI) (-GC 1. 1 2 81 0.02 0.32 0,00: 0.01. 3 61 -0.50 2 6 .. -0:08 -0.04 4 192. -0:20 3 6 -0.0$ , -1.41 -0.49 -0.02 I 72 0.491 0.84 4 1 -0;01 0,00:' 2E 23 0:03; 0.14 1 83 0.48 3E 23. -0.22 -0:11 2E 77 -1C29 4E. 72 0;64;:-0,29:. 3E. 77 0:74: -0:36 Horiz, 3.91. 3,91: 4E:83 0.t38 -0 28 E Horiz. 4:17 1 17 Vert. -0.56 0;12 E: 10 psf min, . Hbriz. 3.08:.. 3.08 Vert, -1.83 -1.15 Sao, 6A.4,1 Vert;: .. 10 psf min, Horiz, 0.85. 0,85:... -143 1.43. Sed 6,1,4.1 Vert. 1:43.., - 1 43 - TorsMonal load Cases in TrarisVerse D(reation Torsional Load Casss In Lon )fiidinal Direction Surface Area To k Wlth Torsion ft-k (ftZ) (+GC Surface Area pressure k with Torslon 'ft k pl). (-GCpI). (+GCpI)'(-GCpI.) . 1 60 0.30 0.59 1 2. 41 (+GCpI) (-GCpI ). (#GCp L) (-GCpI ) 2 19 0;01 0.10, 0 1 41 -0,1.2 -0.32 p 0 3 1.9 -0.16 -0.06 0 0 0 2 -71 0,83: `: 0,48 -2 -1 4 60 -0,44 -0,15 2 3 .71 0,52 0:.18 2 1 1E 72 04 01 4 -41 - 0.26 0,06 0 p .84 4 7 1E 83 0.48 0;88 0 2E 23 0.03 0.14 0 1 0 3E 23 .0.22. -0.1.1 1 2E 77 -1.29 .0,92 4 3 0 3E 77 .0;74 -0.36 -2 4E 72 -0,64 -0.29.. 5 2 4E 83 -0,68 -0.28 0 -1 1T 132 0:17 0.33 -1 .-2 0 2T 42 0.00_ 0,Q5 0 1T 42 0,03 0.08 p p 3T 42 0 2T 6 -0.02: 0.0.1 0 0 -0,09 044.. 0 0 37 6 4T 132 -6,24 -0.08 -.1 0 -0.01 0.00. 0 0 Total Horiz. Torsional Load, Mr 4T.: 42 .0,07 .0.02 0 0. 11 11 Total Horiz. TorslOnal I Oad,1,2 Design Dressures^.for t omaonents and cia8dlna p.m gh[ (G UP) ` �G Cpl)J 3 r.:2 2 y :,1, R- ,4�, where: p=pressure on tiomporient. (Eq. 6-22, pg 28pmin 10 psf (Sec, 6.1.4.2, pg 21). G Cp - external pressure coefficient. z z. see table. below. (Fig, 6-11, page 56-58) Walls Roof Roof a»• Effective Zone 2 Area (ft2) GCp . GC: GC . ' Zone 3 Zone 4 . Zone 6 Coin : 10 . 0 90 -1.00 0,90 - GC, GC GC GC : GCpJC -GCp-1.20 0.90 =120. 1,00 '1.10..00.. -1.40 IL-11 15,77. -21.11 I �escrltibrt Roof Rafter' M'ateria�;F�ropertieS calculations per, 200`6, CBC 2007, 20Q5 NDS. Ahalysls Method Allowable Stress besign. Load Combination 2006 IBC & A$CE 105'. _lBC . Fb =Com r; �00 s E: Motluius ofElasticlf p p Y ' Fb °°-Tension 900 psi, Eben'd160Q;ksi Wood Species Douglas:Fir Larch Fe - Pr 1350 psi Fo, Perp 65 psi' . EM nbend xx 580ksi Wood Grade . No 2-180 psi Beam Bracing ;' Beam is:Fully Braced `against:lateral torsion buckling 575 psi Density 32 21 pcf C i 2x6 pp�t a Ste`" n 6.50 ft , Service loads entered. Load Factors w(1( be applied far calculations. Load for Span Num6er.1 . Uniform Load D 0 0210; Lr 0 0276 klft, Trlbutary Width 1.0 ft Maximum Bending Stress Ratio 0.299 ;1 Maximum Shear Stress Ratio = Section used foe this span:. .0.158 2x6 . Section used for,thls span : 1:, Load Combinatioh. +D+Lr+H Load Combination 2x6 Span #where maximum d:ccurs • Span #1 1 Span # vuhera maximum occurs +DLr+H Span. #/ 1 locatiop of max on that span: 3.272 ft loca ion of max on that span 0 000 ft Mu X Appiled 0:25 k ft vu :Applied 0102ksl Mn x/Omega :Allowable 0.85 kft Vn /Omega :Allowable,.. 0:1800 k§i MI _QW o`rces 8 S fess s for Load Cambmaflons� Load Combination Max Stress Ratios. Segment Length` : Span # M Summary Mo of ment Values... Summaryof Shear Values V" Mactual. fb-design , .:.. Fb=allow +D. Vactual fv-dasigrl., Fv-allow Length 6 50 ft 1 0131 . +D+Lr+H OA09 0.11 175,97' 1,345,50 0.07 12.41 180.00 Length 6 50`ft 1 0.299 . 0,158 + . +p 760Lr+0,750L+H 0;25 402 23; 1,345.50 0.16 28 38 180:00 Length 6 60 ftj 1 0 257 _ 0135 +D+tl 750Lr+0 750L+0 750W+H 0,22 345 66 1,345:50 . 0.13 24 38 180.00 Length 6 50 ft 1 0 257 0.135 +D+0 750Lr+0 75QI:+0 5250B+H tl:22 ' 345 66 1,345.50 0:13 .. 24 38 180.00 . Length 8 50 tt 1 0 257 0135 0 erai Maki �E nu t Def echoers l nfac o e�ads o -0 22 345 66 . 1345;50 0.13 24 38 180 00 Load Combtn ttion Span Max " "Defl .Location in Spaq. Load Combination Max "+" Defl Locat(on In Span D + Lt.+ L 1 0 0586 3' 272 �MamDefiecifor`LoadComblraiontTaco ed oa 0 0000' 0,000 Load C.bmbination Span Max Downward>Defl Locafion (n Span Max. Upward:Defl . Only 1.. Location in Span 0 0256 L Lr+L Only 1 . 0 0329. 3,272 . 0 0000 _ : 3.272 0 000: • D+Cr+L 1 0.0586 3272 OOOOtl: OA000:':' 0 00Q` 0.000. J C _�--� �' �_ _ �_ escrtptton : Header al Propeities fMaeri77. Analysis MethP. Allowable Stress besign carcutations pdr I Zoos; cBc2oo7, 2006 NOS' f Load Combination 2006 1DC & A8CE 7 05 Fb - Compr 900 psi E Modulus of Elasticity ' Fb : Telision 900 si p Fc P.1.3 0 psi Bbehd xX . ' 1600ksi Emiribend xz 580ksi I Wood Species Douglas Fir - Larch Fc - Perp 62'5 psb; Wood Orade No 2 Fv 180 psi `. . Beam Bracing Beam is Fully Braced against lateral Torsion buekl ng 575 psi _: bensity 32 21 pcf 4x4 Servrce loads entered. Load Factors will be applied for Ape d1LoasNO, on Load for Srah Nymber 1 calculations. Uniform Load D 0 0730 Lr 0 0850 k/ft Trlbutary Width G��517 MARL' ' Maximum Bending Stress Ratio = 0.221 ;1 : Maximum Shear Stress Ratio =. Section used for this spare 4x4 ,. Secfiion used for this spars 0:1ti1 1 4x4 Load Comkiinatron. +D+Lr+H Loai. d Combination Span #where maximum occurs . Span # 1 Spare where maximum occurs. +D+Lr+H Span'# 1 locatfort of max on that spare. 1 490 ft location of max on that span 0 000 ft Mu X Applied U 18 k ft vu A lied Pp 0 0290 ksI Mn x /Omega Allowable 0.80 k ft . vn /Omega Allowable ; 0 1800 ksi mum F'o �eStss for Load Cni s , M Load Combin�tlon Max Stress Ratios. $egment;Cength Span # M Summary of Moment values.. Summary, of Shear Values V .. +p Mactual fb design; ; Fb allow Vactual fv design . .: Fv allow Length = 3.0 ft ` 1 0101 01074. +D+Lr+t{ 0.08 13791 1,350.00 0;11 13 41' 180,00 Length 3 O ff ' 1 D 221 b 161 +p+0 750Lr+0 75QI +Fi Q,18 298 4$ .: 1,350,00 0,24 29 02 180.00 Length 3 0 ft' : 0191 0140 +D+O 750Lr-750L+Q 750W+H 0;15 258 34 .. 1,350,00 021 2512. 180.00 Lehgtlt 3 0 ff ' 0191 0140 +D+O 750L0, 0 750E+0 5250E+H 0.15 258 34 1,350,00 0,21 2512. 180.00 Lpngth = 3 0 it ' 1' 0191 0140 Ove kiHM i Deflec i n 11 ac ored loads �� 0,15 258.34 1,350.00 . . 0.21 2512' 180 00 , r Span . Maz,, wau 44111UIIIdTIOfI fi : - kocatlon. In Span:.. Load Combination D+Lr+L Dell Location in Span cum mDe �e�tro s fa load mfno 0 0145 ado dt.oap s 0 OODO 0 000; Loa(i Combination; Span .: Max' Downward D9fl ':. D• Only 1 0 0067 , CocatioOn Span Msx, Upward Defl Location in Span ' Lr+L Only 1. 0 0078 `., D+Lr+L 1,510 1,510 0.0 ; . 00000 0 000 0000. 1. 00145.' 1,510 0 00v 0 18 O'A I ®®oil oe� ... _-_..�� --tea.■